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Abstract

In this paper we develop a distributed algorithm for moriitgrthe principal components (PCs) for
next generation of astronomy petascale data pipelines asiche Large Synoptic Survey Telescopes
(LSST). This telescope will take repeat images of the nidigtevery 20 seconds, thereby generating
30 terabytes of calibrated imagery every night that willchéz be co-analyzed with other astronomical
data stored at different locations around the world. Evextéction, classification and isolation in such
data sets may provide useful insights to unique astrondrpitanomenon displaying astrophysically
significant variations: quasars, supernovae, variables,send potentially hazardous asteroids. How-
ever, performing such data mining tasks is a challengindlpro for such high-throughput distributed
data streams. In this paper we propose a highly scalable mtribdted asynchronous algorithm for
monitoring the principal components (PC) of such dynami@addreams and discuss a prototype web-
based system PADMINI (Peer to Peer Astronomy Data Miningjctviimplements this algorithm for
use by the astronomers. We demonstrate the algorithm orge &t of distributed astronomical data
to accomplish well-known astronomy tasks such as measwanigtions in the fundamental plane of
galaxy parameters. The proposed algorithm is provablyectifre. converges to the correct PCs without
centralizing any data) and can seamlessly handle changbs tata or the network. Real experiments

performed on Sloan Digital Sky Survey (SDSS) catalogue slatav the effectiveness of the algorithm.

I. INTRODUCTION

Data mining is playing an increasingly important role inrasbmy research [25][9][4] in-
volving very large sky surveys such as Sloan Digital Sky 8yr6DSS and the 2-Micron
All-Sky Survey 2MASS. These sky-surveys are offering a nesy wo study and analyze the
behavior of the astronomical objects. The next generatioskg-surveys are poised to take
a step further by incorporating sensors that will streamarge volume of data at a high
rate. For example, the Large Synoptic Survey TelescopeSTLSvill take repeated images
of the night sky every 20 seconds. This will generate 30 tgesbof calibrated imagery every
night that will need to be co-analyzed with other astron@hdata stored at different locations
around the world. Event identification and classificationsuth data sets may provide useful
insights to unique astronomical phenomenon displayingopbysically significant variations:
guasars, supernovae, variable stars, and potentiallyrd@za asteroids. Analyzing such high-

throughput data streams would require large distributedpeding environments for offering
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scalable performance. The knowledge discovery potentisthe@se future massive data streams
will not be achieved unless novel data mining algorithmsdeeeloped to handle decentralized
petascale data flows, often from multiple distributed semédata producers) and archives (data
providers). Several distributed computing frameworkshsas [16], [22], [23], [19], and [14]
are being developed for such applications. We need diséabdata mining algorithms that can
operate on such distributed computing environments. Takeggeithms should be highly scalable,
be able to provide good accuracy and should have a low conuatimm overhead.

This paper considers the problem of monitoring the spegiraperties of data streams in

a distributed environment. It offers an asynchronous, camoation-efficient distributed eigen
monitoring algorithm for monitoring the principle compang (PCs) of dynamic astronomical
data streams. It particularly considers an important gimhbih astronomy regarding the variation
of fundamental plane structure of galaxies with respectptatial galactic density and demon-
strates the power of DDM algorithms using this example a@ggilbn. This paper presents the
algorithm, analytical findings, and results from experitsgrerformed using currently available
astronomy data sets from virtual observatories. Our isted algorithm is a first step in
analyzing the astronomy data arriving from such high thhguug data streams of the future.
The specific contributions of this paper can be summarizeilbsvs:

. To the best of the authors knowledge this is one of the firgngits on developing a
completely asynchronous and local algorithm for doing eigealysis in distributed data
streams

. Based on data sets downloaded from astronomy catalogubsasusDSS and 2MASS, we
demonstrate how the galactic fundamental plane structaniess/with difference in galactic
density

« We discuss the architecture, workflow and deployment of dginebdpweb-based P2P astron-
omy data mining prototype (PADMINI) that allows astronoséw perform event detection
and analysis using P2P data mining technology

Section Il describes the astronomy problem. Section lls@nés the related work. Section

IV describes the centralized version of the problem whilet®®a V models the distributed
version and explains our distributed the eigenstate mongoalgorithm. Section VI presents

the experimental results followed by a web-based astronBAYMINI system in Section VII.
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Finally, Section VIII concludes this paper.

[I. ASTRONOMY DATA STREAM CHALLENGE PROBLEMS

When the LSST astronomy project becomes operational witltennext decade, it will pose
enormous petascale data challenges. This telescope palatedly take images of the night sky
every 20 seconds, throughout every night, for 10 years. iraalge will consist of 3 gigapixels,
yielding 6 gigabytes of raw imagery every 20 seconds andIyne&dr terabytes of calibrated
imagery every night. From this “cosmic cinematography”,eavrvision of the night sky will
emerge — a vision of the temporal domain — a ten-year timeesgmovie) of the Universe.
Astronomers will monitor these repeat images night aftghifor 10 years, for everything that
has changed — changes in position and intensity (flux) willvmnitored, detected, measured,
and reported. For those temporal variations that are nowelxpected, previously unknown, or
outside the bounds of our existing classification schenstgyr@omers will want to know quickly
if such an event has occurred. This event alert notificatiastrmecessarily include as much
information as possible to help the astronomers around thdwo prioritize their response
to each time-critical event. This information packet wilciude a probabilistic classification of
the event, with some measure of the confidence of the classific What makes the LSST so
incredibly beyond current projects is that most time-danskly surveys today detect 5-10 events
per week; LSST will detect 10 to 100 thousand events per higfithout good classification
information in those alert packets, and hence without soraan® with which to prioritize the
huge number of events, the astronomy community would caresdty be buried in the data
deluge and will miss some of the greatest astronomical desees of the next 20 years.g.
even the next “killer asteroid” heading for Earth.

To solve the astronomers’ massive event classificationl@nola collection of high-throughput
monitoring and event detection algorithms will be needdtese algorithms will need to access
distributed astronomical databases worldwide to comelaith each of those 100,000 nightly
events, in order to model, classify, and prioritize eachnewerrectly and rapidly. One known
category of temporally varying astronomical object is dalale star. There are dozens of different
well known classes of variable stars, and there are hundesds thousands) of known examples
of these classes. These stars are not “interesting” in theesiat they should not produce alerts,

even though they are changing in brightness from hour to,hoght to night, week to week —
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their variability is known, well studied, and well charatited already. However, if one of these
stars’ class of variability were to change, that would beaexely interesting and be a signal
that some very exotic astrophysical processes are invoAstionomers will definitely want to
be notified promptly (with an alert) of these types of vadati. One way of characterizing this
variation is by studying changes in the Fourier componegitgeivectors) of the temporal flux
curve which astronomers call “the light curve”.

This problem has several interesting data challenge cteaistecs: (1) the data streaming rate
is enormous (6 gigabytes every 20 seconds); (2) there aghlpd 00 million astronomical
objects in each of these images, all of which need to mordtéwe changei(e., a new variable
object, or a known variable object with a new class of valighj (3) 10 to 100 thousand “new”
events will be detected each and every night for 10 years;(dndistributed data collections
accessed through the Virtual Astronomy Observatory’s dwaide distribution of databases and
data repositories will need to correlated and mined in aaetjon with each new variable object’s
data from LSST, in order to provide the best classificatiomet® and probabilities, and thus to
generate the most informed alert notification messages.

Astronomers cannot wait until the year 2016 when LSST bedssky survey operations
for new algorithms to begin being researched. Those algustshould be able to analyze the
datain-situ, without the costly need for centralizing all of it for analy at each time point.
Furthermore, the distributed mining algorithms will ne@dbe robust, scalable, and validated
already at that time. So, it is imperative to begin now to aesle, test, and validate such data
mining paradigms through experiments that replicate thgeeted conditions of the LSST sky
survey. Consequently, we have chosen an astronomicakcbsgablem that is both scientifically
valid (i.e., a real astronomy research problem today) and that par#iieleigenvector monitoring
problem that we have described above. We have chosen to stadyrincipal components of
galaxy parameters as a function of an independent variabtglar to the temporal dynamic
stream mining described above. In our current experim¢ésindependent variable is not the
time dimension, but local galaxy density. We specificallyestigate this problem because it is
scientifically current and interesting, thereby producirggv astronomical research results, and
also because it performs tests of our algorithms specificail the same types of distributed
databases that will be used in the future LSST event claasdit problems

The class of elliptical galaxies has been known for 20 yearshow dimension reduction
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among a subset of physical attributes, such that the 3-diioeal distribution of three of those
astrophysical parameters reduce to a 2-dimensional pldreenormal to that plane represents the
principal eigenvector of the distribution, and it is fouridat the first two principal components
capture significantly more than 90% of the variance amonget® parameters.

By analyzing existing large astronomy databases (sucheaSltan Digital Sky Survey SDSS
and the 2-Micron All-Sky Survey 2MASS), we have generate@iy Varge data set of galaxies.
Each galaxy in this large data set was then assigned (labetbfla new “local galaxy density”
attribute, calculated through a volumetric Voronoi telsgieln of the total galaxy distribution in
space. Then the entire galaxy data set was horizontallitipagd across several dozen partitions
as a function of our independent variable: the local galaswysdy.

As a result, we have been able to study eigenvector changésediundamental plane of
elliptical galaxies as a function of density. Computingstheigenvectors for a very large number
of galaxies, one density bin at a time, in a distributed emnnent, thus mimics the future
LSST dynamic data stream mining (eigenvector change)amgd problem described earlier. In
addition, this galaxy problem actually has uncovered soee astrophysical results: we find
that the variance captured in the first 2 principal companendreases systematically from low-
density regions of space to high-density regions of spaue,veée find that the direction of the
principal eigenvector also drifts systematically in theiBensional parameter space from low-
density regions to the highest-density regions. Howevecesthe focus of this paper is on the
distributed algorithms themselves and not the discovergent astrophysical results, we leave

a detailed discussion of them to another paper.

[Il. RELATED WORK

The work related to this area of research can broadly be gidedi into data analysis for
large scientific data repository and distributed data ngnima dynamic networks of nodes. We
discuss each of them in the following two sections.

A. Analysis of large scientific data collections

The U.S. National Virtual Observatory (NVO) [35] is a largeake effort to develop an
information technology infrastructure enabling easy astalist access to distributed astronomical

archives. It will provide services for users to search antheradata across multiple archives
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and will provide some basic statistical analysis and viga#ibn functions. The International
Virtual Observatory Alliance (IVOA) [27] is the internatial steering body that federates the
work of about two dozen national VOs across the world (inclgdthe NVO in the US). The
IVOA oversees this large-scale effort to develop an IT istinacture enabling easy and robust
access to distributed astronomical archives worldwide.

There are several instances in the astronomy and spaceessigsearch communities where
data mining is being applied to large data collections [LB]J2]. Another recent area of research
is distributed data mining [30][28] which deals with the plem of data analysis in environments
with distributed data, computing nodes, and users. Digteih eigen-analysis and outlier detection
algorithms have been developed for analyzing astronomy siatred at different locations by
Dutta et al[20]. Karguptaet al. [29] have developed a technique for performing distributed
principal component analysis by first projecting the locatadalong its principal components
and then centralizing the projected data. In both thesescdBe data is distributed vertically
(different full attribute columns reside at different sitewhile in this paper, the data is distributed
horizontally (different data tuple sets reside at différgtes). Moreover, none of the above efforts

address the problem of analyzing rapidly changing astrgndata streams.

B. Data analysis in large dynamic networks

There is a significant amount of recent research considetatg analysis in large-scale
dynamic networks. Since efficient data analysis algoritloas often be developed based on
efficient primitives, approaches have been developed impcing basic operations (g.average,
sum, max, random sampling) on large-scale, dynamic nesvdfkmpeet al. [31] and Boyd
et al. [10] developed gossip based randomized algorithms. Thgseaches used an epidemic
model of computation. Bawat al. [5] developed an approach based on probabilistic counting.
In addition, techniques have been developed for addressioig complex data mining/data
problems over large-scale dynamic networks: associatitenmining [39], facility location [32],
outlier detection [11], decision tree induction [8], end®enclassification [33], support vector
machine-based classification [£;means clustering [15], top-query processing [3].

A related line of research concerns the monitoring of varikimds of data models over large
numbers of data streams. Sharfmeinal. [37] develop an algorithm for monitoring arbitrary

threshold functions over distributed data streams. Andstmelevant to this paper, Wol#t al.
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[38] developed an algorithm for monitoring the L2 norm. We tisis technique to monitor eigen-
states of the fundamental plane concerning ellipticabbdata The formulation and experimental
results presented in this paper are new and do not appea8]in [3

Huang et al. [26] consider the problem of detecting network-wide voluaregomalies via
thresholding the length of a data vector (representingectimetwork volume) projected onto a
subspace closely related to the dominant principal composigbspace of past network volume
data vectors. Unlike us, these authors consider the asabjsa vertically distributed data set.
Each network node holds a sliding window stream of numbegrésenting volume through it
with time) and the network-wide volume is represented as &ixnaith each column a node
stream. Because of the difference in data distributiontigadrvs. horizontal), their approach is
not applicable to our problem. We assume that each node &vieg a stream of tuples and
the network-wide dataset is matrix formed by the union ohallles’ currently held tuples (each
node holds a collection ofows of the matrix rather than a singleolumnas considered by
Huang).

In the next few sections we first discuss our analysis fortiieng the fundamental plane
of elliptical galaxies, and then show how the same compariatan be carried out if the data is

stored at multiple locations.

IV. CENTRALIZED PRINCIPAL COMPONENTSANALYSIS FOR THEFUNDAMENTAL PLANE

COMPUTATION

The identification of certain correlations among paranselers lead to important discoveries
in astronomy. For example, the class of elliptical and $medaxies (including dwarfs) have
been found to occupy a 2D space inside a 3D space of observath@@rs — radius, mean
surface brightness and velocity dispersion. From this 3&cepf observed parameters, the 2D
plane can be derived by projecting the data on the top 2 eggptors of the covariance matrix
i.e. performing a principal component analysis (PCA) of the cavece matrix of the data. This
2D plane has been referred to as the Fundamental Plane [Zlkt¥dy the variation of this
fundamental plane with the density of each galaxy derivednfiocation and other observed

parameters.
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A. Data preparation

For identifying the variability of fundamental plane on thasis of galactic densities, we have
used the SDSS and 2MASS data sets available individualugir the NVO. Since galactic
density is not observed by the NVOs, we have cross-matchedwb data sets and computed
the densities based on other property values the detailshwhvwwve describe next.

We create a large, aggregate data set by downloading the Z\KSE extended source catalog
(http://irsa.ipac.cal tech. edu/ applications/ Gator/) for the entire sky and
cross-match it against the SDSS catalog using the SDSSiC@rtosd (htt p: // cas. sdss.
org/ astro/ en/t ool s/ crossi d/ upl oad. asp) such that we select all unique attributes
from the PhotoObjAlland SpecObjAlitables as well as thehotozdlattribute from thePhotoz2
table which is an estimated redshift value. We filter the @haised on the SDSS identified type to
remove all non-galaxy tuples. We then filter the data agasethan reasonable redshift (actual
or estimated) values betwe@r)03 < z < 0.300.

Next, we create a new attribute, local galactic density tandgify the proximity of nearby
galaxies to a given galaxy (this attribute has strong akirsigal significance). We transformed

the attributes:z, cy, cz (unit vectors),z, andphotozdl to 3D Euclidean coordinates
(X,Y, Z) = (Distance X cx, Distance x cy, Distance X cz)

whereDistance = 2x |1 — m . We finally use these Cartesian coordinates to compute
the Delaunay Tessellation [18] of each point (galaxy) in §ace. The local galactic density of
a given galaxyi is computed using the Delaunay Tessellation Field Estim@®E) formulation

[36]:

den(i) = ﬁii)

wherewol(i) denotes the volume of the Delaunay cell containing galaxy small number of
galaxies have undefinettn(i) because they are on the boundary and haié) = oco. These

galaxies are dropped from our calculations.

B. Binning and PCA

The astronomy question that we want to address here is wh#tkefundamental plane

structure of galaxies in low density regions differ fromttloh galaxies in high density regions.
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For this, we take the above data set containing 155650 t@ridsassociate with each tuple, a
measure of its local galactic density. Our final aggregatsa det has the following attributes
from SDSS: Petrosian | band angular effective radiasrj, redshift ¢s), and velocity dispersion
(vd); and has the following attribute from 2MASS: K band mearfawe brightnesskmsh. We
produce a new attribute, logarithm Petrosian | band effeatadius log(ler)), aslog(laer*rs)
and a new attribute, logarithm velocity dispersidag(vd)), by applying the logarithm twd.
We finally append the galactic densitge{lDensity associated with each of the tuples as the
last attribute of out aggregated data set. We divide theetupito 30 bins based on increasing
cell density, such that there are equal number of tuples ah éd@n. For each bin we carry
out the fundamental plane calculation or principal commpbrenalysis and observe that the
percent of variance captured by the first two PCs is very hidghis implies that the galaxies
can be represented by the plane defined by the first two eigetorgelt is also observed that
this percentage increases for bins with higher mean galdetsity. We report these results in
Section VI.

As discussed earlier, analysis of very large astronomylaggacan pose serious scalability
issues, especially when considering streaming data froftipteusources. In the next section we
describe a distributed architecture for addressing thessees and then show how the centralized
eigen analysis of the covariance matrix can be formulatea astributed computation and

solved in a communication efficient manner.

V. DISTRIBUTED PRINCIPAL COMPONENT ANALYSIS

When resources become a constraint for doing data mining assine data sets such as
astronomical catalogs, distributed data mining providesmmunication efficient solution. For
the problem discussed in the last section, we can formulatéstaibuted architecture where
after cross matching the data using a centralized crosshmgttool, we can store the meta data
information in a central location. Such a service-oriergethitecture would facilitate astronomers
to query multiple databases and do data mining on large @téarsthout downloading the data
to their local computing resources. The data set is doweldaa parts at a number of computing
nodes (that are either dedicated computers connectedgtihrmammunication channels or part
of a large grid) based on the meta data information mainda@tteéhe central server site. In such

a computational environment, distributed data mining algms can run in the background
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seamlessly for providing fast and efficient solutions to dls&ronomers by distributing the task
among a number of nodes. Figure 1 represents one such atahgtén which the user submits
jobs through the web server and the DDM server will execugseahobs using the underlying

P2P architecture.

DDM Server

. .
<
\ ‘, 7
&
\/
/ P2P
% Network
A
\ / Jobs N/
Database
Users
e -
Database

Astronomy ccmlogs

Fig. 1. System diagram showing the different components.

A. Notations

LetV ={Py,..., P,} be a set of nodes connected to one another via an underlymgiae
nication infrastructure such that the set Bfs neighbors,l’;, is known to P;. Additionally, at
any time, F; is given a time-varying data matri¥1; of size |M;| where the rows correspond
to the instances and the columns correspond to attributdsatures. MathematicallyMm,; =
(71 7is...]", where eachr;} = [z Zig...7i0) € R? is a row (tuple). The covariance
matrix of the data at nod®;, denoted byC;, is the matrix whos€:, j)-th entry corresponds
to the covariance between theh andj-th feature (column) ofM;. The global data set of all
the nodes igf = | J;_; M, and the global covariance matrix @5 Let G and 77 denote the
eigenvector (assumed to be of length one), eigenvalue aaah wiethe global data respectively.

Throughout this discussion we have dropped the explicie tsabscript.

B. Problem formulation

The problem that we want to solve in this paper can be statddllasvs:
Definition 5.1 (Problem StatementJziven a time-varying data seé¢!; at each node, maintain

an up-to-date set of eigenvector?fx and eigenvaluesy) of the global covariance matriX i.e.
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find V and © such that
cvV =ev
In our scenario, since the data is constantly changing, Ve tlis requirement and use the
following as an admissible solution.
Definition 5.2 (Relaxed Problem StatemenBiven a time-varying data seé¥!; at each node,
maintain an up-to-date set of eigenvecto%)(and eigenvaluesd) of the global covariance

matrix C such that,

‘k7—97H<e

wheree is a user chosen parameter denoting the error threshold.

C. Distributed PCA monitoring

One way of keeping the model up-to-date is by periodicallyuileling the model. However,
this wastes resources if the data is stationary. Alterabtivone may risk model inaccuracy if
the period of recomputation is too long and the data chanyéstween.

In this work, we take a different approach. Starting with apiteary model at each node, we
propose an algorithm which raises an alert whenever theaglidta of the nodes can no longer
fit this model. If the data has changed enough, we use a felkdbag to collect data from the
network (using convergecast), rebuild a new model and tignlzlite this new model to all the
nodes to be again tracked by the peers against the currentBklow, we reduce the problem of
monitoring the eigenvectors and eigenvalues to checkimgldfcal vector at each peer is inside
a circle of radius.

Note that, if all the columns off are mean reduced (using the global mean) by the respective
columns,i.e. the mean of each column is subtracted from each entry of tblaihm, the

covariance matrix is decomposable= »"" | C;. With abuse of symbols, l&§ and M; denote
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the mean reduced versions of the variables themselves, Then

C==-9'06
2.0 Ml

T
M,y M,
1 M, M,
> Ml :
M, M,
My
M
E:nfim4 ‘(j»1T /k{%. Jk4g) .2
M,
1 n
n 'A4glm4l
Zi | 7/| i=1
1 n
ST 2

14

(1)

Thus, for horizontally partitioned mean reduced data ithgted among: nodes, the covariance

matrix is completely decomposable. Assuming that each isgaovided with an initial estimate

of V/ (with ||7|| = 1) and©, the eigen monitoring instance (denoted/ycan be reformulated

as:

H cv —GVH <6

=

<€

(ﬁ ZC) VeV

1 n
m;[@?—@?wﬂ <e
oMl [V )
;zww[vw oV | <

< €

> () 7]

(@)

where [;. ? is a local error vector at node; (based onM;, 7 and ©) defined as[lfi> =

| M|

¢V _ oV, Let L.€9 = ¥ "(

M
27 MG

| ) [Il.gﬂ denote the convex combination df.g’s.

Checking if the norm ofl;.&; is less thare is equivalent to checking if the VeCtdﬁ.Z is

inside a sphere of radius. Now if each peer determines that their own vedtplgi> is inside
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the sphere, then so is their convex combinatI@n?G. This is the crux of the idea used in
developing the distributed algorithm. However, this arguainfalls apart when the vectors are
outside the sphere. To circumvent this problem and applgainge methodology, the area outside
the circle is approximated by a set of tangents to the sphAerdefore, if all peer’s[l.?i> lies in
the same hyperplanél.?G will also lie there. This paves the way for the distributegaaithm
which is discussed next.

Note that, in the above formulation we have assumed that #te & mean shifted. In a
dynamic setting, it may be expensive to recompute the meaadt time step. Given an initial
estimate of the meam to all the peers (may be a random choice), we set up anotheitaring
instancel, for checking if the (column wise) average vector over allrpezxceeds a threshold

€9.

n M no [IM]
1 N 1 .
~n s xi,'_ﬁ <€ < || $2—7|Mz| < €
i:lMi;; ] Zi:lMi; _JZ:; ]
n [— M| —
|M;]| Zj:l Li,j
& - - <e
i—1 Ei:l M; L ‘Mz‘ 7 ’
- [Mi] =
= Z:; <ZZ‘:1 v [12.51} <& 3)

Ml s . .
where, as beford,. &, — (% - 7) is the local vector anﬂz.g? =S (ZVj/'w) [IZ.EZ]

. N — L
is a convex combination of,.&;-s. The same convex methodology for checking inside and

outside of the circle can be applied here.
Satisfying the relaxed problem statement: In the appendix, we show that if the bounds (2)
and (3) hold, then the problem statement in the above definhiblds withe = ¢, + €2.

D. Notations and thresholding criterion

In our algorithm, each node sends messages to its immedégdbors to converge to a
globally correct solution. There are three kinds of mess#gat can be transmitted: (f)onitoring
messages which are used by the algorithm to check if the medekto-date, (iiddatamessages
which are used to sample data for rebuilding a model (comoast), and (iiiimodelmessages
which are used to disseminate the newly built model in théremetwork (broadcast). Any

monitoring message sent by node to P, contains information tha#; has gathered about
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the network whichP; may not know. In our case, the message sentPpyo F; consists of
a set of vectors or matrtxS; ; with each row corresponding to observations and each column
corresponding to features.

We know that if each peer’lélfi> (or 12.5) lies in the same convex regioﬁ,.?c (or 12.?(;)
also lies in the same convex region. Therefore, each peésne®rmation about the state of its
neighbors. The trick is to do this computation without cciileg all of the data of all the peers.
We define three sufficient statistics on sets of vectors émeerector of the set and the number
of points in the set) at each node and for each instance of thr@toning problem separately,
based on which a peer can do this thresholding more effigielatir the rest of the paper, we

only discuss the computations with respect/{csince the other instance is very similar.

« Knowledge E This is all the information thaf’, has about the network.
« Agreement H This is whatP; and P; have in common.
. Held 7?; This is whatP; has not yet communicated ).

We can write

o [Kil = M+ S5
P;el’;

o [Aijl =185+ Sl
o [Higl =K — [ Al
Similarly for the average of the sets we can write,
* BZ = |/éi| ‘MJEZ—F Z |Sj7i|$—j,Z
P;eT;
. A= T <|3z‘,j|‘§,; + |5j,i|‘§>
e Hoy = s (KK - 1A A

J [Hi,;]

In this work we assume that the communication takes place ameoverlay tree. This
is to ensure that vectors sent to a node is never sent backtto avoid double counting.
Interested readers are urged to see [38] and [8] for a digcus$ how this assumption can be
accommodated or, if desired, removed.

At each peer, we need to check if the local ved%nies in a convex region. To achieve this,

we need to split the domain of monitoring function into noredapping convex regions. Since

lwe use them interchangeably here
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the monitoring function is L2 norm ifR?, checking if the norm is less thanis equivalent to
checking if it is inside the sphere which is a convex regiondbfinition. However, the outside
of the sphere is not convex. So we make it convex by drawingetais to the sphere at arbitrary
points. Each of these half spaces is again convex and so tierajeule can be applied here.
However, the area between the sphere and each of these aedfssis not convex. These small
uncovered spaces are known as tieeregions. Denoting the area inside the spherd?gsand
each of the half spaces 4%, Ry,, - .. }, the entire set of convex regions covering the space
is C,, = {Rin, Rn,, Rn,, ... }. Fig. 2 shows the convex regions IRf, the tangent lines and the
tie region. Given this convex region and the local vectors,w state a Theorem based on
which any peer can stop sending messages and output theto@salt.

Theorem 5.1:[38] Let 8? E Jf; andH—i; be as defined in the previous section. Iiebe
any region inC,,. If at time ¢ no messages traverse the network, and for elaclﬁ- € R and
for every P; € T, ,I; € R and either}fg e RorH,,; =0, thené’? € R.

Proof: For proof the readers are referred to [38]. [ |

Using this theorem, each node can chechﬁ- < e. If the result holds for every node, then

their convex combinatioﬁ@ will also be inR. If there is any disagreement, it would be between
any two neighbors. In that case, messages will be exchamgkthay will converge to the correct

result. In either case, eventual global correctness isagieed.
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Fig. 2. (A) the area inside aacircle (B) A random vector (C) A tangent defining a half-spdb@ The areas between the
circle and the union of half-spaces are the tie areas.
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E. Algorithm

Both the mean monitoring and the eigenvector monitoringrigms rely on the results of
Theorem 5.1 to output the correct result. For the eigenventmitoring, the inputs to each node
are the eigenvecto?, the eigenvalu® and the error threshold is. From Section V-C, for

this monitoring instance the input is:

o 11.]&] = |Mz'|

Similarly for the mean monitoring algorithm, the inputs dahe mean7 € R? and the error
thresholde,. In this case, each node subtracts the mgafrom its local average input vector

x” For this problem instance denoted by the following are the inputs:

\M\JT;
o]QgZ:< J‘J\l/[‘ —7)
o Ir.|&| =M,

Algorithm 1 presents the pseudo-code of the monitoringritlym while Alg. 2 presents the
pseudo-code for convergecast/broadcast process. This itgptihe monitoring algorithm aré1;,
EZ (depending on how it is defined),, ¢; or ey, C,,. For each problem instande and I, each
node initializes its local vectonzi, Jf; and?f-;. The algorithm is entirely event-driven. Events
can be one of the following: (i) change in local datd;, (ii) receipt of a message, and (iii)
change inl’;. In any of these cases, the node checks if the condition aht@rem holds. Based
on the value of its knowledgk_iz, the node selects the active regiine C,, such thatz- € R.
If no such region existsk = (. If R = 0, thenE lies in the tie region and hend@ has to send
all its data. On the other hand, & # () the node can rely on the result of Theorem 5.1 to decide
whether to send a message. If for &} € I';, bothA—i,; €R and’H—i; € R, P; does nothing;
else it needs to seSTJ> and|S, ;|. Based on the conditions of the Theorem, note that these are

the only two cases when a node needs to send a message. Whiemegeives a messag@)(

J5% 752
since itsE can now change.

To prevent message explosion, in our event-based systenmpioe a “leaky bucket” mech-
anism which ensures that no two messages are sent in a paodérsthan a constarit. Note
that this mechanism does not enforce synchronization @ciafforrectness; at most it might

delay convergence. This technique has been used elsewber38][7].
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Algorithm 1: Monitoring eigeivector/eigenvalues.

Input: ¢, C I'; and L
Output: O if lé < ¢, 1 otherwise
Initialization: Initialize vectors;
if MessageRecvdFror6 ? |S|)
Sj,i — ?;
|Sjil < |S];
| Update vectors;
if M;, I'; or KC; changesthen
forall the P; € I'; do
if LastMsgSent > L time units agahen

if R =0 then
7, KRS58 .
LSM(_ FESTER
\SZW—VC\ |S;.4;

if Aw §ZR or H” ¢ R, then
t SetS” and|S; ;| such tha‘rA” and?-[” € Ry;
M &&ageSentTo(Pj, Sij, |Si,j|> ;
LastMsgSent < CurrentTime;
Update all vectors;

B el_se Wait L time units and then check again;

The monitoring algorithm raises a flag whenever eitﬁélr. e. Once

> € or HIQ.Z—

the flag is set to 1, the nodes engage in a convergecast-lsigatocess to accumulate data up
the root of the tree, recompute the model and disseminatetitd network.

For the mean monitoring algorithm in the convergecast phakenever a flag is raised, each
leaf node in the tree forwards its local mean up the root ofttee. In this phase, each node
maintains a user selected alert mitigation constamhich ensures that an alert is stable for a
given period of timer for it to send the data. Experimental results show that thisrucial in
preventing a false alarm from progressing, thereby sawsgurces. In order to implement this,
whenever the monitoring algorithm raises a flag, the nodestite time, and sets a timer to
time units. Now, if the timer expires, or a data message isived from one of its neighborg>,
first checks if there is an existing alert. If it has been rdedrr or more time units ago, the node

does one of the following. If it has received messages frdntsaheighbors, it recomputes the

February 9, 2011 DRAFT



20

new mean, sends it to all its neighbors and restarts its mamgf algorithm with the new mean.
On the other hand, if it has received the mean from all but dnthe neighbors, it combines
its data with all of its neighbors’ data and then sends it ® nieighbor from which it has not
received any data. Other than any of these cases, a node olthésgn

For the eigenvector monitoring, in place of sending a loocghmvector, each node forwards the
covariance matriXC;. Any intermediate node accumulates the covariance matrts @hildren,
adds it local matrix and sends it to its parent up the tree.robecomputes the new eigenvectors

and eigenvalues. The first eigenstate is passed to the magitgorithm.

F. Correctness and complexity analysis

The eigen monitoring algorithm is eventually correct.
Theorem 5.2:The eigen monitoring algorithm ieventually correct.
Proof: For the eigen monitoring algorithm, the computation wilhtaue for each node

unless one of the following happens:

« for every node/?i = 5?

. for every P, and every neighbaP;, E m,and?L—i,; are in the same convex regiéhe C,,.
In the former case, every node obviously computes the doo@put since the knowledge of
each node becomes equal to the global knowledge. In the &se, Theorem 5.1 dictates that
5? € R. Note that by construction, the output of the thresholdimgtion (in this cas 7’| > ¢)

is invariant inside any? € C,,. In other words, the binary functio‘r“ﬁH < eand Hz < e will

have the same output inside Therefore in either of the cases, the eigen monitoringrélya

is correct.
Moreover, sinc& = W >_;=1Ci (see Eqn. 1) andl = W the models built
j=1 177" j=1 IMi
are also the same compared to a centralized algorithm hadogss to all the data. [ |

Determining the communication complexity of local algbnits in dynamic environments is
still an open research issue. Researches have proposeitiaiesiof locality [7][38]. Note that for
an exact algorithm as the eigen monitoring algorithm, thestvease communication complexity
is O(size of network). This can happen, for example, when thén eaxle has a vector in a
different convex region and the global average is in anadifégrent region. However, as shown
in this paper and also by several authors [38][7] there averakproblem instances for which

the resource consumption becomes independent of the sitee afetwork. Interested readers
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Algorithm 2: P2P Eigen-monitoring Algorithm.
Input €1, €2, Cw, Mz, i
output: (i) V/,© such thatHC V_o. 7“ <e and||7|| =1, (i) 7 such that
| M ”E?
Z\E\—‘M | 7“ < é
Initialization
begin
Initialize vectors;
L MsgType= MessageRecvdFror);

if MsgType = Monitoring_M sg then Pass Message to appropriate Monitoring Algorithm;
if MsgType = New_Model_M sg then

Update?, e, 1;

Forward new model to all neighbors;

Datasent=false;

| Restart Monitoring Algorithm with new models;

M sgType = Dataset_M sg then
if Received from all but one neighbtien
flag=Output Monitoring Algorithm();
if Datasent = false and flag = 1 then
if DataAlert stable forr time then
D1=C;+ Recvd_Covariance;
sy
DQ—W + Recvd_Mean;
Datasent=true;
SendD1, D5 to remaining neighbor

B else DataAlert=CurrentTime;

=

f Received from all neighbordhen
D1=C;+ Recvd_Covariance;

Z\M ‘IV—}
D2‘|/\1/(7|”+ Recvd_Mean;
7 ©)=EigAnalysis(D;) Where||7|| =1;
ﬁ =Mean(D);
Forward new7, O, 7 to all neighbors;

Datasentfalse;
Restart Monitoring Algorithm with new models;

f M;, T; or Ia changeshen
Run Monitoring Algorithm;
flag=OutputMonitoring Algorithm();
if flag=1 and P;=IsLeaf() then
| Execute the same conditions &gsgT'ype = Dataset_M sg

are referred to [6] for a detailed discussion on commuracatiomplexity and locality of such

algorithms.
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VI. EXPERIMENTAL RESULTS

In this section we demonstrate the experimental resulthefdistributed eigen monitoring
algorithm. Before doing that, we describe centralized @rpents showing how the fundamental
plane changes with variations in local galactic densityerTtve describe distributed experiments
showing the performance of the eigen monitoring algoritlema distributed streaming scenario
when the same data is streamed at multiple nodes. Our goal @emonstrate that, using
our distributed eigen monitoring algorithm to compute thisngpal components and monitor
them in a streaming scenario, we can find very similar resagtsvere obtained by applying
a centralized PCA. As an interesting aside, even though oat gas not to make a new
discovery in astronomy, the results are astronomicallgwotthy. We argue that our distributed
algorithm could have found very similar results to the calized approach at a fraction of
the communication cost. Also, we want to emphasize that distributed eigen monitoring
algorithm can be applied to a number of change-detectioricappns in high-throughput
streaming scenarios (such as the LSST) for important astnaral discoveries of many types.
The importance and novelty of this algorithm compared tetexy distributed PCA algorithms

is that this is an exact algorithm that deterministicallywoerges to the correct result.

A. Fundamental Plane results

As noted in Section IV-A, we divide the entire dataset intd3s. The bins are arranged from
low to high density. In this section we present the resultewffundamental plane experiments

for those 30 bins. We have only used the elliptical galaxiesur experiments from the SDSS
and 2MASS dataset.
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Fig. 3. Variance captured by PCs 1 and 2 w.r.t. log of meanityeaseach bin. Bin 1 has the lowest mean density and Bin
30 the highest.
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Fig. 4. Plot of variation of) and ¢ independently with bin number. The bins are numbered ineesing order of density.

Figure 3 provides the most significant scientific result.dtrebnstrates the dependence of the
variance captured by the first 2 PC’s with respectop of bin density (the x-axis shows mean
density of each bin in log-scale). As seen, the varianceeas®s monotonically from almost
95% to 98% with increase in galactic bin density. This cke@émonstrates a new astrophysical
effect, beyond that traditionally reported in the astror@ahliterature. This results from the
application of distributed data mining (DDM) on a signifitign(by 1000 times) larger set of
data. More such remarkable discoveries can be anticipabtesh DM algorithms of the type
reported here are applied to massive scientific (and nansfic) data streams of the future.

To analyze more deeply the nature of the variation of the finsi PCs with respect to
increasing galactic density, we plot the direction of thenmal to the plane defined by the first
2 PCsi.e. pcl and pc2. Since each of these PC’s are vectors in 3-d, $wisdrmal to the

plane. The normal vector is represented by its two direatiamgles: the spherical polar angles
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0 and¢. Figure 4 shows a plot of and ¢ for 30 bins. Figure 4(a) shows the variationtoand
¢ independently witHog of mean galactic density. Figure 4(b) shows the variatiobath with
log of mean density. The systematic trend in the change of dwrectf the normal vector seen
in Figure 4(b) is a new astronomy result. This representstixthe type of change detection
from eigen monitoring that will need to be applied to massigentific data streams, including
large astronomy applications (LSST) and large-scale getodalited sensor networks, in order

to facilitate knowledge discovery from these petascala datlections.

B. Results of distributed PCA algorithm

The distributed PCA implementation makes use of a Javadbsiseulated environment for
simulating thousands of peers on a single computer. Forrgeng realistic topologies the
simulator uses BRITE [12], which is a universal topology @etor from Boston University. In
our simulations we used topologies generated accordingetBarabasi Albert (BAmodel. On
top of the network generated by BRITE, we overlayed a spantige. We have experimented
with varying network sizes ranging from 50 to 1000 nodes. \&gort all times in terms of
simulator ticks since wall time is meaningless when sinigathousands of nodes on a single
PC. We set up the simulator such that an edge delayrogecs in BRITE topology corresponds
to = simulator ticks. We make the assumption that the time regquior local processing is trivial
compared to the overall network latency and therefore, @gance time for the distributed PCA
algorithm is reported in terms of the average edge delay.

We have divided the data of the centralized experiments 5nbins (instead of 30), sorted
by galactic density. Each bin represents the data distoibwt a certain time in the streaming
scenario and the distribution changes every 200,000 stranléicks which we call arepoch
This implies that every 200,000 simulation ticks we supplg hodes with a new bin of data.
The whole experiment therefore executes for 200;0®€1,000,000 simulator ticks. Furthermore,
within each epoch, we stream the data at a rate of 10% of theizerfor every 10,000 simulation
ticks which we call thesub-epochinterval. Thus, starting from the beginning of any epocle, th
whole data is changed by 100,000 ticks and no data is charugetthd later 100,000 ticks of
that epoch. In other words, all 10,000 points are receiveudiéaneously by all nodes at the first
tick of each sub-epoch (except during the last 100,000 tifksach epoch).

The two quantities measured in our experiments aregtiadity of the result and theost of
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the algorithm. For the eigen monitoring algorithm, quatign be measured as (1) the number of
LK

< € for each time instance, and (2) the average L2 norm distarteeen the

peers which report an agreement between the model at eaehanddthe datae.
or ngz

principal eigen vector and the and the computed eigen vattitre distributed scenario over all

< €

the bins. For cost we measure the number of monitoring messagl the number of computation
messages separately.
We have used the following default values for the algorittsme of leaky bucket. = 500,

error threshold; = 2.0 e; = 0.02, alert mitigation constant = 500, and number of peers = 50.
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Fig. 5. Variation of||,./C;

(left) and HIQ"C'

(right) across all the peers vs. Time.

Figure 5 shows the variation of the local knowledges of eadr phroughout the execution of
the experiment and the thresholds (red dotted lines). Tihdiderre showsHIl.E
toring) while the right figure show#IQ.E
the knowledge vectors exceed the respective thresholtie ditetginning of each epoch (200,000,
400,000, 600,000, and 800,000 ticks), because the datespamds to a new bin. The peers then

jointly infer this disagreement using the monitoring algon and the convergecast/broadcast

(eigenmoni-

(mean monitoring). For both the figures, the norm of

round is invoked which rebuilds and distributes a new setigérevectors and eigenvalues. As
a result, the norm of the local knowledge at each peer drojmsvidde corresponding threshold
and only the monitoring algorithm operates for the rest o #poch.

Accuracy and convergence of the distributed eigen momnigoalgorithm is shown in Figure
6. The left figure shows the accuracy of eigen monitoring vltile right one shows the same
for mean monitoring. As shows, accuracy is low for the firsh,000 ticks of each epoch since

the data is changing during that time. Accuracy increasd9@% during the later 100,000 ticks
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since the model is in accordance with the data. This patgerepeated for all the epochs. The
convergence rate of the algorithm is shown in Figure 7 by dzngnm to the second epoch.
The data is changed at every 10,000 ticks between 200,00@@MhA00 ticks. This is why the
accuracy is low during this period. The algorithm converge400% accuracy within 330,000
ticks i.e. within 30,000 ticks after the data stops changing. The aemrdge delay is 1000
simulator ticks Hence the algorithm converges in approkeiya80 times the average edge delay.
Figure 8 shows the messages exchanged per peer througleoexplriment. The monitoring
messages, shown in the left figure, increase whenever tlaectianges but decreases once the
algorithm converges. The number of messages exchangeagdine stationary period is very
low compared to an algorithm which broadcasts all the infdrom every sub-epoch. The rate
of messages of the latter is 2 per sub-epoch (consideringngighbors per peer on average).
The data messages is shown as cumulative plot in the rightefighs shown there is an high
number of data messages for each epoch change and it decfeaske later 100,000 of all

epochs. For any experiment, new models are build 2 to 3 tireegpoch.
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1

Fig. 6. Percentage of peers agreeing”ib.l@
algorithm shows high accuracy.

The last set of experiments show that the quality of the n®dballt by the algorithm and
its communication complexity is independent of the numkfenades in the network, thereby
guaranteeing high scalability. We first compare the qualitthe models build by the distributed
eigen monitoring algorithm to that of a centralized aldumit having access to all the data.
Since we compute the principal eigen vector for each bin re¢glg, we plot the average
L2 norm distance between the centralized and distributgdnevectors for every experiment.
The experiments have been repeated for 10 independerst. thigjure 9 shows the quality of
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Fig. 8. Messages exchanged by the eigen monitoring algoniér peer throughout the experiment.

the computed models for different network sizes. As showitha figure, the proposed eigen
monitoring algorithm produces results which are highlyurate compared to their centralized
counterpart. Moreover, quality does not degrade with iasireg network sizes. Because our
algorithm is provably correct, the number of nodes has naenite on the quality of the result.
Figures 10 and 11 show the number of messages exchanged geemhen the number of
nodes is increased from 50 to 1000. In this context, norredlimessage per node means the
number of messages sent by a node per unit of sub-ep@cteery data change). This is the
maximal rate at which any node can send messages in oubdisti algorithm. Since the length
of each sub-epoch is 10,000 ticks abd500, this maximal rate is therefore, 10,000/5@340,
assuming two neighbors per node, on average. Also, for amitidgn which uses broadcast as the
communication model, its normalized messages will be 2 plerepoch assuming two neighbors
per node, on average. In all our experiments, the normahzesisages per peer is close to 0.3,

well below these maximal rates. Thus the proposed algorithinghly efficient with respect to
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communication. Also as shown, the monitoring messagesinecaaistant even if the number of
nodes is increased. This demonstrates excellent scafabilihe algorithm.

Finally, we also plot the number of times data is collected @goch. In most cases, the
number of such convergecast rounds is 3 per epoch. Notehisatdn be reduced further by

using a larger alert mitigation constantor larger error thresholé; or e,.
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VIl. PADMINI-A PEER-TO-PEERASTRONOMY DATA MINING SYSTEM

PADMINI is a web based Peer to Peer data mining system that atnbeing a computation
tool for the researchers and users related to the field obramtny and data mining. There
are several challenges to centralizing the massive astrprmatalogs (some of which has been
elucidated in the previous section) and running tradifial®a mining algorithms. To solve this

data avalanche, PADMINI is powered by a back end peer to pmapuatation network to provide
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the required scalability. The back end computation netveoigports two distributed computation
frameworks, namely Distributed Data Mining Toolkit (DDMT)7] and Hadoop [24]. The web
based PADMINI system is available online flatt p: // padm ni . cs. unbc. edu/ . In the
next few sections we first describe the different componehtee system and then describe the

implementation details.

A. System components

The system architecture is shown in Figure 1. It consistswéh server, DDM server, server
database, jobs database and the back-end P2P network. Etdeh aommponents are discussed
in details next.

1) Web server.The web server hosts the main website and is the primaryfactrfor
submitting jobs and retrieving results of the submittedsjoBach new user signs up for an
account on the website and sets up a job to be run on the syBtesry user has a dedicated
profile page where the user can keep a track of the jobs swdahioit him. The current status of
the jobs and a projected time for the completion of the jolesadso displayed on the same page.
Each job submitted by the user will trigger a distributedoaigpm to run on the back-end P2P
network. The results of the algorithm will be pushed backhte web server. The user can then
download a copy of the results of their jobs. The web servieghods exposed by the DDM
server are used by the web server to start a job and receiuktsteBhe web server is thus the
consumer of the web service methods exposed by the DDM server

2) Server databaseThe server database primarily deals with user and identagagement.

The database stores the information related to the regéstesers of the system and the privileges
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they have. The job activity details of an user are also stordtis database. These include the
inputs submitted by the user, the algorithm selected, thpubwof the job etc. The list of the
supported astronomy data catalogs and their attributdsatheser can use as inputs are also
stored in this database.

3) DDM server: The Distributed Data Mining (DDM) Server is an intermeditieg between
the web server and the back-end peer to peer computatiororketivhe multiple job requests
coming in from the web server are directed to the DDM Server stored in a job queue. The
jobs are then submitted serially for completion to the ban#l-computation network. The DDM
server exposes a set of methods that can be used to set upnghergushing the results of
the completed jobs onto the web server. The web service metbiocourage openness. Hence,
a new system can be easily built around the available badkP&® computation network.

4) Jobs databaseThe jobs database persists the book-keeping informatitateck to the
jobs. This includes the list of all the jobs that are subrditbg the user, including the ones not
yet submitted to the computation network. The status of tmning and the waiting jobs and
the results of the recently completed jobs is stored here. ddtabase also stores information
related to the back-end P2P computation network. This deduthe information pertaining to
the total number of active nodes, failed nodes etc.

5) P2P network:The peer to peer network forms the backbone of the back-emgtation
framework. All the peers in this network are configured tomarptwo computation frameworks,
namely Distributed Data Mining Toolkit (DDMT) and Hadoophd type of jobs the user can
submit is restricted by the algorithms supported by theesgysGome algorithms are implemented
using the DDMT while some are built on top of the Hadoop frarmew The DDM server picks
up a job from the queue and assigns it to be executed on toge@gpropriate framework. This

information depends on the type of the job and hence is intigliset by the user.

B. Implementation details

1) Language:The website is developed using HTML, Javascript and JSPDE3 imple-
mented in Java and is based on Java Agent Development (JARE)elork. The important
methods like starting a job, stopping it, providing input.e¢tave been exposed as web service
methods. This enables future systems to be built around xtistirey computation network.
Hadoop provides an extensive Java API using which highlyabta Map Reduce algorithms
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can be created. For running either DDMT or Hadoop, Java stigpthe only expected feature
from a peer. Thus, the P2P computation network can be eagigneled.

2) Databases:MySQL is used as the database in the web server database lassvielthe
jobs database. Hibernate is used for object-relationalpmgpat the web server database end.
Classes corresponding to the database tables make suopénations made on the class objects
get reflected and persisted in the database. Such a systeonlgataves development time, but
also guarantees a robust database system.

3) Web service:Axis2 is used as the core engine for web services. Axis2 ik boia new
architecture that was designed to be a much more flexiblejesfti and configurable. With the
new Object Model defined by Axis2, it is easier to handle SOA#ssages. All the web service
requests are directed to the DDM Server. The DDM Server th#és the corresponding methods
and starts the requested job. Axis2 also has excellent sufiposending binary data or files
using SOAP messages. This eases moving the inputs and sipwteen the web server and
the DDM server.

4) User interface: An user needs to sign up on the home page to get an accountahd st
submitting jobs. On signing up, each user gets a personfileppage. Each algorithm supported
by the website has a dedicated page on which the user cae em@disubmit a specific job. The
user can then track the status of the submitted jobs and @isothe results of the most recently
completed jobs on the profile page. The Google Maps intedadtie PADMINI website aids an
astronomer in specifying an area of the sky intuitively affdatively. The controls to select the
astronomy catalogs and the supported attributes are atsidpd. Thus, a job can be specified

with only a few clicks and the user does not to need to wait lier results.

VIIl. CONCLUSION

This paper presents a local and completely asynchronouwsithlign for monitoring the eigen-
states of distributed and streaming data. The algorithnffisient and exact in the sense that
once computation terminates, each node in the network ctasplie globally correct model. We
have taken a relatively well understood problem in astronemthat of galactic fundamental
plane computation and shown how our distributed algorittam lbe used to arrive at the same
results without any data centralization. We argue thatrtight become extremely useful when

petabyte scale data repositories such as the LSST progttstgenerate high throughput data
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streams which need to be co-analyzed with other data repesitiocated at diverse geographic
location. For such large scale tasks, distributing the dathrunning the algorithm on a number
of nodes might prove to be cost effective. Our algorithm isrst fstep to achieving this goal.
Experiments on current SDSS and 2MASS dataset show thatrdpeged algorithm is efficient,

accurate, and highly scalable.
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APPENDIX

Now we show that if the bounds (2) and (3) hold, then the relgx@blem statement holds
with € = ¢; + ¢2. To do so, we must introduce more notation.

Let m denote the column mean vector f@r the global dataset. LéF denote the column
mean vector computed the last time the model was rebuiltififteconvergecast) — an estimation
of m Let A7l denotem — 7(. If bound (3) holds, themAZ|| < e.

Let C(G) denote the covariance matrix &f, the global dataset. L&t denote the estimation
of the covariance matrix generated by mean-shifting u%gSpecifically, the(i, j) entry of C

is defined to be

Cli.j) = (s — ) (g — 1)

9l

wherey; andy; are thei™ and;™ components ofZ; z.; andz;, ; are thei™ and;™ components

of the k' data vector inG. Let 7 andd denote a vector and number computed the last time
the model was built such thﬂt7|| = 1 and which satisfies bound (2)67 — 67|| < €.

Now we can state precisely the statement we will prov¢|:d7 - 67|| < ¢ (bound (2)) and
||7|| — 1 and||A7Z|| < ¢ (bound (3)), therﬂC(Q)V — 79|| < €, + €3. The proof proceeds as
follows.

Straight-forward algebraic manipulations show tég) is a rank-one update af.

C(G) =C+ AT (AT)" (4)

Thus, with||.||» denoting the Frobenius norm afid(.) the matrix traceL|C(g)7—79|| equals
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eV = Vol + AR (A7) V]| By (4)

e+ | AT ATVl [By the triangle inequality and bound (2)]
e+ [|AT (AT ¢l V] By (5:2.2) in [34]

e+ Tr(AT (AT By (5.2.1) in [34] and|| V|| = 1]

e+ ||AT )P [By straight-forward algebraic manipulations]

€+ 6 [By bound (3)]
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