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Abstract

In this paper we develop a distributed algorithm for monitoring the principal components (PCs) for

next generation of astronomy petascale data pipelines suchas the Large Synoptic Survey Telescopes

(LSST). This telescope will take repeat images of the night sky every 20 seconds, thereby generating

30 terabytes of calibrated imagery every night that will need to be co-analyzed with other astronomical

data stored at different locations around the world. Event detection, classification and isolation in such

data sets may provide useful insights to unique astronomical phenomenon displaying astrophysically

significant variations: quasars, supernovae, variable stars, and potentially hazardous asteroids. How-

ever, performing such data mining tasks is a challenging problem for such high-throughput distributed

data streams. In this paper we propose a highly scalable and distributed asynchronous algorithm for

monitoring the principal components (PC) of such dynamic data streams and discuss a prototype web-

based system PADMINI (Peer to Peer Astronomy Data Mining) which implements this algorithm for

use by the astronomers. We demonstrate the algorithm on a large set of distributed astronomical data

to accomplish well-known astronomy tasks such as measuringvariations in the fundamental plane of

galaxy parameters. The proposed algorithm is provably correct (i.e. converges to the correct PCs without

centralizing any data) and can seamlessly handle changes tothe data or the network. Real experiments

performed on Sloan Digital Sky Survey (SDSS) catalogue datashow the effectiveness of the algorithm.

I. INTRODUCTION

Data mining is playing an increasingly important role in astronomy research [25][9][4] in-

volving very large sky surveys such as Sloan Digital Sky Survey SDSS and the 2-Micron

All-Sky Survey 2MASS. These sky-surveys are offering a new way to study and analyze the

behavior of the astronomical objects. The next generation of sky-surveys are poised to take

a step further by incorporating sensors that will stream in large volume of data at a high

rate. For example, the Large Synoptic Survey Telescopes (LSST) will take repeated images

of the night sky every 20 seconds. This will generate 30 terabytes of calibrated imagery every

night that will need to be co-analyzed with other astronomical data stored at different locations

around the world. Event identification and classification insuch data sets may provide useful

insights to unique astronomical phenomenon displaying astrophysically significant variations:

quasars, supernovae, variable stars, and potentially hazardous asteroids. Analyzing such high-

throughput data streams would require large distributed computing environments for offering
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scalable performance. The knowledge discovery potential of these future massive data streams

will not be achieved unless novel data mining algorithms aredeveloped to handle decentralized

petascale data flows, often from multiple distributed sensors (data producers) and archives (data

providers). Several distributed computing frameworks such as [16], [22], [23], [19], and [14]

are being developed for such applications. We need distributed data mining algorithms that can

operate on such distributed computing environments. Thesealgorithms should be highly scalable,

be able to provide good accuracy and should have a low communication overhead.

This paper considers the problem of monitoring the spectralproperties of data streams in

a distributed environment. It offers an asynchronous, communication-efficient distributed eigen

monitoring algorithm for monitoring the principle components (PCs) of dynamic astronomical

data streams. It particularly considers an important problem in astronomy regarding the variation

of fundamental plane structure of galaxies with respect to spatial galactic density and demon-

strates the power of DDM algorithms using this example application. This paper presents the

algorithm, analytical findings, and results from experiments performed using currently available

astronomy data sets from virtual observatories. Our distributed algorithm is a first step in

analyzing the astronomy data arriving from such high throughput data streams of the future.

The specific contributions of this paper can be summarized asfollows:

• To the best of the authors knowledge this is one of the first attempts on developing a

completely asynchronous and local algorithm for doing eigen analysis in distributed data

streams

• Based on data sets downloaded from astronomy catalogues such as SDSS and 2MASS, we

demonstrate how the galactic fundamental plane structure varies with difference in galactic

density

• We discuss the architecture, workflow and deployment of an entirely web-based P2P astron-

omy data mining prototype (PADMINI) that allows astronomers to perform event detection

and analysis using P2P data mining technology

Section II describes the astronomy problem. Section III presents the related work. Section

IV describes the centralized version of the problem while Section V models the distributed

version and explains our distributed the eigenstate monitoring algorithm. Section VI presents

the experimental results followed by a web-based astronomyPADMINI system in Section VII.
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Finally, Section VIII concludes this paper.

II. A STRONOMY DATA STREAM CHALLENGE PROBLEMS

When the LSST astronomy project becomes operational withinthe next decade, it will pose

enormous petascale data challenges. This telescope will repeatedly take images of the night sky

every 20 seconds, throughout every night, for 10 years. Eachimage will consist of 3 gigapixels,

yielding 6 gigabytes of raw imagery every 20 seconds and nearly 30 terabytes of calibrated

imagery every night. From this “cosmic cinematography”, a new vision of the night sky will

emerge – a vision of the temporal domain – a ten-year time series (movie) of the Universe.

Astronomers will monitor these repeat images night after night, for 10 years, for everything that

has changed – changes in position and intensity (flux) will bemonitored, detected, measured,

and reported. For those temporal variations that are novel,unexpected, previously unknown, or

outside the bounds of our existing classification schemes, astronomers will want to know quickly

if such an event has occurred. This event alert notification must necessarily include as much

information as possible to help the astronomers around the world to prioritize their response

to each time-critical event. This information packet will include a probabilistic classification of

the event, with some measure of the confidence of the classification. What makes the LSST so

incredibly beyond current projects is that most time-domain sky surveys today detect 5-10 events

per week; LSST will detect 10 to 100 thousand events per night! Without good classification

information in those alert packets, and hence without some means with which to prioritize the

huge number of events, the astronomy community would consequently be buried in the data

deluge and will miss some of the greatest astronomical discoveries of the next 20 yearse.g.

even the next “killer asteroid” heading for Earth.

To solve the astronomers’ massive event classification problem, a collection of high-throughput

monitoring and event detection algorithms will be needed. These algorithms will need to access

distributed astronomical databases worldwide to correlate with each of those 100,000 nightly

events, in order to model, classify, and prioritize each event correctly and rapidly. One known

category of temporally varying astronomical object is a variable star. There are dozens of different

well known classes of variable stars, and there are hundreds(even thousands) of known examples

of these classes. These stars are not “interesting” in the sense that they should not produce alerts,

even though they are changing in brightness from hour to hour, night to night, week to week –
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their variability is known, well studied, and well characterized already. However, if one of these

stars’ class of variability were to change, that would be extremely interesting and be a signal

that some very exotic astrophysical processes are involved. Astronomers will definitely want to

be notified promptly (with an alert) of these types of variations. One way of characterizing this

variation is by studying changes in the Fourier components (eigenvectors) of the temporal flux

curve which astronomers call “the light curve”.

This problem has several interesting data challenge characteristics: (1) the data streaming rate

is enormous (6 gigabytes every 20 seconds); (2) there are roughly 100 million astronomical

objects in each of these images, all of which need to monitored for change (i.e., a new variable

object, or a known variable object with a new class of variability); (3) 10 to 100 thousand “new”

events will be detected each and every night for 10 years; and(4) distributed data collections

accessed through the Virtual Astronomy Observatory’s worldwide distribution of databases and

data repositories will need to correlated and mined in conjunction with each new variable object’s

data from LSST, in order to provide the best classification models and probabilities, and thus to

generate the most informed alert notification messages.

Astronomers cannot wait until the year 2016 when LSST beginsits sky survey operations

for new algorithms to begin being researched. Those algorithms should be able to analyze the

data in-situ, without the costly need for centralizing all of it for analysis at each time point.

Furthermore, the distributed mining algorithms will need to be robust, scalable, and validated

already at that time. So, it is imperative to begin now to research, test, and validate such data

mining paradigms through experiments that replicate the expected conditions of the LSST sky

survey. Consequently, we have chosen an astronomical research problem that is both scientifically

valid (i.e., a real astronomy research problem today) and that parallels the eigenvector monitoring

problem that we have described above. We have chosen to studythe principal components of

galaxy parameters as a function of an independent variable,similar to the temporal dynamic

stream mining described above. In our current experiments,the independent variable is not the

time dimension, but local galaxy density. We specifically investigate this problem because it is

scientifically current and interesting, thereby producingnew astronomical research results, and

also because it performs tests of our algorithms specifically on the same types of distributed

databases that will be used in the future LSST event classification problems

The class of elliptical galaxies has been known for 20 years to show dimension reduction
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among a subset of physical attributes, such that the 3-dimensional distribution of three of those

astrophysical parameters reduce to a 2-dimensional plane.The normal to that plane represents the

principal eigenvector of the distribution, and it is found that the first two principal components

capture significantly more than 90% of the variance among those 3 parameters.

By analyzing existing large astronomy databases (such as the Sloan Digital Sky Survey SDSS

and the 2-Micron All-Sky Survey 2MASS), we have generated a very large data set of galaxies.

Each galaxy in this large data set was then assigned (labeledwith) a new “local galaxy density”

attribute, calculated through a volumetric Voronoi tessellation of the total galaxy distribution in

space. Then the entire galaxy data set was horizontally partitioned across several dozen partitions

as a function of our independent variable: the local galaxy density.

As a result, we have been able to study eigenvector changes ofthe fundamental plane of

elliptical galaxies as a function of density. Computing these eigenvectors for a very large number

of galaxies, one density bin at a time, in a distributed environment, thus mimics the future

LSST dynamic data stream mining (eigenvector change) challenge problem described earlier. In

addition, this galaxy problem actually has uncovered some new astrophysical results: we find

that the variance captured in the first 2 principal components increases systematically from low-

density regions of space to high-density regions of space, and we find that the direction of the

principal eigenvector also drifts systematically in the 3-dimensional parameter space from low-

density regions to the highest-density regions. However, since the focus of this paper is on the

distributed algorithms themselves and not the discovery ofnew astrophysical results, we leave

a detailed discussion of them to another paper.

III. RELATED WORK

The work related to this area of research can broadly be subdivided into data analysis for

large scientific data repository and distributed data mining in a dynamic networks of nodes. We

discuss each of them in the following two sections.

A. Analysis of large scientific data collections

The U.S. National Virtual Observatory (NVO) [35] is a large scale effort to develop an

information technology infrastructure enabling easy and robust access to distributed astronomical

archives. It will provide services for users to search and gather data across multiple archives
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and will provide some basic statistical analysis and visualization functions. The International

Virtual Observatory Alliance (IVOA) [27] is the international steering body that federates the

work of about two dozen national VOs across the world (including the NVO in the US). The

IVOA oversees this large-scale effort to develop an IT infrastructure enabling easy and robust

access to distributed astronomical archives worldwide.

There are several instances in the astronomy and space sciences research communities where

data mining is being applied to large data collections [16][13][2]. Another recent area of research

is distributed data mining [30][28] which deals with the problem of data analysis in environments

with distributed data, computing nodes, and users. Distributed eigen-analysis and outlier detection

algorithms have been developed for analyzing astronomy data stored at different locations by

Dutta et al.[20]. Karguptaet al. [29] have developed a technique for performing distributed

principal component analysis by first projecting the local data along its principal components

and then centralizing the projected data. In both these cases, the data is distributed vertically

(different full attribute columns reside at different sites), while in this paper, the data is distributed

horizontally (different data tuple sets reside at different sites). Moreover, none of the above efforts

address the problem of analyzing rapidly changing astronomy data streams.

B. Data analysis in large dynamic networks

There is a significant amount of recent research consideringdata analysis in large-scale

dynamic networks. Since efficient data analysis algorithmscan often be developed based on

efficient primitives, approaches have been developed for computing basic operations (e.g.average,

sum, max, random sampling) on large-scale, dynamic networks. Kempeet al. [31] and Boyd

et al. [10] developed gossip based randomized algorithms. These approaches used an epidemic

model of computation. Bawaet al. [5] developed an approach based on probabilistic counting.

In addition, techniques have been developed for addressingmore complex data mining/data

problems over large-scale dynamic networks: association rule mining [39], facility location [32],

outlier detection [11], decision tree induction [8], ensemble classification [33], support vector

machine-based classification [1],k-means clustering [15], top-k query processing [3].

A related line of research concerns the monitoring of various kinds of data models over large

numbers of data streams. Sharfmanet al. [37] develop an algorithm for monitoring arbitrary

threshold functions over distributed data streams. And, most relevant to this paper, Wolffet al.
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[38] developed an algorithm for monitoring the L2 norm. We use this technique to monitor eigen-

states of the fundamental plane concerning elliptical galaxies. The formulation and experimental

results presented in this paper are new and do not appear in [38].

Huang et al. [26] consider the problem of detecting network-wide volumeanomalies via

thresholding the length of a data vector (representing current network volume) projected onto a

subspace closely related to the dominant principal component subspace of past network volume

data vectors. Unlike us, these authors consider the analysis of a vertically distributed data set.

Each network node holds a sliding window stream of numbers (representing volume through it

with time) and the network-wide volume is represented as a matrix with each column a node

stream. Because of the difference in data distribution (vertical vs. horizontal), their approach is

not applicable to our problem. We assume that each node is receiving a stream of tuples and

the network-wide dataset is matrix formed by the union of allnodes’ currently held tuples (each

node holds a collection ofrows of the matrix rather than a singlecolumn as considered by

Huang).

In the next few sections we first discuss our analysis for identifying the fundamental plane

of elliptical galaxies, and then show how the same computation can be carried out if the data is

stored at multiple locations.

IV. CENTRALIZED PRINCIPAL COMPONENTSANALYSIS FOR THEFUNDAMENTAL PLANE

COMPUTATION

The identification of certain correlations among parameters has lead to important discoveries

in astronomy. For example, the class of elliptical and spiral galaxies (including dwarfs) have

been found to occupy a 2D space inside a 3D space of observed parameters — radius, mean

surface brightness and velocity dispersion. From this 3D space of observed parameters, the 2D

plane can be derived by projecting the data on the top 2 eigenvectors of the covariance matrix

i.e. performing a principal component analysis (PCA) of the covariance matrix of the data. This

2D plane has been referred to as the Fundamental Plane [21]. We study the variation of this

fundamental plane with the density of each galaxy derived from location and other observed

parameters.
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A. Data preparation

For identifying the variability of fundamental plane on thebasis of galactic densities, we have

used the SDSS and 2MASS data sets available individually through the NVO. Since galactic

density is not observed by the NVOs, we have cross-matched the two data sets and computed

the densities based on other property values the details of which we describe next.

We create a large, aggregate data set by downloading the 2MASS XSC extended source catalog

(http://irsa.ipac.caltech.edu/applications/Gator/) for the entire sky and

cross-match it against the SDSS catalog using the SDSS Crossid tool (http://cas.sdss.

org/astro/en/tools/crossid/upload.asp) such that we select all unique attributes

from thePhotoObjAllandSpecObjAlltables as well as thephotozd1attribute from thePhotoz2

table which is an estimated redshift value. We filter the databased on the SDSS identified type to

remove all non-galaxy tuples. We then filter the data again based on reasonable redshift (actual

or estimated) values between0.003 ≤ z ≤ 0.300.

Next, we create a new attribute, local galactic density to quantify the proximity of nearby

galaxies to a given galaxy (this attribute has strong astrophysical significance). We transformed

the attributescx, cy, cz (unit vectors),z, andphotozd1 to 3D Euclidean coordinates

(X, Y, Z) = (Distance× cx,Distance× cy,Distance× cz)

whereDistance = 2×
[

1− 1√
(1+redshift)

]

. We finally use these Cartesian coordinates to compute

the Delaunay Tessellation [18] of each point (galaxy) in 3D space. The local galactic density of

a given galaxyi is computed using the Delaunay Tessellation Field Estimator (DTE) formulation

[36]:

den(i) = 4
vol(i)

wherevol(i) denotes the volume of the Delaunay cell containing galaxyi. A small number of

galaxies have undefinedden(i) because they are on the boundary and havevol(i) =∞. These

galaxies are dropped from our calculations.

B. Binning and PCA

The astronomy question that we want to address here is whether the fundamental plane

structure of galaxies in low density regions differ from that of galaxies in high density regions.
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For this, we take the above data set containing 155650 tuplesand associate with each tuple, a

measure of its local galactic density. Our final aggregated data set has the following attributes

from SDSS: Petrosian I band angular effective radius (Iaer), redshift (rs), and velocity dispersion

(vd); and has the following attribute from 2MASS: K band mean surface brightness (Kmsb). We

produce a new attribute, logarithm Petrosian I band effective radius (log(Ier)), as log(Iaer*rs)

and a new attribute, logarithm velocity dispersion (log(vd)), by applying the logarithm tovd.

We finally append the galactic density (cellDensity) associated with each of the tuples as the

last attribute of out aggregated data set. We divide the tuples into 30 bins based on increasing

cell density, such that there are equal number of tuples in each bin. For each bin we carry

out the fundamental plane calculation or principal component analysis and observe that the

percent of variance captured by the first two PCs is very high.This implies that the galaxies

can be represented by the plane defined by the first two eigen vectors. It is also observed that

this percentage increases for bins with higher mean galactic density. We report these results in

Section VI.

As discussed earlier, analysis of very large astronomy catalogs can pose serious scalability

issues, especially when considering streaming data from multiple sources. In the next section we

describe a distributed architecture for addressing these issues and then show how the centralized

eigen analysis of the covariance matrix can be formulated asa distributed computation and

solved in a communication efficient manner.

V. D ISTRIBUTED PRINCIPAL COMPONENT ANALYSIS

When resources become a constraint for doing data mining on massive data sets such as

astronomical catalogs, distributed data mining provides acommunication efficient solution. For

the problem discussed in the last section, we can formulate adistributed architecture where

after cross matching the data using a centralized cross matching tool, we can store the meta data

information in a central location. Such a service-orientedarchitecture would facilitate astronomers

to query multiple databases and do data mining on large data sets without downloading the data

to their local computing resources. The data set is downloaded in parts at a number of computing

nodes (that are either dedicated computers connected through communication channels or part

of a large grid) based on the meta data information maintained at the central server site. In such

a computational environment, distributed data mining algorithms can run in the background
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seamlessly for providing fast and efficient solutions to theastronomers by distributing the task

among a number of nodes. Figure 1 represents one such architecture in which the user submits

jobs through the web server and the DDM server will execute these jobs using the underlying

P2P architecture.

Fig. 1. System diagram showing the different components.

A. Notations

Let V = {P1, . . . , Pn} be a set of nodes connected to one another via an underlying commu-

nication infrastructure such that the set ofPi’s neighbors,Γi, is known toPi. Additionally, at

any time,Pi is given a time-varying data matrixMi of size |Mi| where the rows correspond

to the instances and the columns correspond to attributes orfeatures. Mathematically,Mi =

[−→xi,1
−→xi,2 . . . ]

T, where each−→xi,ℓ = [xi,ℓ1 xi,ℓ2 . . . xi,ℓd] ∈ R
d is a row (tuple). The covariance

matrix of the data at nodePi, denoted byCi, is the matrix whose(i, j)-th entry corresponds

to the covariance between thei-th andj-th feature (column) ofMi. The global data set of all

the nodes isG =
⋃n

i=1Mi and the global covariance matrix isC. Let
−→
V , Θ and−→µ denote the

eigenvector (assumed to be of length one), eigenvalue and mean of the global data respectively.

Throughout this discussion we have dropped the explicit time subscript.

B. Problem formulation

The problem that we want to solve in this paper can be stated asfollows:

Definition 5.1 (Problem Statement):Given a time-varying data setMi at each node, maintain

an up-to-date set of eigenvectors (
−→
V ) and eigenvalues (Θ) of the global covariance matrixC i.e.
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find V andΘ such that

C−→V = Θ
−→
V

In our scenario, since the data is constantly changing, we relax this requirement and use the

following as an admissible solution.

Definition 5.2 (Relaxed Problem Statement):Given a time-varying data setMi at each node,

maintain an up-to-date set of eigenvectors (
−→
V ) and eigenvalues (Θ) of the global covariance

matrix C such that,
∥

∥

∥
C−→V −Θ

−→
V

∥

∥

∥
< ǫ

whereǫ is a user chosen parameter denoting the error threshold.

C. Distributed PCA monitoring

One way of keeping the model up-to-date is by periodically rebuilding the model. However,

this wastes resources if the data is stationary. Alternatively, one may risk model inaccuracy if

the period of recomputation is too long and the data changes in between.

In this work, we take a different approach. Starting with an arbitrary model at each node, we

propose an algorithm which raises an alert whenever the global data of the nodes can no longer

fit this model. If the data has changed enough, we use a feedback loop to collect data from the

network (using convergecast), rebuild a new model and then distribute this new model to all the

nodes to be again tracked by the peers against the current data. Below, we reduce the problem of

monitoring the eigenvectors and eigenvalues to checking ifa local vector at each peer is inside

a circle of radiusǫ.

Note that, if all the columns ofG are mean reduced (using the global mean) by the respective

columns, i.e. the mean of each column is subtracted from each entry of that column, the

covariance matrix is decomposable:C =∑n

i=1 Ci. With abuse of symbols, letG andMi denote
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the mean reduced versions of the variables themselves. Then,

C = 1
∑n

i |Mi|
GTG =

1
∑n

i |Mi|















M1

M2

...

Mn















T 













M1

M2

...

Mn















=
1

∑n

i |Mi|
(

MT
1 MT

2 . . . MT
n

)















M1

M2

...

Mn















=
1

∑n

i |Mi|

n
∑

i=1

MT
iMi

=
1

∑n

i |Mi|

n
∑

i=1

Ci (1)

Thus, for horizontally partitioned mean reduced data distributed amongn nodes, the covariance

matrix is completely decomposable. Assuming that each peeris provided with an initial estimate

of
−→
V (with ||−→V || = 1) andΘ, the eigen monitoring instance (denoted byI1) can be reformulated

as:

∥

∥

∥
C−→V −Θ

−→
V

∥

∥

∥
< ǫ1 ⇔

∥

∥

∥

∥

∥

(

1
∑n

i |Mi|

n
∑

i

Ci
)

−→
V −Θ

−→
V

∥

∥

∥

∥

∥

< ǫ1

⇔
∥

∥

∥

∥

∥

1
∑n

i |Mi|

n
∑

i

[

Ci
−→
V −Θ

−→
V |Mi|

]

∥

∥

∥

∥

∥

< ǫ1

⇔
∥

∥

∥

∥

∥

n
∑

i

|Mi|
∑n

i |Mi|

[

Ci
−→
V

|Mi|
−Θ
−→
V

]∥

∥

∥

∥

∥

< ǫ1

⇔
∥

∥

∥

∥

∥

n
∑

i

( |Mi|
∑n

i |Mi|

)

[

I1.
−→Ei
]

∥

∥

∥

∥

∥

< ǫ1 (2)

where I1.
−→Ei is a local error vector at nodePi (based onMi,

−→
V and Θ) defined asI1.

−→Ei =

Ci
−→
V

|Mi|
− Θ
−→
V . Let I1.

−→E G =
∑n

i

(

|Mi|∑n
i |Mi|

) [

I1.
−→Ei
]

denote the convex combination ofI1.
−→Ei ’s.

Checking if the norm ofI1.
−→Ei is less thanǫ is equivalent to checking if the vectorI1.

−→Ei is

inside a sphere of radiusǫ1. Now if each peer determines that their own vectorI1.
−→Ei is inside
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the sphere, then so is their convex combinationI1.
−→E G. This is the crux of the idea used in

developing the distributed algorithm. However, this argument falls apart when the vectors are

outside the sphere. To circumvent this problem and apply thesame methodology, the area outside

the circle is approximated by a set of tangents to the sphere.As before, if all peer’sI1.
−→Ei lies in

the same hyperplane,I1.
−→E G will also lie there. This paves the way for the distributed algorithm

which is discussed next.

Note that, in the above formulation we have assumed that the data is mean shifted. In a

dynamic setting, it may be expensive to recompute the mean ateach time step. Given an initial

estimate of the mean−→µ to all the peers (may be a random choice), we set up another monitoring

instanceI2 for checking if the (column wise) average vector over all peers exceeds a threshold

ǫ2:
∥

∥

∥

∥

∥

∥

1
∑n

i=1Mi

n
∑

i=1

|Mi|
∑

j=1

−→xi,j −−→µ

∥

∥

∥

∥

∥

∥

< ǫ2 ⇔

∥

∥

∥

∥

∥

∥

1
∑n

i=1Mi

n
∑

i=1





|Mi|
∑

j=1

−→xi,j −−→µ |Mi|





∥

∥

∥

∥

∥

∥

< ǫ2

⇔
∥

∥

∥

∥

∥

n
∑

i=1

|Mi|
∑n

i=1Mi

[

∑|Mi|
j=1
−→xi,j

|Mi|
− −→µ

]∥

∥

∥

∥

∥

< ǫ2

⇔
∥

∥

∥

∥

∥

n
∑

i=1

( |Mi|
∑n

i=1Mi

)

[

I2.
−→Ei
]

∥

∥

∥

∥

∥

< ǫ2 (3)

where, as before,I2.
−→Ei =

(∑|Mi|
j=1

−−→xi,j

|Mi|
−−→µ

)

is the local vector andI2.
−→
EG =

∑n

i=1

(

|Mi|∑n
i=1

Mi

) [

I2.
−→Ei
]

is a convex combination ofI2.
−→Ei -s. The same convex methodology for checking inside and

outside of the circle can be applied here.

Satisfying the relaxed problem statement: In the appendix, we show that if the bounds (2)

and (3) hold, then the problem statement in the above definition holds withǫ = ǫ1 + ǫ22.

D. Notations and thresholding criterion

In our algorithm, each node sends messages to its immediate neighbors to converge to a

globally correct solution. There are three kinds of messages that can be transmitted: (i)monitoring

messages which are used by the algorithm to check if the modelis up-to-date, (ii)datamessages

which are used to sample data for rebuilding a model (convergecast), and (iii)modelmessages

which are used to disseminate the newly built model in the entire network (broadcast). Any

monitoring message sent by nodePi to Pj contains information thatPi has gathered about
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the network whichPj may not know. In our case, the message sent byPi to Pj consists of

a set of vectors or matrix1 Si,j with each row corresponding to observations and each column

corresponding to features.

We know that if each peer’sI1.
−→Ei (or I2.

−→Ei ) lies in the same convex region,I1.
−→E G (or I2.

−→E G)

also lies in the same convex region. Therefore, each peer needs information about the state of its

neighbors. The trick is to do this computation without collecting all of the data of all the peers.

We define three sufficient statistics on sets of vectors (average vector of the set and the number

of points in the set) at each node and for each instance of the monitoring problem separately,

based on which a peer can do this thresholding more efficiently. For the rest of the paper, we

only discuss the computations with respect toI1 since the other instance is very similar.

• Knowledge
−→Ki: This is all the information thatPi has about the network.

• Agreement
−−→Ai,j: This is whatPi andPj have in common.

• Held
−−→Hi,j : This is whatPi has not yet communicated toPj .

We can write

• |Ki| = |Mi|+
∑

Pj∈Γi

|Sj,i|

• |Ai,j| = |Si,j|+ |Sj,i|
• |Hi,j | = |Ki| − |Ai,j|

Similarly for the average of the sets we can write,

•
−→Ki =

1
|Ki|



|Mi|
−→Ei +

∑

Pj∈Γi

|Sj,i|
−→Sj,i





•
−−→Ai,j =

1
|Ai,j |

(

|Si,j|
−→Si,j + |Sj,i|

−→Sj,i
)

•
−−→Hi,j =

1
|Hi,j |

(

|Ki|
−→Ki − |Ai,j|

−−→Ai,j

)

In this work we assume that the communication takes place over an overlay tree. This

is to ensure that vectors sent to a node is never sent back to itto avoid double counting.

Interested readers are urged to see [38] and [8] for a discussion of how this assumption can be

accommodated or, if desired, removed.

At each peer, we need to check if the local vector
−→Ki lies in a convex region. To achieve this,

we need to split the domain of monitoring function into non-overlapping convex regions. Since

1we use them interchangeably here
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the monitoring function is L2 norm inRd, checking if the norm is less thanǫ is equivalent to

checking if it is inside the sphere which is a convex region bydefinition. However, the outside

of the sphere is not convex. So we make it convex by drawing tangents to the sphere at arbitrary

points. Each of these half spaces is again convex and so the general rule can be applied here.

However, the area between the sphere and each of these half spaces is not convex. These small

uncovered spaces are known as thetie regions. Denoting the area inside the sphere asRin and

each of the half spaces as{Rh1
, Rh2

, . . . }, the entire set of convex regions covering the space

is Cω = {Rin, Rh1
, Rh2

, . . . }. Fig. 2 shows the convex regions inRd, the tangent lines and the

tie region. Given this convex region and the local vectors, we now state a Theorem based on

which any peer can stop sending messages and output the correct result.

Theorem 5.1:[38] Let
−→
EG,
−→Ki,
−−→Ai,j, and

−−→Hi,j be as defined in the previous section. LetR be

any region inCω. If at time t no messages traverse the network, and for eachPi,
−→Ki ∈ R and

for everyPj ∈ Γi,
−−→Ai,j ∈ R and either

−−→Hi,j ∈ R or Hi,j = ∅, then
−→
EG ∈ R.

Proof: For proof the readers are referred to [38].

Using this theorem, each node can check if
∥

∥

∥

−→Ki

∥

∥

∥
< ǫ. If the result holds for every node, then

their convex combination
−→
EG will also be inR. If there is any disagreement, it would be between

any two neighbors. In that case, messages will be exchanged and they will converge to the correct

result. In either case, eventual global correctness is guaranteed.

B

C

D

A

Fig. 2. (A) the area inside anǫ circle (B) A random vector (C) A tangent defining a half-space(D) The areas between the
circle and the union of half-spaces are the tie areas.
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E. Algorithm

Both the mean monitoring and the eigenvector monitoring algorithms rely on the results of

Theorem 5.1 to output the correct result. For the eigenvector monitoring, the inputs to each node

are the eigenvector
−→
V , the eigenvalueΘ and the error threshold isǫ1. From Section V-C, for

this monitoring instance, the input is:

• I1.
−→Ei = ([MT

i
Mi]·

−→
V )

|Mi|
−Θ
−→
V

• I1. |Ei| = |Mi|
Similarly for the mean monitoring algorithm, the inputs arethe mean−→µ ∈ R

d and the error

thresholdǫ2. In this case, each node subtracts the mean−→µ from its local average input vector
−→xi,j . For this problem instance denoted byI2, the following are the inputs:

• I2.
−→Ei =

(∑|Mi|
j=1

−−→xi,j

|Mi|
−−→µ

)

• I2. |Ei| = |Mi|
Algorithm 1 presents the pseudo-code of the monitoring algorithm while Alg. 2 presents the

pseudo-code for convergecast/broadcast process. The inputs to the monitoring algorithm areMi,
−→Ei (depending on how it is defined),Γi, ǫ1 or ǫ2, Cω. For each problem instanceI1 andI2, each

node initializes its local vectors
−→Ki,
−−→Ai,j and

−−→Hi,j. The algorithm is entirely event-driven. Events

can be one of the following: (i) change in local dataMi, (ii) receipt of a message, and (iii)

change inΓi. In any of these cases, the node checks if the condition of thetheorem holds. Based

on the value of its knowledge
−→Ki, the node selects the active regionR ∈ Cω such that

−→Ki ∈ R.

If no such region exists,R = ∅. If R = ∅, then
−→Ki lies in the tie region and hencePi has to send

all its data. On the other hand, ifR 6= ∅ the node can rely on the result of Theorem 5.1 to decide

whether to send a message. If for allPj ∈ Γi, both
−−→Ai,j ∈ R and

−−→Hi,j ∈ R, Pi does nothing;

else it needs to set
−→Si,j and |Si,j|. Based on the conditions of the Theorem, note that these are

the only two cases when a node needs to send a message. Whenever it receives a message (
−→S

and |S|), it sets
−→Sj,i ←

−→S and |Sj,i| ← |S|. This may trigger another round of communication

since its
−→Ki can now change.

To prevent message explosion, in our event-based system we employ a “leaky bucket” mech-

anism which ensures that no two messages are sent in a period shorter than a constantL. Note

that this mechanism does not enforce synchronization or affect correctness; at most it might

delay convergence. This technique has been used elsewhere also [38][7].
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Algorithm 1: Monitoring eigeivector/eigenvalues.

Input: ǫ1, Cω,
−→Ei , Γi andL

Output: 0 if
∣

∣

∣

∣

∣

∣

−→Ki

∣

∣

∣

∣

∣

∣
< ǫ, 1 otherwise

Initialization: Initialize vectors;
if MessageRecvdFrom

(

Pj,
−→S , |S|

)

then
−→Sj,i ←

−→S ;
|Sj,i| ← |S|;
Update vectors;

if Mi, Γi or Ki changesthen
forall the Pj ∈ Γi do

if LastMsgSent > L time units agothen
if R = ∅ then
−→Si,j ← |Ki|

−→
Ki−|Sj,i|

−−→
Sj,i

|Ki|−|Sj,i|
;

|Si,j | ← |Ki| − |Sj,i|;
if
−−→Ai,j 6∈ R or

−−→Hi,j 6∈ Rℓ then
Set
−→Si,j and |Si,j| such that

−−→Ai,j and
−−→Hi,j ∈ Rℓ;

MessageSentTo
(

Pj ,
−→Si,j, |Si,j |

)

;

LastMsgSent← CurrentTime;
Update all vectors;

else Wait L time units and then check again;

The monitoring algorithm raises a flag whenever either
∥

∥

∥
I1.
−→Ki

∥

∥

∥
> ǫ or

∥

∥

∥
I2.
−→Ki

∥

∥

∥
> ǫ. Once

the flag is set to 1, the nodes engage in a convergecast-broadcast process to accumulate data up

the root of the tree, recompute the model and disseminate it in the network.

For the mean monitoring algorithm in the convergecast phase, whenever a flag is raised, each

leaf node in the tree forwards its local mean up the root of thetree. In this phase, each node

maintains a user selected alert mitigation constant,τ which ensures that an alert is stable for a

given period of timeτ for it to send the data. Experimental results show that this is crucial in

preventing a false alarm from progressing, thereby saving resources. In order to implement this,

whenever the monitoring algorithm raises a flag, the node notes the time, and sets a timer toτ

time units. Now, if the timer expires, or a data message is received from one of its neighbors,Pi

first checks if there is an existing alert. If it has been recordedτ or more time units ago, the node

does one of the following. If it has received messages from all its neighbors, it recomputes the
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new mean, sends it to all its neighbors and restarts its monitoring algorithm with the new mean.

On the other hand, if it has received the mean from all but one of the neighbors, it combines

its data with all of its neighbors’ data and then sends it to the neighbor from which it has not

received any data. Other than any of these cases, a node does nothing.

For the eigenvector monitoring, in place of sending a local mean vector, each node forwards the

covariance matrixCi. Any intermediate node accumulates the covariance matrix of its children,

adds it local matrix and sends it to its parent up the tree. Theroot computes the new eigenvectors

and eigenvalues. The first eigenstate is passed to the monitoring algorithm.

F. Correctness and complexity analysis

The eigen monitoring algorithm is eventually correct.

Theorem 5.2:The eigen monitoring algorithm iseventually correct.

Proof: For the eigen monitoring algorithm, the computation will continue for each node

unless one of the following happens:

• for every node,
−→Ki =

−→
EG

• for everyPi and every neighborPj ,
−→Ki,
−−→Ai,j,and

−−→Hi,j are in the same convex regionR ∈ Cω.

In the former case, every node obviously computes the correct output since the knowledge of

each node becomes equal to the global knowledge. In the latter case, Theorem 5.1 dictates that
−→
EG ∈ R. Note that by construction, the output of the thresholding function (in this case‖−→x ‖ > ǫ)

is invariant inside anyR ∈ Cω. In other words, the binary function
∥

∥

∥

−→
EG
∥

∥

∥
< ǫ and

∥

∥

∥

−→Ki

∥

∥

∥
< ǫ will

have the same output insideR. Therefore in either of the cases, the eigen monitoring algorithm

is correct.

Moreover, sinceC = 1∑n
j=1

|Mi|

∑n

j=1 Ci (see Eqn. 1) and−→µ =
∑n

i=1

∑|Mi|
j=1

−−→xi,j

∑|Mi|
j=1

|Mi|
the models built

are also the same compared to a centralized algorithm havingaccess to all the data.

Determining the communication complexity of local algorithms in dynamic environments is

still an open research issue. Researches have proposed definitions of locality [7][38]. Note that for

an exact algorithm as the eigen monitoring algorithm, the worst case communication complexity

is O(size of network). This can happen, for example, when the each node has a vector in a

different convex region and the global average is in anotherdifferent region. However, as shown

in this paper and also by several authors [38][7] there are several problem instances for which

the resource consumption becomes independent of the size ofthe network. Interested readers
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Algorithm 2: P2P Eigen-monitoring Algorithm.
Input: ǫ1, ǫ2, Cω, Mi, Γi, L, τ
Output: (i)

−→
V ,Θ such that

∥

∥

∥C · −→V −Θ · −→V
∥

∥

∥ < ǫ1 and ||−→V || = 1, (ii) −→µ such that
∥

∥

∥

∥

∑
n
i=1

∑|Mi|

j=1

−−→xi,j

∑|Mi|

j=1
|Mi|

−−→µ
∥

∥

∥

∥

< ǫ2

Initialization
begin

Initialize vectors;
MsgType= MessageRecvdFrom(Pj);

if MsgType = Monitoring Msg then Pass Message to appropriate Monitoring Algorithm;
if MsgType = New Model Msg then

Update
−→
V , Θ, −→µ ;

Forward new model to all neighbors;
Datasent=false;
Restart Monitoring Algorithm with new models;

if MsgType = Dataset Msg then
if Received from all but one neighborthen

flag=Output Monitoring Algorithm();
if Datasent = false and flag = 1 then

if DataAlert stable forτ time then
D1=Ci+ Recvd Covariance;

D2=
∑|Mi|

j=1

−−→xi,j

|Mi|
+Recvd Mean;

Datasent=true;
SendD1, D2 to remaining neighbor

else DataAlert=CurrentTime;

if Received from all neighborsthen
D1=Ci+ Recvd Covariance;

D2=
∑|Mi|

j=1

−−→xi,j

|Mi|
+ Recvd Mean;

(
−→
V ,Θ)=EigAnalysis(D1) where||−→V || = 1;−→µ =Mean(D2);

Forward new
−→
V ,Θ,−→µ to all neighbors;

Datasent=false;
Restart Monitoring Algorithm with new models;

if Mi, Γi or
−→Ki changesthen

Run Monitoring Algorithm;
flag=OutputMonitoring Algorithm();
if flag=1 and Pj=IsLeaf() then

Execute the same conditions asMsgType = Dataset Msg

are referred to [6] for a detailed discussion on communication complexity and locality of such

algorithms.
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VI. EXPERIMENTAL RESULTS

In this section we demonstrate the experimental results of the distributed eigen monitoring

algorithm. Before doing that, we describe centralized experiments showing how the fundamental

plane changes with variations in local galactic density. Then we describe distributed experiments

showing the performance of the eigen monitoring algorithm for a distributed streaming scenario

when the same data is streamed at multiple nodes. Our goal is to demonstrate that, using

our distributed eigen monitoring algorithm to compute the principal components and monitor

them in a streaming scenario, we can find very similar resultsas were obtained by applying

a centralized PCA. As an interesting aside, even though our goal was not to make a new

discovery in astronomy, the results are astronomically noteworthy. We argue that our distributed

algorithm could have found very similar results to the centralized approach at a fraction of

the communication cost. Also, we want to emphasize that thisdistributed eigen monitoring

algorithm can be applied to a number of change-detection applications in high-throughput

streaming scenarios (such as the LSST) for important astronomical discoveries of many types.

The importance and novelty of this algorithm compared to existing distributed PCA algorithms

is that this is an exact algorithm that deterministically converges to the correct result.

A. Fundamental Plane results

As noted in Section IV-A, we divide the entire dataset into 30bins. The bins are arranged from

low to high density. In this section we present the results ofour fundamental plane experiments

for those 30 bins. We have only used the elliptical galaxies in our experiments from the SDSS

and 2MASS dataset.
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Fig. 3. Variance captured by PCs 1 and 2 w.r.t. log of mean density of each bin. Bin 1 has the lowest mean density and Bin
30 the highest.
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Fig. 4. Plot of variation ofθ andφ independently with bin number. The bins are numbered in increasing order of density.

Figure 3 provides the most significant scientific result. It demonstrates the dependence of the

variance captured by the first 2 PC’s with respect tolog of bin density (the x-axis shows mean

density of each bin in log-scale). As seen, the variance increases monotonically from almost

95% to 98% with increase in galactic bin density. This clearly demonstrates a new astrophysical

effect, beyond that traditionally reported in the astronomical literature. This results from the

application of distributed data mining (DDM) on a significantly (by 1000 times) larger set of

data. More such remarkable discoveries can be anticipated when DDM algorithms of the type

reported here are applied to massive scientific (and non-scientific) data streams of the future.

To analyze more deeply the nature of the variation of the firsttwo PCs with respect to

increasing galactic density, we plot the direction of the normal to the plane defined by the first

2 PCs i.e. pc1 and pc2. Since each of these PC’s are vectors in 3-d, so is the normal to the

plane. The normal vector is represented by its two directional angles: the spherical polar angles
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θ andφ. Figure 4 shows a plot ofθ andφ for 30 bins. Figure 4(a) shows the variation ofθ and

φ independently withlog of mean galactic density. Figure 4(b) shows the variation ofboth with

log of mean density. The systematic trend in the change of direction of the normal vector seen

in Figure 4(b) is a new astronomy result. This represents exactly the type of change detection

from eigen monitoring that will need to be applied to massivescientific data streams, including

large astronomy applications (LSST) and large-scale geo-distributed sensor networks, in order

to facilitate knowledge discovery from these petascale data collections.

B. Results of distributed PCA algorithm

The distributed PCA implementation makes use of a Java-based simulated environment for

simulating thousands of peers on a single computer. For generating realistic topologies the

simulator uses BRITE [12], which is a universal topology generator from Boston University. In

our simulations we used topologies generated according to the Barabasi Albert (BA)model. On

top of the network generated by BRITE, we overlayed a spanning tree. We have experimented

with varying network sizes ranging from 50 to 1000 nodes. We report all times in terms of

simulator ticks since wall time is meaningless when simulating thousands of nodes on a single

PC. We set up the simulator such that an edge delay ofx msecs in BRITE topology corresponds

to x simulator ticks. We make the assumption that the time required for local processing is trivial

compared to the overall network latency and therefore, convergence time for the distributed PCA

algorithm is reported in terms of the average edge delay.

We have divided the data of the centralized experiments into5 bins (instead of 30), sorted

by galactic density. Each bin represents the data distribution at a certain time in the streaming

scenario and the distribution changes every 200,000 simulation ticks which we call anepoch.

This implies that every 200,000 simulation ticks we supply the nodes with a new bin of data.

The whole experiment therefore executes for 200,000×5=1,000,000 simulator ticks. Furthermore,

within each epoch, we stream the data at a rate of 10% of the binsize for every 10,000 simulation

ticks which we call thesub-epochinterval. Thus, starting from the beginning of any epoch, the

whole data is changed by 100,000 ticks and no data is changed for the later 100,000 ticks of

that epoch. In other words, all 10,000 points are received simultaneously by all nodes at the first

tick of each sub-epoch (except during the last 100,000 ticksof each epoch).

The two quantities measured in our experiments are thequality of the result and thecost of
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the algorithm. For the eigen monitoring algorithm, qualitycan be measured as (1) the number of

peers which report an agreement between the model at each node and the datai.e.
∥

∥

∥
I1.
−→Ki

∥

∥

∥
< ǫ1

or
∥

∥

∥
I2.
−→Ki

∥

∥

∥
< ǫ2 for each time instance, and (2) the average L2 norm distance between the

principal eigen vector and the and the computed eigen vectorin the distributed scenario over all

the bins. For cost we measure the number of monitoring messages and the number of computation

messages separately.

We have used the following default values for the algorithm:size of leaky bucketL = 500,

error thresholdǫ1 = 2.0 ǫ2 = 0.02, alert mitigation constantτ = 500, and number of peers = 50.
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Fig. 5. Variation of
∥

∥

∥
I1. ~Ki

∥

∥

∥
(left) and

∥

∥

∥
I2. ~Ki

∥

∥

∥
(right) across all the peers vs. Time.

Figure 5 shows the variation of the local knowledges of each peer throughout the execution of

the experiment and the thresholds (red dotted lines). The left figure shows
∥

∥

∥
I1.
−→Ki

∥

∥

∥
(eigenmoni-

toring) while the right figure shows
∥

∥

∥
I2.
−→Ki

∥

∥

∥
(mean monitoring). For both the figures, the norm of

the knowledge vectors exceed the respective thresholds at the beginning of each epoch (200,000,

400,000, 600,000, and 800,000 ticks), because the data corresponds to a new bin. The peers then

jointly infer this disagreement using the monitoring algorithm and the convergecast/broadcast

round is invoked which rebuilds and distributes a new set of eigenvectors and eigenvalues. As

a result, the norm of the local knowledge at each peer drops below the corresponding threshold

and only the monitoring algorithm operates for the rest of this epoch.

Accuracy and convergence of the distributed eigen monitoring algorithm is shown in Figure

6. The left figure shows the accuracy of eigen monitoring while the right one shows the same

for mean monitoring. As shows, accuracy is low for the first 100,000 ticks of each epoch since

the data is changing during that time. Accuracy increases to100% during the later 100,000 ticks
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since the model is in accordance with the data. This pattern is repeated for all the epochs. The

convergence rate of the algorithm is shown in Figure 7 by zooming in to the second epoch.

The data is changed at every 10,000 ticks between 200,000 and300,000 ticks. This is why the

accuracy is low during this period. The algorithm convergesto 100% accuracy within 330,000

ticks i.e. within 30,000 ticks after the data stops changing. The average edge delay is 1000

simulator ticks Hence the algorithm converges in approximately 30 times the average edge delay.

Figure 8 shows the messages exchanged per peer throughout the experiment. The monitoring

messages, shown in the left figure, increase whenever the data changes but decreases once the

algorithm converges. The number of messages exchanged during the stationary period is very

low compared to an algorithm which broadcasts all the information every sub-epoch. The rate

of messages of the latter is 2 per sub-epoch (considering twoneighbors per peer on average).

The data messages is shown as cumulative plot in the right figure. As shown there is an high

number of data messages for each epoch change and it decreases for the later 100,000 of all

epochs. For any experiment, new models are build 2 to 3 times per epoch.

0 1 2 3 4 5 6 7 8 9 10
x 10

5

0

20

40

60

80

100

Time

%
 p

ee
rs

 r
ep

or
tin

g 
||I

1.K
i||<

ε 1

(a) Accuracy vs. Time for eigen monitoring

0 1 2 3 4 5 6 7 8 9 10
x 10

5

0

20

40

60

80

100

Time

%
 p

ee
rs

 r
ep

or
tin

g 
||I

2.K
i||<

ε 2

(b) Accuracy vs. Time for mean monitoring

Fig. 6. Percentage of peers agreeing to
∥

∥

∥
I1. ~Ki

∥

∥

∥
< ǫ1 (left figure) and

∥

∥

∥
I2. ~Ki

∥

∥

∥
< ǫ2 (right figure). As clearly shown, the

algorithm shows high accuracy.

The last set of experiments show that the quality of the models built by the algorithm and

its communication complexity is independent of the number of nodes in the network, thereby

guaranteeing high scalability. We first compare the qualityof the models build by the distributed

eigen monitoring algorithm to that of a centralized algorithm having access to all the data.

Since we compute the principal eigen vector for each bin separately, we plot the average

L2 norm distance between the centralized and distributed eigen vectors for every experiment.

The experiments have been repeated for 10 independent trials. Figure 9 shows the quality of
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Fig. 7. Convergence of the monitoring algorithm to 100% accuracy.
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(b) Cumulative data messages vs. Time

Fig. 8. Messages exchanged by the eigen monitoring algorithm per peer throughout the experiment.

the computed models for different network sizes. As shown inthe figure, the proposed eigen

monitoring algorithm produces results which are highly accurate compared to their centralized

counterpart. Moreover, quality does not degrade with increasing network sizes. Because our

algorithm is provably correct, the number of nodes has no influence on the quality of the result.

Figures 10 and 11 show the number of messages exchanged per node when the number of

nodes is increased from 50 to 1000. In this context, normalized message per node means the

number of messages sent by a node per unit of sub-epoch (i.e. every data change). This is the

maximal rate at which any node can send messages in our distributed algorithm. Since the length

of each sub-epoch is 10,000 ticks andL=500, this maximal rate is therefore, 10,000/500×2=40,

assuming two neighbors per node, on average. Also, for an algorithm which uses broadcast as the

communication model, its normalized messages will be 2 per sub-epoch assuming two neighbors

per node, on average. In all our experiments, the normalizedmessages per peer is close to 0.3,

well below these maximal rates. Thus the proposed algorithmis highly efficient with respect to
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communication. Also as shown, the monitoring messages remain constant even if the number of

nodes is increased. This demonstrates excellent scalability of the algorithm.

Finally, we also plot the number of times data is collected per epoch. In most cases, the

number of such convergecast rounds is 3 per epoch. Note that this can be reduced further by

using a larger alert mitigation constantτ , or larger error thresholdǫ1 or ǫ2.
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Fig. 9. L2 norm distance between distributed and centralized eigenvectors vs. number of nodes. This remains the same thereby
showing good accuracy. Plotted are average and standard deviation over multiple trials.
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Fig. 10. L2 messages vs. number of nodes. Number of messages remain constant showing excellent scalability.

VII. PADMINI–A PEER-TO-PEER ASTRONOMY DATA MINING SYSTEM

PADMINI is a web based Peer to Peer data mining system that aims at being a computation

tool for the researchers and users related to the field of astronomy and data mining. There

are several challenges to centralizing the massive astronomy catalogs (some of which has been

elucidated in the previous section) and running traditional data mining algorithms. To solve this

data avalanche, PADMINI is powered by a back end peer to peer computation network to provide
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Fig. 11. Number of convergecast rounds per epoch vs. number of nodes. In most cases the convergecast round is less than 3
per epoch.

the required scalability. The back end computation networksupports two distributed computation

frameworks, namely Distributed Data Mining Toolkit (DDMT)[17] and Hadoop [24]. The web

based PADMINI system is available online athttp://padmini.cs.umbc.edu/. In the

next few sections we first describe the different componentsof the system and then describe the

implementation details.

A. System components

The system architecture is shown in Figure 1. It consists of aweb server, DDM server, server

database, jobs database and the back-end P2P network. Each of the components are discussed

in details next.

1) Web server:The web server hosts the main website and is the primary interface for

submitting jobs and retrieving results of the submitted jobs. Each new user signs up for an

account on the website and sets up a job to be run on the system.Every user has a dedicated

profile page where the user can keep a track of the jobs submitted by him. The current status of

the jobs and a projected time for the completion of the jobs are also displayed on the same page.

Each job submitted by the user will trigger a distributed algorithm to run on the back-end P2P

network. The results of the algorithm will be pushed back to the web server. The user can then

download a copy of the results of their jobs. The web service methods exposed by the DDM

server are used by the web server to start a job and receive results. The web server is thus the

consumer of the web service methods exposed by the DDM server.

2) Server database:The server database primarily deals with user and identity management.

The database stores the information related to the registered users of the system and the privileges
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they have. The job activity details of an user are also storedin this database. These include the

inputs submitted by the user, the algorithm selected, the output of the job etc. The list of the

supported astronomy data catalogs and their attributes that a user can use as inputs are also

stored in this database.

3) DDM server: The Distributed Data Mining (DDM) Server is an intermediatetier between

the web server and the back-end peer to peer computation network. The multiple job requests

coming in from the web server are directed to the DDM Server and stored in a job queue. The

jobs are then submitted serially for completion to the back-end computation network. The DDM

server exposes a set of methods that can be used to set up jobs and for pushing the results of

the completed jobs onto the web server. The web service methods encourage openness. Hence,

a new system can be easily built around the available back-end P2P computation network.

4) Jobs database:The jobs database persists the book-keeping information related to the

jobs. This includes the list of all the jobs that are submitted by the user, including the ones not

yet submitted to the computation network. The status of the running and the waiting jobs and

the results of the recently completed jobs is stored here. The database also stores information

related to the back-end P2P computation network. This includes the information pertaining to

the total number of active nodes, failed nodes etc.

5) P2P network:The peer to peer network forms the backbone of the back-end computation

framework. All the peers in this network are configured to support two computation frameworks,

namely Distributed Data Mining Toolkit (DDMT) and Hadoop. The type of jobs the user can

submit is restricted by the algorithms supported by the system. Some algorithms are implemented

using the DDMT while some are built on top of the Hadoop framework. The DDM server picks

up a job from the queue and assigns it to be executed on top of the appropriate framework. This

information depends on the type of the job and hence is implicitly set by the user.

B. Implementation details

1) Language:The website is developed using HTML, Javascript and JSPs. DDMT is imple-

mented in Java and is based on Java Agent Development (JADE) Framework. The important

methods like starting a job, stopping it, providing input etc. have been exposed as web service

methods. This enables future systems to be built around the existing computation network.

Hadoop provides an extensive Java API using which highly scalable Map Reduce algorithms

February 9, 2011 DRAFT



31

can be created. For running either DDMT or Hadoop, Java support is the only expected feature

from a peer. Thus, the P2P computation network can be easily expanded.

2) Databases:MySQL is used as the database in the web server database as well as in the

jobs database. Hibernate is used for object-relational mapping at the web server database end.

Classes corresponding to the database tables make sure thatoperations made on the class objects

get reflected and persisted in the database. Such a system notonly saves development time, but

also guarantees a robust database system.

3) Web service:Axis2 is used as the core engine for web services. Axis2 is built on a new

architecture that was designed to be a much more flexible, efficient, and configurable. With the

new Object Model defined by Axis2, it is easier to handle SOAP messages. All the web service

requests are directed to the DDM Server. The DDM Server then calls the corresponding methods

and starts the requested job. Axis2 also has excellent support for sending binary data or files

using SOAP messages. This eases moving the inputs and outputs between the web server and

the DDM server.

4) User interface:An user needs to sign up on the home page to get an account and start

submitting jobs. On signing up, each user gets a personal profile page. Each algorithm supported

by the website has a dedicated page on which the user can create and submit a specific job. The

user can then track the status of the submitted jobs and also store the results of the most recently

completed jobs on the profile page. The Google Maps interfaceon the PADMINI website aids an

astronomer in specifying an area of the sky intuitively and effectively. The controls to select the

astronomy catalogs and the supported attributes are also provided. Thus, a job can be specified

with only a few clicks and the user does not to need to wait for the results.

VIII. C ONCLUSION

This paper presents a local and completely asynchronous algorithm for monitoring the eigen-

states of distributed and streaming data. The algorithm is efficient and exact in the sense that

once computation terminates, each node in the network computes the globally correct model. We

have taken a relatively well understood problem in astronomy — that of galactic fundamental

plane computation and shown how our distributed algorithm can be used to arrive at the same

results without any data centralization. We argue that thismight become extremely useful when

petabyte scale data repositories such as the LSST project start to generate high throughput data
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streams which need to be co-analyzed with other data repositories located at diverse geographic

location. For such large scale tasks, distributing the dataand running the algorithm on a number

of nodes might prove to be cost effective. Our algorithm is a first step to achieving this goal.

Experiments on current SDSS and 2MASS dataset show that the proposed algorithm is efficient,

accurate, and highly scalable.
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APPENDIX

Now we show that if the bounds (2) and (3) hold, then the relaxed problem statement holds

with ǫ = ǫ1 + ǫ22. To do so, we must introduce more notation.

Let
−−→
µ(G) denote the column mean vector forG, the global dataset. Let−→µ denote the column

mean vector computed the last time the model was rebuilt (thelast convergecast) – an estimation

of
−−→
µ(G). Let ∆−→µ denote

−−→
µ(G)−−→µ . If bound (3) holds, then||∆−→µ || < ǫ2.

Let C(G) denote the covariance matrix ofG, the global dataset. LetC denote the estimation

of the covariance matrix generated by mean-shifting using−→µ . Specifically, the(i, j) entry of C
is defined to be

C(i, j) =
∑|G|

k=1(xk,i − µi)(xk,j − µj))

|G|

whereµi andµj are theith andjth components of−→µ ; xk,i andxk,j are theith andjth components

of the kth data vector inG. Let
−→
V and θ denote a vector and number computed the last time

the model was built such that||−→V || = 1 and which satisfies bound (2),||C−→V − θ
−→
V || < ǫ1.

Now we can state precisely the statement we will prove: if||C−→V − θ
−→
V || < ǫ1 (bound (2)) and

||−→V || = 1 and ||∆−→µ || < ǫ2 (bound (3)), then||C(G)−→V −−→V θ|| ≤ ǫ1 + ǫ22. The proof proceeds as

follows.

Straight-forward algebraic manipulations show thatC(G) is a rank-one update ofC.

C(G) = C +∆−→µ (∆−→µ )T (4)

Thus, with||.||F denoting the Frobenius norm andTr(.) the matrix trace,||C(G)−→V −−→V θ|| equals
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||C(G)−→V −−→V θ|| = ||[C−→V −−→V θ] + [−∆−→µ (∆−→µ )T
−→
V ]|| [By (4)]

≤ ǫ1 + ||∆−→µ (∆−→µ )T
−→
V ]|| [By the triangle inequality and bound (2)]

≤ ǫ1 + ||∆−→µ (∆−→µ )T ||F ||
−→
V || [By (5.2.2) in [34]]

= ǫ1 +
√

Tr[(∆−→µ (∆−→µ )T )2] [By (5.2.1) in [34] and||−→V || = 1]

= ǫ1 + ||∆−→µ ||2 [By straight-forward algebraic manipulations]

≤ ǫ1 + ǫ22 [By bound (3)]
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