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Abstract This paper proposes a scalable, local privacy-preserving algorithm for dis-

tributed peer-to-peer (P2P) data aggregation useful for many advanced data min-

ing/analysis tasks such as average/sum computation, decision tree induction, feature

selection, and more. Unlike most multi-party privacy-preserving data mining algo-

rithms, this approach works in an asynchronous manner through local interactions

and it is highly scalable. It particularly deals with the distributed computation of the

sum of a set of numbers stored at different peers in a P2P network in the context of

a P2P web mining application. The proposed optimization-based privacy-preserving

technique for computing the sum allows different peers to specify different privacy

requirements without having to adhere to a global set of parameters for the chosen

privacy model. Since distributed sum computation is a frequently used primitive, the

proposed approach is likely to have significant impact on many data mining tasks such

as multi-party privacy-preserving clustering, frequent itemset mining, and statistical

aggregate computation.
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1 Introduction

Privacy-preserving data mining (PPDM) is a requirement in increasing number of

multi-party applications where the data is distributed among many nodes in a network.

Web mining applications in Peer-to-Peer (P2P) networks [17][6] and cross-domain net-

work threat management systems for analyzing cyber-terrorism trends1 are some exam-

ples where data privacy is an important issue. In such large distributed environments,

PPDM algorithms are unlikely to work unless they can offer scalability and heteroge-

neous privacy-models. Scalability can be addressed by local algorithms in which the

communication overhead is bounded by a constant or slowly growing polynomial [6][25].

In a multi-party environment such as the Internet, different users may have different

requirements of privacy. Hence a heterogenous privacy model in such scenarios gives

parties the autonomy to optimize their privacy cost requirements. This paper takes

a step toward developing such a model for privacy preserving data aggregation in a

P2P network. The main contributions of this work are two-fold: (1) multi-objective

optimization-based heterogeneous privacy model, and (2) a local asynchronous algo-

rithm for distributed data aggregation in a large network for client-side web mining [6,

17].

Data analysis in such heterogenous environments calls for a genre of algorithms

which perform the analysis in a distributed fashion. One possibility is distributed data

mining (DDM) which deals with the problem of data analysis in environments with

distributed data, computing nodes, and users. This paper explores the problem of com-

puting the sum of a collection of numbers distributed in a P2P network in a distributed

privacy-preserving manner following the paradigm of DDM. We develop a distributed

averaging technique that uses secure sum computation as a building block for scalable

data aggregation useful for many advanced data mining tasks. The algorithm is prov-

ably correct. Unlike most secure multi-party computation protocols, our algorithm does

not assume semi-honest adversary [5]. However, we prove that this algorithm, though

not secure, is privacy preserving in a well-defined way. This paper also proposes a new

multi-objective optimization-based privacy model for a heterogenous distributed envi-

ronment where each node defines its own privacy requirement. Each user can specify

its own set of parameters for the chosen privacy model. Under this proposed model,

each peer gets to choose its own privacy and the algorithm guarantees that the privacy

requirement of each peer is satisfied at the end of the protocol. We discuss ranking

a set of web advertisements as a client-side web mining application of the proposed

algorithm.

The rest of the paper is organized as follows. In the next section (Section 2) we

present an illustrative application followed by necessary background material in Sec-

tion 3. In Section 4 we first describe the optimization-based privacy model and then

present the privacy preserving distributed sum computation algorithm. We analyze

the algorithm in Section 5 and demonstrate its empirical performance in Section 6. In

Section 7 we present some existing work related to this area of research. Finally, we

conclude the paper in Section 8.

1 http://www.agnik.com/PursuitFlyer.pdf
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2 Illustrative Application

Consider a designer shoe manufacturing company that wants to study the market

in South Asia before finalizing their advertising campaign for that geographical re-

gion. They plan to use the web for aiding their market research. They buy some web-

advertisements designed for collecting user preference-statistics at a popular web-portal

and inks in a deal with a web-analytics company to provide business intelligence by

combining the click-stream data from the web-advertisements along with user back-

ground information collected through the IP address-based mapping of the geographical

location and other related techniques. Among other things, the business intelligence

provider counts the geographic distribution of clicks on different parts of the adver-

tisements from different IP addresses. This is how it works today. However, growing

concerns for online privacy protection is creating technology for protecting the identity

of the user. For example, use of anonymizing networks such as TOR 2 may prevent

web-servers from collecting any meaningful information regarding queries involving

the geographical location of the users. In this case, the IP address associated with

a click may come from randomly selected nodes in the TOR network. As a result

the web-analytics may give completely misleading information. How do we solve this

problem—protect privacy of the user but still be able to rip the benefits of the web

mining technology?

This paper offers a solution to this type of problems. It offers a P2P framework

where the user identity is protected and the web-mining task is accomplished using dis-

tributed privacy-preserving data mining algorithms. It provides a decentralized client-

side solution for distributed privacy preserving data aggregation.

The web mining problem of advertisement ranking discussed here is only a repre-

sentative application scenario and the algorithm can be extended to solve a variety of

data aggregation tasks. Since the Internet can be viewed as a connected network of

users, we pose this as a data analysis problem in a large P2P network. Every user (peer)

in the network has a predefined vector of fixed size where the j-th entry of the vector

corresponds to the number of clicks for the j-th advertisement. In this environment,

ranking the advertisements can be framed as a global sum computation problem. As

the network of users converge to the global sum for every entry in the data vector, they

can locally sort the vectors to get the correct global popularity-based ranks of the ad-

vertisements. Since web browsing information can be privacy sensitive, it is important

to do this sum computation in a privacy-preserving manner. This becomes particularly

challenging in heterogeneous environments such as the Internet, since different users

might have different requirements of privacy. Therefore the problem that this paper

addresses is to compute the global sum of a data vector in a distributed, asynchronous,

and privacy-preserving manner.

3 Background

In this paper we propose a privacy-preserving distributed sum computation technique.

Since scalability is an important issue for large distributed computing environments,

asynchronous solutions are preferred. To the best of the authors’ knowledge, there

does not exist any privacy-preserving asynchronous algorithm for sum computation.

2 http://www.torproject.org/
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The secure sum protocol [5] solves a similar problem but is highly synchronous. There

exist several solutions for asynchronous distributed averaging, but are not privacy-

preserving [21][20]. The algorithm proposed here uses distributed averaging for privacy

preserving sum computation in a locally synchronous fashion. Note that the average

computation problem can be converted to a sum computation problem by scaling up

the data of each peer by the total number of peers. There exists several techniques in

the literature to solve this problem. Examples include the capture-recapture method

proposed by Mane et al. [19] and the aggregate computation as proposed by Bawa et

al. [1].

3.1 Notations

Let P1, P2, . . . , Pd be the set of peers connected to each other by an underlying com-

munication infrastructure. The network can be viewed as a graph G = (V, ℰ), where

V = {P1, P2, . . . , Pd} denotes the set of vertices (nodes) and ℰ denotes the set of edges

(communication pathways). Let �i,� denote the set of neighbors of Pi at a distance

of � from Pi and
∣
∣�i,�

∣
∣ denote the size of this set i.e. the number of neighbors in the

�-neighborhood. Further, let �d×d denote the connectivity matrix or topology matrix

of G representing the network where

�ij =

⎧

⎨

⎩

1 if i, j ∈ ℰ & i ∕= j

−
∣
∣�i,1

∣
∣ if i, j ∈ ℰ & i = j

0 otherwise

Let A1,A2, . . . ,Ap denote an ordered set of advertisements common to all peers

and let X be the d × p global data matrix where the i-th row vector corresponds to

the data of peer Pi for all the advertisements and the j-th column corresponds to the

advertisement Aj across all the peers. Furthermore, for peer Pi, xij denotes the number

of clicks of advertisement Aj . Let X be the random variable for the distribution of xij .

Let Sj denote the global sum of the j-th data element xij i.e., Sj =
∑d

i=1 xij . Finally,

let n∗
i denote the size of the ring that peer Pi forms for the secure sum computation

(to be discussed later).

3.2 Distributed Averaging

In distributed averaging, the objective is to compute the global average�j = 1
d

∑d
i=1 xij

where every peer Pi has a real number xij and d is the size of the network. In the naive

solution, all the peers can exchange information to compute the correct sum. However,

this solution is highly synchronous and does not scale well for large P2P networks. Dis-

tributed approaches include the approaches proposed by Scherber and Papadopoulos

[21] and Mehyar et al. [20]. The basic idea of all these approaches is to maintain the

current estimate of �j (z
(t)
i ) and exchange messages with its immediate neighbors to

update z
(t)
i . As iteration t → ∞, z

(t)
i → �j , i.e. the system asymptotically converges

to the correct average.

The distributed averaging problem, as proposed in [21], is not privacy-preserving.

Moreover it works only for symmetric topologies. In Section 3.4 we explain that our

multi-objective optimization framework requires asymmetric network topology. To han-

dle this, we present a modified protocol in Section 4.5.
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3.3 Secure Sum Protocol

Secure sum computation [5] computes Sj =
∑n

i=1 xij without disclosing the local

value xij of any user. It has been widely used in privacy-preserving distributed data

mining as an important primitive. The secure sum protocol requires the existence

of a ring topology (or an overlay ring network) connecting the users i.e. for peers 2

through d − 1, �i,1 = {Pi−1, Pi+1}, �1,1 = {Pd, P2} and �d,1 = {Pd−1, P1}. Let each

xij ∈ {0, 1, 2, . . . m}. It is known that the sum Sj =
∑d

i=1 xij to be computed takes

an integer value in the range [0, N − 1]. Assuming peers do not collude, P1 generates a

random number R uniformly distributed in the range [0, N − 1], which is independent

of its local value x1j and transmits (R+x1j) mod N to P2. In general, for i = 2, . . . , d,

peer Pi executes:

yij = (yi−1j + xij) mod N = (R+
∑i

q=1 xqj) mod N,

where yij is the perturbed version of local value xij to be sent to the next peer i+ 1.

Pd performs the same step and sends the result ydj to P1. Then peer P1, which knows

R, can subtract R from ydj to obtain the actual sum. This sum is finally broadcast to

all other users.

The secure sum protocol is highly synchronous and is therefore unlikely to scale

for large networks. Combining a newer variation of the distributed averaging (Section

4.5) with the secure sum protocol in a small neighborhood of a peer, we propose a

privacy-preserving sum computation algorithm which (i) asymptotically converges to

the correct result, and (2) being only locally synchronous, scales well with the network

size.

3.4 Multi-objective Optimization and Privacy

Multi-objective optimization, also known as multi-criteria or multi-attribute optimiza-

tion, is the process of simultaneously optimizing two or more possibly conflicting ob-

jectives subject to certain constraints. It can be mathematically stated as:

minimize f(x) = [f1(x) . . . fM (x)]T

subject to gj(x) ≤ 0, ∀j = 1, . . . , p (1)

ℎk(x) = 0, ∀k = 1, . . . , q

x
(ℓ)
i ≤ xi ≤ x

(u)
i , ∀i = 1 . . .m

where there are M scalar objectives f1 . . . fM with fi : ℝ
m → ℝ, gj and ℎk are known

as the constraint functions and each variable also has its own explicit bounds between

x
(ℓ)
i and x

(u)
i . The solution to such a multi-objective optimization problem is a vector

x∗ = {x∗1, x
∗
2, . . . , x

∗
m} ∈ ℝm. Next we discuss the concept of Pareto optimal set which

is useful for comparing two optimal solutions.

The concept of dominance is intricately related to multi-objective optimization. Let

x∗
1 and x∗

2 be two solutions where we define the ‘≺’ operator as x∗
1 ≺ x∗

2 implies that

solution x∗
1 is better than solution x∗

2 on a particular objective fj(x) i.e. ∃j such that,

fj(x
∗
1) < fj(x

∗
2). Similarly, we define the ‘⊁’ operator as x∗

1 ⊁ x∗
2 implying that x∗

1 is

no worse than x∗
2 for the objective function fj(x) i.e. ∃j such that, fj(x

∗
1) ≯ fj(x

∗
2).

Under such conditions, solution x∗
1 is said to dominate solution x∗

2. Given a finite set of
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solutions S , it is always possible to find a subset of solutions S
′

⊂ S , such that any two

solutions in S
′

do not dominate each other. Moreover, for any solution in S ∖S
′

, we can

always find a solution in S
′

which dominates the one in S ∖S
′

. When the set S refers to

the entire search space, then the set S
′

is known as the Pareto optimal set of solutions.

All solutions in the Pareto optimal are equivalent. Thus, solution to multi-objective

optimization problem reduces to finding the entire Pareto optimal solution set.

In general, a multi-objective optimization problem (as defined by Equation 1) can

be solved in several different ways to find the Pareto optimal set. In this paper, we

explore a simple technique viz. scalarization — which combines multiple objective

functions into a single objective function using a set of weights. As a result, Equation

1 can be reformulated as:

minimize F = w
T
f(x) = [w1f1(x) + . . . + wMfM (x)]

subject to gj(x) ≤ 0, ∀j = 1, . . . , p (2)

ℎk(x) = 0, ∀k = 1, . . . , q

x
(ℓ)
i ≤ xi ≤ x

(u)
i , ∀i = 1 . . . m

where w is a M -dimensional weight vector whose components are positive. Since mul-

tiplication by a constant does not change the optimal value, it is customary to assume

that
∑M

i=1 wi = 1. Note that this technique reduces the multi-objective optimization

problem to an ordinary scalar optimization problem. The exact value of the weights de-

pends on several factors: (1) the importance one associates to each objective function,

and (2) if the objective functions are not all in the same scale, the weights can be used

to scale them to uniformity. By varying the weight vector one can obtain possibly dif-

ferent Pareto optimal solutions of the multi-objective optimization given in Equation

1. Finally we point out that scalarization does not destroy the Pareto optimal set of

the original problem. Therefore, (1) any solution of Equation 2 lies in the Pareto opti-

mal solution set of Equation 1, and (2) the entire Pareto optimal set can be generated

by solving the scalarized version (Equation 2) for convex multi-objective optimization.

Interested readers are referred to [9] and [4] for proofs.

4 Privacy-Preserving Distributed Sum Computation

It is clear from the previous section that we need to measure threat and cost in order

to solve the optimization problem. In this section we first state the model of privacy

that we have used and then derive an expression for threat in secure sum protocol in

the presence of collusion. Finally we show how the overall multi objective optimization

problem can be used to develop our privacy preserving asynchronous distributed sum

computation algorithm.

4.1 Bayes Optimal Privacy Model

The Bayes optimal model of privacy [18] uses prior and posterior distribution to quan-

tify privacy breach.

Let X be a random variable which denotes the j-th data value at each node.

The value at node Pi is denoted by xij . The prior probability distribution is prior =
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P (X = xij). Once the data mining process is executed, the participants can have

some extra information. Given this, we define the posterior probability distribution

as posterior = P (X = xij ∣ℬ), where ℬ models the extra information available to the

adversary at the end of computation. The exist several techniques in the literature to

measure privacy breach [11][10][18]. Below we state the Bayes optimal privacy breach.

Definition 1 [�1 − to − �2-privacy breach[10]] Let fprior and fposterior denote the

prior and posterior probability distribution of X. The �1 − to − �2 privacy breach

happens when fprior ≤ �1 and fposterior ≥ �2, where 0 < �1 < �2 < 1.

As noted in [18], any privacy definition which quantifies the privacy breach in terms of

principle 1 or 2, is known as the Bayes optimal privacy model. However, this �1−to−�2
privacy model is applicable only when there is a single node in the network. Below we

extend this privacy framework for a distributed multi-party scenario.

Definition 2 [Multi-party �1 − to− �2 privacy breach] For the i-th peer Pi, privacy

breach occurs if f iprior ≤ �1i and f iposterior ≥ �2i. Multi-party �1 − to − �2 pri-

vacy breach occurs when the constraints are violated for any peer in the network i.e.

∀i, f iprior ≤ �1i and f iposterior ≥ �2i, where 0 < �1i < �2i < 1.

In the definition, the posterior probabilities of each peer can either be dependent or

independent of each other. If the peers share the extra information (ℬ), their posterior

distributions are also related. Since in our framework each peer solves the optimization

problem locally, the dependence or the independence of the posterior probabilities does

not change the privacy requirements.

Since in a distributed environment, different peers have different privacy require-

ments, it is difficult to achieve the distributed �1− to−�2 privacy using a single secure

sum since the �1− to−�2 privacy is achieved in terms of the number of participants of

the ring (as shown in Section 4.2). So our proposed algorithm uses multiple local sum

computation protocols with different ring sizes, one for each node in the network. This

approach addresses two issues: (1) it proposes a solution to privacy preservation in

heterogenous environments and (2) it avoids creating a single large synchronous ring

for sum computation which makes the algorithm scalable for large-scale distributed

systems. The sum computation does not claim to be a secure protocol by getting rid

of the semi-honest assumption, but still is privacy preserving. Before we describe the

algorithm for doing the distributed averaging based local secure sum, we introduce a

measure of the threat component in the objective function applicable to the secure sum

protocol.

4.2 Threat Measure under Collusion

The secure sum computation algorithm assumes semi-honest parties who do not col-

lude. However, it has been shown in the literature [13] that such an assumption is

suboptimal and that rational parties would always try to collude in the absence of a

penalizing mechanism. In this paper we adapt the expression of threat developed in

[13] to estimate the threat component in our objective function. Each peer forms a ring

of size n∗
i (referred to as n in this section for sake of simplicity) in our algorithm. Let us

assume that there are k (k ≥ 2) nodes acting together secretly to achieve a fraudulent

purpose. Let Pi be an honest node who is worried about its privacy. Let Pi−1 be the
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immediate predecessor of Pi and Pi+1 be the immediate successor of Pi. We will only

consider the case when n − 1 > k ≥ 2 and the colluding nodes contain neither Pi−1

nor Pi+1, or only one of them, then Pi is disguised by n − k − 1 other nodes’ values.

This can be represented as

n−k−1∑

q=1

xqj

︸ ︷︷ ︸

denoted by Y

+ xij
︸︷︷︸

denoted by X

= Sj −

i+k∑

q=i+1

xqj

︸ ︷︷ ︸

denoted by W

,

where W is a constant and known to all the colluding nodes. The posterior probability

of xij is:

fposterior(xij) =
1

(m+ 1)(n−k−1)

r∑

q=0

(−1)q

(

n− k − 1

q

)

×

(

n− k − 1 + (r − q)(m+ 1) + t− 1

(r − q)(m+ 1) + t

)

(3)

where zj = W − xij and z ∈ {0, 1, . . . ,m(n − k − 1)}. r = ⌊
zj

m+1⌋, and t = zj −

⌊
zj

m+1⌋(m + 1). Note that here we assume xij ≤ W , otherwise fposterior(xij) = 0.

This posterior probability can be used to measure the threat faced by a peer while

participating in the secure sum computation protocol, if there is collusion:

tℎreat = Posterior − Prior = fposterior(xij)−
1

m+ 1
(4)

Note that using uniform distribution as the prior belief is a reasonable assumption

because it models the basic knowledge of the adversaries. This assumption was also

adopted by [24] where a Bayes intruder model was proposed to assess the security of

additive noise and multiplicative bias.

It can be observed from this threat measure that (1) as k increases, the posterior

probability increases, and (2) as n increases, the posterior probability decreases. This

implies that as the size of the network involved in the secure sum computation increases,

the threat decreases for a fixed size of the colluding group. Therefore, the privacy of the

data of the users in the secure sum depends on the initiator’s choice of the size of the

group (n). The choice of n can vary between 1 and the total number of nodes d. As the

value of n increases, the threat to a user’s data due to collusion decreases, assuming a

constant percentage of colluding nodes in the network. However, increasing n increases

the overall communication cost and synchronization requirements of the algorithm.

The conflicting nature of the objective functions allows us to set up a multi-objective

optimization problem.

4.3 Threat Measure for Multiple Rings

The above expression only gives us a measure of threat when there is only one ring.

In the presence of multiple rings, a colluder can infer more knowledge about an honest

node’s data. In this section, we derive an expression for threat in the presence of

multiple rings. For simplicity, we consider the situation of only two intersecting rings.

The case for multiple rings can be analogously derived.
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Let there be n1 nodes in ring 1 and n2 nodes in ring 2. The values at the nodes for

the two rings be arranged as follows:

Ring 1:

common
︷ ︸︸ ︷
x1,j → ⋅ ⋅ ⋅ → xc−1,j → xc,j →

not common
︷ ︸︸ ︷
xa,j → xa+1,j → ⋅ ⋅ ⋅ → xg,j

Ring 2:

common
︷ ︸︸ ︷
x1,j → ⋅ ⋅ ⋅ → xc−1,j → xc,j →

not common
︷ ︸︸ ︷
xb,j → xb+1,j → ⋅ ⋅ ⋅ → xℎ,j

For ring 1, let the colluding nodes be xc−1,j , xc,j , xa,j , xa+1,j . Similarly, for the other

ring, xc−1,j , xc,j , xb,j , xb+1,j are the colluding nodes.

Denoting the sum of the data values in the rings by C1 and C2, we can write,

x1,j + ⋅ ⋅ ⋅+ xc,j + xa,j + ⋅ ⋅ ⋅+ xg,j = C1

x1,j + ⋅ ⋅ ⋅+ xc,j + xb,j + ⋅ ⋅ ⋅+ xℎ,j = C2

Subtracting, we get

xa,j + ⋅ ⋅ ⋅+ xg,j −
(
xb,j + ⋅ ⋅ ⋅+ xℎ,j

)
= C1 − C2

Since the values of the colluders (xa,j , xa+1,j , xb,j , xb+1,j) are known to the col-

luding group, we can even subtract these from the sum to be estimated. We are left

with the following expression:

xa+2,j + ⋅ ⋅ ⋅+ xg,j −
(
xb+2,j + ⋅ ⋅ ⋅+ xℎ,j

)
= C1 −C2 − (xa,j + xa+1,j + xb,j + xb+1,j)

Let C1 − C2 − (xa,j + xa+1,j + xb,j + xb+1,j) = C. We can now write,

xa+2,j + ⋅ ⋅ ⋅+ xg,j −
(
xb+2,j + ⋅ ⋅ ⋅+ xℎ,j

)
= C

Without loss of generality, let the node whose value is at threat be xg,j . Thus, we

can write,

xg,j
︸︷︷︸

denoted byZ

= C +

⎛

⎜
⎜
⎝
xb+2,j + ⋅ ⋅ ⋅+ xℎ,j
︸ ︷︷ ︸

denoted byX

⎞

⎟
⎟
⎠

−

⎛

⎜
⎜
⎝
xa+2,j + ⋅ ⋅ ⋅+ xg−1,j
︸ ︷︷ ︸

denoted byY

⎞

⎟
⎟
⎠

Note that X and Y are the sums of n2 − c− 2 and n1 − c− 3 (leaving out the one to

be estimated) iid random variables respectively. Now since C is a constant, it can be

shown that,

P (Z = z) = P (X − Y = z)

=

(n1−c−3)m
∑

y=0

P (X − Y = z∣Y = y)P (Y = y)

=

(n1−c−3)m
∑

y=0

P (X − y = z)P (Y = y)

=

(n1−c−3)m
∑

y=0

P (X = y + z)P (Y = y)
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Using the posterior distribution value, we can write the expression for P (Z = z) as,

P (Z = z) =

(n1−c−3)m
∑

y=0

1

(m+ 1)(n2−c−2)

ry∑

j=0

(−1)j
(n2 − c− 2

j

)

×

((n2 − c− 2) + (ry − j)(m+ 1) + ty − 1

(ry − j)(m+ 1) + ty

)

×

1

(m+ 1)(n1−c−3)

qy∑

j=0

(−1)j
(n1 − c− 3

j

)

×

((n1 − c− 3) + (qy − j)(m + 1) + sy − 1

(qy − j)(m+ 1) + sy

)

where y ∈ {0, 1, . . . ,m(n1−c−3)}, ry = ⌊ y+z
m+1⌋, qy = ⌊ y

m+1⌋, ty = y+z−⌊ y+z
m+1⌋(m+

1), and sy = y − ⌊ y
m+1⌋(m+ 1).

4.4 Distributed Privacy Solution using Multi-objective Optimization

Privacy is a social concept. In a distributed data mining environment, different peers

have different notions and requirements of privacy. Many privacy preserving distributed

data mining algorithms can be modeled as an optimization problem with two conflict-

ing objectives: maximizing the privacy (or minimizing the threat to the data) while

minimizing the cost. Due to sharing of private information in the process of compu-

tation, privacy of the users’ data is threatened. Every user in the network has a prior

belief (assumption) about the threat to its data privacy. The threat that a peer’s data

is exposed to can be considered as a measure of the lack of privacy of its data. The

amount of resources available to a peer varies across the network and hence, the cost

(of computation and communication) a peer can bear to ensure its data privacy also

varies. In this paper we assume that each peer has the same privacy and cost model

parameterized by the size of the local ring n. Let ft(n) and fc(n) be two functions defin-

ing the threat to data privacy and the cost respectively. The constraints are different

for each peer since each node has its own threshold of privacy and cost defined by its

own requirements and resources. Also, the weights of the multi-objective optimization

problem may be different for different participants depending on the importance they

attach to threat and cost. For peer Pi, this multi-objective optimization problem can

be written as,

minimize F = wi

T
f(n) =

[
w1,ift(n) +w2,ifc(n)

]

subject to n
(ℓ)
i ≤ n ≤ n

(u)
i , (5)

w1,i + w2,i = 1

w1,i, w2,i ≥ 0

Note that, in a multi-party scenario, each party can define its own optimization func-

tions and solve them independently. But this might generate a different Pareto optimal

set for each party. The other extreme solution is for all nodes in the network to use the

same objective functions and constraints. Both of these solutions are undesirable — in

the first, parties do not guarantee a global solution while in the second, each party has

to abide by the same threat and cost requirements. In this paper, we guarantee a global

solution based on the personalized requirements of a user. To achieve this, we require
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that the threat ft(n) and the cost fc(n) functions be the same for each party. The

privacy model across each party may be different. For example, in the case of privacy

by anonymization, parties can choose either the k-anonymity [22], ℓ-diversity [18], or

the t-closeness [16] model since all of them gives rise to same ft(n). However, the choice

of �-differential privacy will be meaningless in this context, since the measurement of

threat ft(n) will be different for this privacy model.

There can be several approaches to generating an optimal privacy/cost solution

following this multi-objective optimization framework. We discuss two such approaches

here.

4.4.1 Average Solution

In a collaborative environment such as the Internet, a globally correct solution would

require one to centralize the constraints. Since this requires overall network synchro-

nization, thereby leading to low scalability, we take the alternate approach of using

an asynchronous sum computation technique as discussed in Section 3.2. By execut-

ing a separate average computation for both the upper and lower bounds
∑d

i=1 n
(ℓ)
i

and
∑d

i=1 n
(u)
i across all the peers, we can generate an average constraint. After this

computation, the multi objective optimization problem at each node can be written

as,

minimize F = wi

T
f(n) =

[
w1,ift(n) +w2,ifc(n)

]

subject to n(ℓ) ≤ n ≤ n(u), (6)

w1,i + w2,i = 1

w1,i, w2,i ≥ 0

where n(ℓ) and n(u) are the average lower and upper bound computed via distributed
averaging. Using Eq. 3, and a linear function for the cost fc(n) = w2gn, where g is a
constant, we can write the objective function as,

F = w1,i
1

(m + 1)(n−k−1)

r∑

q=0

(−1)q
(n− k − 1

q

)(n− k + t− 2 + (r − q)(m + 1)

(r − q)(m + 1) + t

)

+ w2,ign.

There does not exist a closed form derivative for this function, so we approximate ft(n)

by F
′

= 1
(m+1)(n−k−1) . Since F

′

< ft(n), and the objective is to minimize ft(n), this

approximation does not result any loss of accuracy. Note that both of these functions

are convex if n > k + 1. Therefore, using the results of Section 3.4, we can guarantee

that the entire Pareto optimal set of the multi-objective optimization problem can be

enumerated. The new objective function can be written as,

F = w1,i
1

(m+ 1)(n−k−1)
+ w2,ign.

We first compute the first order partial derivative with respect to n and set it to 0:

∂F

∂n
= w1,i

−(n− k − 1)

(m+ 1)(n−k−2)
+ w2,ig = 0

⇒
w1,i

w2,i
=

g(m+ 1)(n−k−2)

n− k − 1
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Solving for n from the above equation will gives the optimal value n∗. Now since each

peer has the average of the constraints, we can write:

(1) when n∗ = n(ℓ),

w1 =
g(m+ 1)(n

(ℓ)−k−2)

n(ℓ) − k − 1 + g(m+ 1)(n
(ℓ)−k−2)

w2 =
n(ℓ) − k − 1

n(ℓ) − k − 1 + g(m+ 1)(n
(ℓ)−k−2)

and (2) when n∗ = n(u),

w1 =
g(m+ 1)(n

(u)−k−2)

n(u) − k − 1 + g(m+ 1)(n
(u)−k−2)

w2 =
n(u) − k − 1

n(u) − k − 1 + g(m+ 1)(n
(u)−k−2)

.

Therefore the following ranges of w1 and w2 generate the entire Pareto optimal set:

g(m+ 1)(n
(ℓ)−k−2)

n(ℓ) − k − 1 + g(m+ 1)(n
(ℓ)−k−2)

< w1 <
g(m+ 1)(n

(u)−k−2)

n(u) − k − 1 + g(m+ 1)(n
(u)−k−2)

n(ℓ) − k − 1

n(ℓ) − k − 1 + g(m+ 1)(n
(ℓ)−k−2)

< w2 <
n(u) − k − 1

n(u) − k − 1 + g(m+ 1)(n
(u)−k−2)

.

This solution to the multi-objective function provides an average privacy/cost to all

the peers in the network. In the next section we develop another solution to the same

problem in which the maximum privacy of all the nodes in the network is satisfied.

4.4.2 Worst-case Solution

In this case we assume that each peer has maximum threat and cost constraints. The

goal for each peer is to find out the maximum value of the ring size n based on the

local constraints. The multi-objective optimization function can be written as:

max
n

[
w1,ift(n)− w2,ifc(n)

]

subject to the following constraints: fc < ci and ft < ti where ft(n) is given by

Equation 4 and fc(n) = w2,ign. g is the proportionality constant and ci and ti are

constants for every peer and denote the cost threshold and privacy threshold that each

peer is willing to withstand. Below is a solution to this optimization problem.

Lemma 1 Given the thresholds for threat ti and cost ci, the solution to the optimiza-

tion problem

max
n

[
w1,ift(n)− w2,ifc(n)

]

is given by

1 + k +
log(w1,i)− log(ti)

log(m+ 1)
≤ n

∗ ≤
ci

w2,ig
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Proof

ℎ(n) =

r∑

q=0

(−1)q

(

n− k − 1

q

)(

n+ t− k − 2 + (r − q)(m+ 1)

(r − q)(m+ 1) + t

)

Now, we know that for a ≥ b,
(
a
b

)
≥ 1. Since ℎ(n) is a probability distribution,

ℎ(n) > 0. Also, ℎ(n) being product of combinations must be integer. Therefore, ℎ(n) ≥

1. Using the constraint, ft ≤ ti we know that

w1,i

(m+ 1)(n−k−1)
× ℎ(n) ≤ ti

Using these results, we can write,

1 ≤ ℎ(n)

⇒
w1,i

(m+ 1)(n−k−1)
≤

w1,i

(m+ 1)(n−k−1)
× ℎ(n) ≤ ti

⇒
w1,i

(m+ 1)(n−k−1)
≤ ti

⇒ (m+ 1)(n−k−1) ≥
w1,i

ti

⇒ (n− k − 1) log(m+ 1) ≥ log(w1,i)− log(ti)

⇒ n ≥ 1 + k +
log(w1,i)− log(ti)

log(m+ 1)
(7)

Similarly, using the constraint on cost, we get

w2,ign ≤ ci

⇒ n ≤
ci

w2,ig
(8)

Using Equations 7 and 8, we get the optimal value of n∗ as,

1 + k +
log(w1,i)− log(ti)

log(m+ 1)
≤ n

∗
i ≤

ci
w2,ig

(9)

⊓⊔

Now, depending on its personal preference, each peer can choose the number of

nodes (n∗
i ) for computing the sum in a privacy preserving fashion, even in the presence

of colluding parties.

4.5 Distributed Averaging for Asymmetric Topologies

In this section we present the iterative distributed algorithm for computing the global

sum of a set of data vectors. Our solution is inspired by the distributed averaging

algorithms proposed in [21] and [20].

The distributed averaging technique that we are exploring asymptotically converges

to the global average. It can easily be used to compute the sum if each peer multiplies its

data by the total number of peers in the network. Therefore, for the given scenario, each

peer Pi contains a real number d×xij where d is the size of the entire network and the
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objective is to compute �j = 1
d

∑d
i=1 d× xij i.e. the sum of the numbers. There exist

several techniques in the literature to estimate the network size. Examples include the

capture-recapture method proposed by Mane et al. [19] and Bawa et al. [1]. Moreover

at any time, the number of nodes in the network can be estimated efficiently using

heartbeat mechanisms or retransmissions. From now on we assume that each entry

xij of the data has been multiplied by the total number of peers so that distributed

averaging gives the global sum and not the global average.

Let xij denote the j-th data of peer Pi. z
(t)
j =

[

z
(t)
1j z

(t)
2j . . . z

(t)
dj

]T

denotes the

estimate of the global sum �j = 1
d

∑d
i=1 xij by d peers at the t-th iteration. The

initialization is z
(0)
j =

[
x1jx2j . . . xdj

]T
. The proposed algorithm works as follows: at

any iteration, each peer Pi gets the estimate from all of its neighbors (the z
(t−1)
ij ’s

for i ∈ �i,1 ) and then generates the estimate for round t (i.e. z
(t)
ij ) based on those

received estimates and its local data. This algorithm is asynchronous and local since

each node gets update from its neighbors only. The update rule used is first order:

z
(t)
j = Wz

(t−1)
j . Any choice of W guarantees asymptotic convergence if W satisfies

the following properties: (i) W.1 = WT .1 = 1, where 1 denotes a d × 1 vector of all

ones and (ii) the eigenvalues of W, �i when arranged in descending order are such that

�1 = 1 and ∣�i∣ < 1. Setting W = I+ �� satisfies these conditions; where � is a small

number which determines the stability of the solution and the convergence rate, and I

denotes the identity matrix.

From Section 4.2, it is clear that depending on the solution to the optimization

problem, each peer can have a different value of n∗
i , i.e. number of nodes it wants

to communicate with. This means that if peer Pi chooses peer Pj to be part of its

sum computation, it is not necessary that Pj would choose Pi to be part of its sum

computation ring. This implies that even if Pj is a neighbor of Pi, Pi need not be a

neighbor of Pi (in terms of adjacency matrix). This implies that the resulting topology

matrix is asymmetric. Note that if we use W = I + ��, the resulting W does not

satisfy the requirements stated above. Therefore, asymmetric topology matrices cannot

be directly used for generating the update matrix W. Now, an asymmetric topology

matrix can be converted to a symmetric one as follows: �
′′

= �+�T , where �T is the

transpose of �. Since � is a square matrix, �
′′

, by definition, is a symmetric matrix.

In order for W to satisfy the properties stated above, it can be generated using the

transformation W = U+ ��
′′

where each entry of Ud×d is such that

uii =

{

1− �
∑d

j=1 �
′′

ij

0 otherwise

In Section 5, we analyze the convergence and correctness of this proposed distributed

averaging algorithm. Based on the above transformation, every peer updates its esti-

mate of�j using an update rule that depends on the ring it forms. The following lemma

(Lemma 41) states the update rule for our proposed distributed averaging problem.

Lemma 41 For the modified distributed averaging technique, the update rule for any

peer can be written as

z
(t)
ij =

{
1− 2�

∣
∣�i,1

∣
∣− �(n∗

i −
∣
∣�i,1

∣
∣)
}
z
(t−1)
ij + 2�

∑

q∈�i,1

z
(t−1)
qj + �

n∗

i −∣�i,1∣∑

q=1

z
(t−1)
qj

.
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Proof At the t-th time step, the update for the next time instance t+1 can be written

as:

z
(t)
j = Wz

(t−1)
j =

[

U+ ��
′′

]

z
(t−1)
j

Since 

′′

is symmetric, it will have the following structure:

�
′′

=

⎛

⎜
⎝

−2
∣
∣�1,1

∣
∣ 2 . . . 2

2 −2
∣
∣�2,1

∣
∣ 1 2

...

⎞

⎟
⎠

We can write:

U =

⎛

⎜
⎝

1 0 . . . 0

0 1− � 0 0
...

⎞

⎟
⎠

Thus, W matrix can be written as:

W =

⎛

⎜
⎝

1− 2�
∣
∣�1,1

∣
∣ 2� . . . 2�

0 1− �− 2�
∣
∣�2,1

∣
∣ � 2�

...

⎞

⎟
⎠

Generalizing the above expression we can write the update rule for each peer as:

z
(t)
ij =

{
1− 2�

∣
∣�i,1

∣
∣− �(n∗

i −
∣
∣�i,1

∣
∣)
}
z
(t−1)
ij + 2�

∑

q∈�i,1

z
(t−1)
qj + �

n∗

i −∣�i,1∣∑

q=1

z
(t−1)
qj

⊓⊔

4.6 Overall Algorithm

In this section we present the overall algorithm. We have two different algorithms:

namely, the local ring formation algorithm (L-Ring) which is executed only once,

offline. The second algorithm is the iterative local privacy preserving sum computation

algorithm (L-PPSC).

4.6.1 Local Ring Formation Algorithm (L-Ring)

For distributed averaging, peer Pi updates its current state based on the information

it gets from its n∗
i neighbors. In order to preserve privacy, Pi does not get the raw data

from its neighbors; rather a ring is formed among n∗
i neighbors and sum computation is

performed in that ring. We call this ring the local ring since each ring is only formed in a

peer’s neighborhood. This has the advantage that (1) the algorithm is only synchronous

in a peer’s local neighborhood and (2) the communication is bounded due to local peer

interactions.

L-Ring takes as input the predefined values of cost and threat threshold, i.e. ci and

ti. When the algorithm starts, each peer solves a local optimization problem based on
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local constraints ci and ti to choose a value of n∗
i , the size of the ring for sum computa-

tion. It then launches n∗
i random walks in order to select n∗

i nodes uniformly from the

network to participate in Pi’s ring. The random walk we have used is the Metropolis-

Hastings random walk which gives uniform samples even for skewed networks. We do

not present the details here, interested readers are referred to [6]. Whenever one ran-

dom walk ends at Pj , it first checks if n∗
i < n∗

j . If this is true, it poses a potential

privacy breach for Pj . Hence Pj may choose not to participate in Pi’s call by sending

a NAC message along with its n∗
j . Otherwise Pj sends an ACK message to Pi. If Pi

has received any NAC message, it computes max(n∗
j ) and checks if it violates its cost

constraint. If the constraint is violated, Pi chooses a different peer Pq by launching

a different random walk. Otherwise, it then sends out all of the max(n∗
j ) invitations

again which satisfies the privacy constraints of all the participants. The pseudocode is

presented in Alg. 1.

Algorithm 1 L-Ring

Input of peer Pi:
Threat ti and cost ci that peer Pi is willing to tolerate

Initialization:
Find the optimal value of n∗

i using ti and ci.
If Pi initializes a ring:

Contact the neighbors as dictated by n∗

i by launching n∗

i parallel random walks
When a random walk ends in node Pj:

Fetch the value of n∗

i as sent by Pi

IF (n∗

i < n∗

j ) Send (NAC,n∗

j ) to Pi ELSE Send ACK to Pi

ENDIF
On receiving NAC, n∗

j from Pj:

IF replies received from everyone
IF n∗

j violates cost constraint

Contact different neighbor Pq

ELSE max = argmaxj{n∗

j }; Set n∗

i = max

Send invitation I(n∗

i ) to Pj with n∗

i value
ENDIF

ENDIF

Once the rings are formed offline, the local sum computations start.

4.6.2 Local Privacy Preserving Sum Computation Algorithm (L-PPSC)

In the local privacy preserving distributed sum computation algorithm (L-PPSC),

initially all peers in the network have a data vector of size p which represents the

number of clicks for each of the p advertisements under consideration. The j-th entry

of this vector corresponds to the number of clicks of advertisementAj . Below we discuss

the algorithm with respect to only one sum computation (a scalar quantity). In practice,

the secure sum will be computed over a vector of size p, the number of advertisements.

Assuming that each peer has agreed on a ring in its local neighborhood, each initiator

peer starts a round of sum computation based on the secure sum computation. The

message sent by the initiator node for any sum computation contains: (1) the ID of the

initiator, (2) the data which needs to be added for the local sum, (3) the size of the

local ring that it has constructed for the sum, and (4) which peer needs to multiply

the data by 2 (according to Lemma 41).
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This algorithm differs from traditional secure sum computation protocol in the

update rule and the enforcement of the ring topology. In the traditional version, the

initiator sends its data masked by a random number while all others in the ring add

their numbers as is and pass the sum on. Here, however, the initiator specifies in its

message the parameters of the update rule: the amount of scaling that some of the

peers might need to do to their data before adding them to the received sum and

passing them on. This is essential to guarantee convergence of the algorithm to the

correct result, following Lemma 41.

These steps are executed by every peer in the system. The algorithm is locally

synchronous in that, during every round of sum computation, the initiator has to wait

for all peers in its rings to complete their previous round. This is essential since this

algorithm is based on the working of first order LTI systems where the update in

the t-th round uses data from the (t − 1)-st round. Algorithm 2 lists the steps in a

pseudo-code format.

Algorithm 2 Local Privacy Pres. Sum Comp. (L-PPSC)

Input of peer Pi:
Convergence rate �, local data xi, round, set of n∗

i -local neighbors arranged in a ring or
{
ringi,n∗

}
, random number R, and the max range of the sum N

Initialization:
Initialize

{
ringi,n∗

}
, �, xi; Set round← 1

Set j ← first entry of
{
ringi,n∗

}

{
ringi,n∗

}
←

{
ringi,n∗

}
∖ j

Send
(
R + xi,

{
ringi,n∗

}
, round

)
to j

On receiving a message (data, {ring}, rnd) from Pj:
IF {ring} = ∅

Update z
(round)
i using (data −R) and Lemma 41;

round← round+ 1;
Set j ← first entry of

{
ringi,n∗

}

{
ringi,n∗

}
←

{
ringi,n∗

}
∖ j

Send
(

z
(round)
i ,

{
ringi,n∗

}
round

)

to j

Check if any node is waiting on this peer
Send data to all such nodes

ELSE IF round < rnd Wait
ELSE

Set y = (data + zrnd
i )modN ; Set j ← first entry of {ring}

{ring} ← {ring} ∖ j; Send (y, ring, rnd) to Pj

END

Using L-PPSC algorithm the peers can compute the sum of the number of clicks

for each advertisement in a privacy preserving (not secure) fashion. Once that is done,

ranking them by popularity becomes a sorting problem which each peer can solve

independently.

4.7 Illustration

In this section we illustrate the working of the L-Ring and the L-PPSC algorithm.

Figure 1 shows a small arbitrary peer-to-peer network. The next sequence shows how
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Fig. 1 Figure showing how local rings are formed based on L-Ring protocol. It shows four
rings with the initiators highlighted. Note that a given node (e.g. node 12) is part of multiple
rings.

the rings are formed. The peers shown in bold are the initiator nodes for the respec-

tive rings. For example, for the two smaller rings, the initiators are peers P1 and P2

respectively. For the two larger rings, the initiators are peers P20 and P23. To illus-

trate, assume that P20’s privacy value is high (n∗
20 = 7). Hence there are seven other

peers in P20’s ring. Now, if P23 wants to include P20 in its ring, it must satisfy the

privacy requirements of P20 as well. As a result, there are seven other peers in the

ring initiated by P23 (although it is possible that initially n∗
23 < 7). For peer P20,

�20,1 = {P4, P12, P21, P22, P23} and so
∣
∣�20,1

∣
∣ = 5. Since n∗

20 = 7, n∗
20 −

∣
∣�20,1

∣
∣ = 2.

Using Lemma 41, the update rule for peer P20 can be written as:

z
(t)
20j = {1− 2� ∣�20,1∣ − �(n∗

20 − ∣�20,1∣)} z
(t−1)
20j + 2�

∑

ℓ∈�20,1

z
(t−1)
ℓj

+ �

n∗

20−∣�20,1∣
∑

ℓ=1

z
(t−1)
ℓj

= {1− 2�× 5− �(7 − 5)}z
(t−1)
20j + 2�

(

z
(t−1)
12j + z

(t−1)
23j + z

(t−1)
22j + z

(t−1)
21j + z

(t−1)
4j

)

+�
(

z
(t−1)
3j + z

(t−1)
18j

)

= (1− 12�) z
(t−1)
20j + 2�

(

z
(t−1)
12j + z

(t−1)
23j + z

(t−1)
22j + z

(t−1)
21j + z

(t−1)
4j

)

+ �
(

z
(t−1)
3j + z

(t−1)
18j

)

The coefficients of the update rule are passed on by P20 at the beginning of any sum

computation.

5 Algorithm Analysis

In this section we analyze the properties the L-Ring and L-PPSC algorithms.

5.1 L-Ring Running Time

The running time of L-Ring algorithm is O(max(n∗
i , n

∗
j )), where n∗

i is the optimal

value for node Pi and n∗
j is the value required by node Pj where Pi and Pj belong to

the same ring for the sum computation. This can be proved by considering these two

cases:

1. For all Pj ∈ �i,1, if n∗
i > n∗

j , then the running time is upper bounded by the

maximum time required by Pi to contact all its neighbors i.e. O(n∗
i ).
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2. Without loss of generality, assume that

� = {P1, . . . , PSi
} ⊆ �i,1

be the set of nodes whose n∗
j , for all Pj ∈ � is greater than n∗

i i.e. ∀Pj ∈ �,n∗
j ≥

n∗
i . These are the number of NAC messages received by Pi from all Pj ∈ �i,1.

Computing the maximum of all entries in � takes O(∣�∣). In order to accommodate

all the nodes in its neighborhood, Pi increases its ring size to maxPj∈�{n∗
j }. In

this case, computation on this ring takes time O(n∗
j ).

Therefore the overall running time is O(max(n∗
i , n

∗
j )).

5.2 L-PPSC Privacy

Lemma 51 For any Pi, the �1i-to-�2i privacy is satisfied in the L-PPSC protocol.

Proof For any node Pi, there are two rings in which it participates in the computation.

Pi’s initiated ring must satisfy the privacy model since it is a solution to the optimiza-

tion problem with the parameters of the model as the constraints. Similarly, for any

invitation that Pi receives, it only joins if n∗
j > n∗

i which also guarantees conformity

to the �1i-to-�2i model for Pi. Therefore, using the privacy model defined in 2, the

L-PPSC protocol is distributed �1-to-�2 privacy preserving. ⊓⊔

In the L-PPSC algorithm, it is assumed that each ring has fewer than (n∗
i − 2)

bad nodes. If this condition is violated, then we know that privacy breach will surely

occur. Next we derive an expression for the probability of this happening and show

that it is very low.

Lemma 52 Let � be the probability of a node being good. Then the probability that in

a ring of size n∗
i , there are at most (n∗

i − 2) bad nodes is given by 1− (1− �)n
∗

i −1.

Proof Let " count the number of bad nodes. Then,

Prob(" ≤ n
∗
i − 2) = 1− Prob(" = n

∗
i − 1)− Prob(" = n

∗
i )

= 1− �(1− �)n
∗

i −1 − (1− �)n
∗

i

= 1− (1− �)n
∗

i −1

⊓⊔

The above expression shows that the probability of selecting less than n∗
i − 2 bad

nodes increases with increase in the (1) probability of a good node �, and (2) ring size

n∗
i . Figure 2 (top) shows how the probability varies as a function of � and n∗

i . As shown,

the probability increases with increasing �. This is intuitive, since with increasing �,

there is a higher chance that each contacted node is good. Also for a fixed �, as n∗
i , the

ring size increases and the probability of contacting less than n∗
i − 2 bad nodes goes to

1 faster.

Now consider another scenario in which there is the possibility of a privacy breach.

Consider two intersecting rings which contains only one honest node. Now the proba-

bility of this occurring is given by �(1−�)n
∗

i +n∗

j−1, where n∗
i and n∗

j are the sizes of the

two rings. Figure 2 (bottom) demonstrates the variation of this expression with �, n∗
i

and n∗
j . As seen in the figure, the probability is very low and decreases with increasing

size of the ring. Also, for a fixed ring size, as � increases, the probability decreases.
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Fig. 2 The top figure shows the probability that less than n∗

i − 2 nodes are bad in a ring of

size n∗

i . The bottom figure demonstrates the variation of �(1− �)n
∗

i +n∗

j−1 vs. �, n∗

i and n∗

j .

5.3 Correctness and Convergence

L-PPSC protocol is based on the distributed averaging protocol proposed by Scherber

and Papadopoulos [21]. The correctness proof of L-PPSC can be derived based on

two observations analogous to [21]: (1) W.1 = WT .1 = 1 and (2) the eigenvalues of

W, �i when arranged in descending order are such that �1 = 1 and ∣�i∣ < 1. It is easy

to prove these two statements based on the proof given in [21].

Following similar arguments in [21], we can show that the error (between the true

average and the estimate at each peer) tends to zero exponentially fast as the number

of iterations tend to infinity.

5.4 Locality

There are several definitions of locality proposed in the literature. The locality concept

proposed by Das et al. [6] is characterized by two quantities — (1) � – which is the

number of neighbors a peer contacts in order to find answer to a query and (2) 
 –

which is the total size of the response which a peer receives as the answer to all the

queries executed throughout the lifetime of the algorithm.

In case of L-PPSC, the choice of � is guided by the optimal solution of the

objective function defined earlier. In the worst case, a peer may choose � to be equal



21

to the size of the entire network. Therefore, � = O(d) in the worst case. Next we derive

a value of 
 based on the error induced and the convergence rate.

Lemma 53 Let � be the error between the true sum (�) and the node estimates

(z
(t)
j ) as induced by the L-PPSC algorithm after t rounds of computation. Then

t ≥
log(�)−log(d)
log(�2

max)
, where �i’s are the eigenvalues of the topology matrix �

′′

.

Proof From [21], we know that the error at the t-th step is bounded by d�2tmax i.e.

∣
∣
∣

∣
∣
∣z

(t)
j − 1�j

∣
∣
∣

∣
∣
∣

2
=
∑d

j=2 �
2t
i

∣
∣
∣z

(0)
j

∣
∣
∣

2
(assuming

∣
∣
∣z

(0)
j

∣
∣
∣

2
= 1)

Now let the error be bounded by �. Thus,

d�
2t
max < � ⇒ t ≥

log(�)− log(d)

log(�2max)

⊓⊔

Theorem 1 The total size of the messages exchanged (
) by any peer is upper bounded

by
log(�)− log(d)

log(�2max)

[

log(z
(t)
max) + n

∗
i

]

,

where z
(t)
max is the maximum of data values at any peer in a ring at round t.

Proof At round t, the number of bits necessary to store the maximum of all the z
(t)
i -s

is log(z
(t)
max). While performing the secure sum at any round ℓ, peer Pi with �i,1 =

{Pi−1, Pi+1} does the following computation: (z
(ℓ)
i−1 + z

(ℓ)
i ) mod N , where N is the

parameter of the sum computation protocol. Hence for every peer, the number of

bits required to represent the new sum will increase by 1 at most. Therefore, the

total number of bits required for each message is upper bounded by
[

log(z
(ℓ)
max) + n∗

i

]

.

In each round of the sum computation, a peer exchanges only one message (due to

ring topology). Hence, for t rounds, we get the total number of bits exchanged as

t
[

log(z
(t)
max) + n∗

i

]

. Using Lemma 53,


 ≤
log(�)− log(d)

log(�2max)

[

log(z
(t)
max) + n

∗
i

]

.

⊓⊔

Lemma 54 L-PPSC algorithm is
(

O(d),
log(�)−log(d)
log(�2

max)

[

log(z
(t)
max) + n∗

i

])

-local.

Proof As stated, for any node Pi the maximum size of ring is equal to the size of the

network. So according to the definition of locality, � = O(d). Also as shown in Theorem

1,


 ≤
log(�)− log(d)

log(�2max)

[

log(z
(t)
max) + n

∗
i

]

. Therefore, L-PPSC algorithm is
(

O(d),
log(�)−log(d)
log(�2

max)

[

log(z
(t)
max) + n∗

i

])

-local. ⊓⊔
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6 Experimental Results

To validate the performance of the proposed L-PPSC algorithm, we have conducted

experiments on a simulated network of peers. The topology is generated using BRITE3.

We have used the Barabasi Albert (BA) model in BRITE since it is often considered a

reasonable model for the Internet. In all our experiments, we have used the following

default values of the system and algorithm parameters: size of the network (d) =

1000, the maximum range of the sum for the secure computation (N) = xi × d and

� = maxi
1

∣�ii∣
.

6.1 Experiments on Synthetic Dataset

In this section we first discuss about the dataset and then describe the convergence

and scalability results.

As already noted, each peer agrees on a predefined set of advertisements. We assume

that there are 5 advertisements A, B, C, D and E with arbitrary counts. The goal is

to find the sum of all the clicks on advertisements over all the peers. A data set was

generated consisting of tuples from different random distributions. Each advertisement

is generated from a fixed uniform distribution (with a fixed range). Thus, there are as

many different distributions as the number of advertisements. This centralized data set

was then split among a fixed number of neighbors such that each peer has a fraction of

the count of all the advertisements (0 if none exists). Note that this requires a separate

privacy-preserving sum algorithm to be invoked for each advertisement/category. For

the rest of this section we will present our results with respect to one sum computation

only.

As shown in Figure 3 (top), the algorithm converges to the correct sum with respect

to a centralized algorithm, where a centralized algorithm is one which has access to all

the data of all the peers. In this figure we have plotted the estimate of all the peers at

each time instance i.e. the z
(t)
j values for each t. To start with, each peer is assigned

a data value which corresponds to the number of clicks of a particular advertisement.

Hence, initially the estimate of each peer is close to its local data. As time progresses,

the peers slowly converge to the correct sum. Figure 3 (bottom) demonstrates the

number of messages per peer.

In Figure 4 (top), we show the correctness result of the L-PPSC algorithm (in

triangle) when the number of peers vary from 100 to 2000. Also shown in the figure are

the results computed by a centralized algorithm on the same data (using the circles).

The graph shows that our algorithm converges to the correct result for varying sizes of

the network. The cost of the algorithm with increasing network size is demonstrated

in Figure 4 (bottom). It can be noted that the number of messages per peer is almost

a constant. Hence, our algorithm is highly scalable.

6.2 Results on Real Dataset

Finally in this section we describe the results of the experiments with a real data

set. Volunteers at UMBC were asked to search for the following five categories in the

3 http://www.cs.bu.edu/brite/
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Fig. 3 Convergence to global sum and communication cost per peer.

popular search engines: (1) digital camera, (2) auto insurance, (3) cars, (3) laptop, and

(4) gps systems. They were also asked to store the web urls which they found as the

closest match for each of these categories. In the experimental setup, we list all these

links in a single file (for all categories) and for each link, count the number of times it

has been reported by the volunteer. In order to simulate the P2P setup, we then divide

this data file randomly among 100 peers, such that each peer contains only fraction of

the data — either links or count for each link. If a peer does not have a link, it may

add a value of zero in order to participate in the L-PPSC protocol. In total there

were 1000 links. Once the rings were formed using the L-Ring protocol, we ran 1000

sum computations in parallel. Figure 5 shows the results of the L-PPSC protocol on

this data set. The x-axis in the quality figure (top) refers to the 1000 links grouped

per category. The y-axis shows the total count per link for the L-PPSC protocol

(circles). Also shown in the figure are the true counts per link (diamonds) which we

call the centralized execution scenario. As easily verified, the counts of the links in

the distributed experiments is very close to those found in the centralized situation.

Similarly, the cost figure (bottom) shows the number of messages exchanged per peer

per unit of time which varies between 0.5 and 1. A value of x at a particular time

instance means that only x% of all the peers send message at that time instance.
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7 Related Work

Data mining in P2P networks is at its nascency. In this section we present some previous

work related to this area of research.

7.1 P2P Data Mining

Distributed data mining (DDM) deals with the problem of data analysis in environ-

ments with distributed data, computing nodes, and users. Kargupta [14][15] presents

a detailed overview of this topic. A more recent research topic is data mining in large

P2P networks. This paradigm of computing poses several challenges for which the

algorithms need to be asynchronous, communication-efficient and scalable. Datta et

al. [7] presents an overview of this topic. Examples of scalable distributed P2P data

mining algorithms include the association rule mining algorithm [26], k-Means cluster-

ing [8], top-l inner product identification [6], decision tree induction [3], expectation

maximization [2] and more.
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7.2 Privacy in P2P Network

P2P networks have recently emerged as huge information systems for collaborative

computation such as file sharing, distributed computing, real-time telephone and tv,

and academic applications. However, free flow of information is frequently prohibited

by legal obligations or by commercial and personal concerns. Privacy preserving data

mining in P2P networks aims to solve this problem by allowing users to share their data

without revealing the sensitive information. In a large scale cooperative computation

environment, each node has a private input xi. They wish to jointly compute the output

f(x1, x2, . . . , xn) of some common function f . At the end of the data mining process,

nothing but the output should be revealed. PPDM solves this problem by allowing

useful data patterns to be extracted without revealing sensitive data e.g. the SMC

protocols [5][27]. Gilburd et al. presents a privacy model called k-TTP for large-scale

distributed environments [12]. Kargupta et al. [13] presents a game theoretic solution

for dealing with the collusion problem in secure sum computation in a large distributed

environment. Teng and Du [23] present a hybrid technique for PPDM. They combine

randomization and SMC protocols to achieve better accuracy and lower running times

than these algorithms acting independently. Most of these techniques suffer from one

major drawback — scalability — which hinders their deployment in large P2P net-

works. The technique proposed in this paper is highly scalable and asynchronous, thus

enabling privacy preserving data mining in P2P networks.
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8 Conclusion

In this paper we have presented a local privacy-preserving peer-to-peer data aggre-

gation algorithm for doing data mining in a large P2P setting. Due to the constant

communication complexity and locally synchronous nature of the algorithm, it is highly

scalable. We have framed privacy and cost as a multi-objective optimization problem

local to each peer and shown that our proposed algorithm is privacy-preserving. To

the best of the authors’ knowledge, this is one of the first solutions which blends in

the concept of local asynchronous distributed averaging with secure sum protocol to

develop a scalable privacy preserving sum computation algorithm tailored to accom-

modate every participant’s privacy and cost constraints. This algorithm is, therefore,

applicable for large scale heterogeneous distributed systems such as the Internet and

has various applications that require privacy preserving data mining.

As future work, we would like to incorporate the situation in which each peer can

choose its own privacy model. Currently we only allow peers to select from the same

type of privacy model such as k-anonymity, ℓ-diversity or t-closeness model. It does not

allow a peer to choose a different privacy model such as �-differential privacy since the

nature of the optimization problem changes with the choice of the model. We plan to

develop a distributed multi-objective optimization solution for a class of optimization

problems so that we can extend this application to a wide range of existing privacy

models and other data mining applications.
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