
Semantic Forward Propagation
for Symbolic Regression

Marcin Szubert1, Anuradha Kodali2,3, Sangram Ganguly3,4, Kamalika Das2,3,
and Josh C. Bongard1

1 University of Vermont, Burlington VT 05405, USA
Marcin.Szubert@uvm.edu

2 University of California, Santa Cruz CA 95064, USA
3 NASA Ames Research Center, Moffett Field CA 94035, USA

4 Bay Area Environmental Research Institute, Petaluma CA 94952, USA

Abstract. In recent years, a number of methods have been proposed
that attempt to improve the performance of genetic programming by ex-
ploiting information about program semantics. One of the most impor-
tant developments in this area is semantic backpropagation. The key idea
of this method is to decompose a program into two parts — a subprogram
and a context — and calculate the desired semantics of the subprogram
that would make the entire program correct, assuming that the context
remains unchanged. In this paper we introduce Forward Propagation
Mutation, a novel operator that relies on the opposite assumption — in-
stead of preserving the context, it retains the subprogram and attempts
to place it in the semantically right context. We empirically compare
the performance of semantic backpropagation and forward propagation
operators on a set of symbolic regression benchmarks. The experimental
results demonstrate that semantic forward propagation produces smaller
programs that achieve significantly higher generalization performance.

Keywords: genetic programming, program semantics, semantic back-
propagation, problem decomposition, symbolic regression

1 Introduction

Standard tree-based genetic programming (GP) searches the space of programs
using traditional operators of subtree-swapping crossover and subtree-replacing
mutation [4]. These operators are designed to be generic and produce syntacti-
cally correct offspring regardless of the problem domain. However, their actual
effects on the behavior of the program, and thus its fitness, are generally hard to
predict. For this reason, many alternative search operators have been recently
proposed that take into account the influence of syntactic modifications on pro-
gram semantics [1,11,10,13].

Semantic backpropagation [12,15] is arguably one of the most powerful tech-
niques employed by such semantic-aware GP operators. The two operators based
on semantic backpropagation — Random Desired Operator (RDO) and Approx-
imately Geometric Crossover (AGX) have proved to be successful on a number

of symbolic regression and boolean program synthesis problems [11,12]. Both op-
erators rely on semantic decomposition of an existing program into two parts —
a subprogram and its context. Given a subprogram, both operators attempt to
calculate its desired semantics, i.e., the values that it should return to make the
entire program produce the desired output, assuming that the context remains
unchanged. The desired semantics can be then used to find a replacement for
the subprogram that improves the overall program behavior.

Despite their superior performance when compared to other GP search oper-
ators [15,12,11], backpropagation-based RDO and AGX face a few major chal-
lenges that can limit their practical applicability. First of all, they are much
more computationally expensive than traditional syntactic operators. Indeed,
in order to calculate desired semantics, the target program output needs to be
backpropagated by traversing the tree and inverting the execution of particular
instructions. The computational cost of this operation is similar to the cost of
a single fitness evaluation (which is typically the most expensive component of
GP). Moreover, using desired semantics to find a subprogram replacement usu-
ally requires even more computational effort. Finally, the results reported so far
demonstrate that RDO and AGX tend to produce relatively large programs that
are difficult to interpret and may suffer from overfitting.

In this paper, we introduce Forward Propagation Mutation (FPM), a novel
semantic-aware operator that also relies on program decomposition but works
in the opposite manner to semantic backpropagation. Instead of preserving the
context and replacing the subprogram, forward propagation retains the subpro-
gram and attempts to place it in the semantically right context. In contrast to
semantic backpropagation, the FPM operator does not require an additional tree
traversal and thus it incurs less computational overhead. Moreover, the experi-
mental results obtained on a set of univariate and bivariate symbolic regression
problems demonstrate that it achieves competitive performance in terms of the
training error while producing much smaller programs that usually perform sig-
nificantly better on the unseen test cases.

2 Semantic Genetic Programming

In order to incorporate semantic-awareness into genetic programming, most of
the recently proposed methods adopt a common definition of program semantics,
known as sampling semantics [13], which is identified with the vector of outputs
produced by a program for a sample of possible inputs. In supervised learning
problems considered here, where n input-output pairs are given as a training set
T = {(x1, y1), . . . , (xn, yn)}, semantics of a program p is equal to vector s(p) =
[p(x1), . . . , p(xn)], where p(x) is a result obtained by running program p on
input x. Consequently, each program p corresponds to a point in n-dimensional
semantic space and a metric d can be adopted to measure semantic distance
between two programs. Furthermore, fitness of a program p can be calculated as
a distance between its semantics s(p) and the target semantics t = [y1, . . . , yn]
defined by the training set, i.e., f(p) = d(s(p), t).

The information about program semantics and the structure of the semantic
space endowed by a metric-based fitness function can be exploited in many
ways to facilitate the search process carried out by GP. Apart from numerous
semantic search operators [1,13,10,11], the knowledge about semantics can be
used to maintain population diversity [3], to initialize the population [2] or to
drive the selection process [7]. All such semantic-aware methods are collectively
captured by the umbrella term of semantic genetic programming [14]. Recently, a
paradigm of behavioral program synthesis [5] has been proposed, which extends
semantic GP by using information not only about final program results but also
about behavioral characteristics of program execution.

3 Semantic Backpropagation

One of the most important methods in semantic GP is semantic backpropagation
[12]. The key concept behind this method is program decomposition: a program
p is treated as a function (i.e., it is deterministic and has no side effects) that can
be decomposed into two constituent functions (subprograms) p1 and p2 such that
p(x) = p2(p1(x),x)). In particular, if a program is represented as a tree, such
decomposition can be made at each node — the inner function p1 is expressed
by the subtree rooted at the given node, while the outer function p2 corresponds
to the rest of the tree (also termed context [9], see left part of Fig. 1).

Semantic backpropagation assumes that the desired program output p∗(x)
can be produced by retaining the outer function and replacing just the inner one
by another subprogram ps, i.e., p∗(x) = p2(ps(x),x)). Starting from the desired
program output p∗(x), the backpropagation algorithm heuristically inverts the
program execution to calculate the desired semantics of the subprogram ps, i.e.,
the values it should produce to make the entire program correct. This idea has
been employed to design two operators, AGX and RDO, which differ with respect
to what they use as the desired program output p∗(x). In this study, we focus on
RDO, a mutation operator that assumes that target semantics t = [y1, . . . , yn]
is given a priori and thus values p∗(xi) = yi can be used as an input for the
backpropagation algorithm.

An example of a mutation performed by RDO is illustrated in Fig. 1 and
proceeds as follows. First, a random mutation node is selected in the parent
program (denoted as a circle with a double border in Fig. 1). The subtree p1
rooted at this node is removed from the tree and the backpropagation algorithm
is applied to calculate the desired semantics of the replacement ps that would
make the offspring program return desired values. The algorithm starts from
the root of the tree, where desired semantics is given by t, and follows the path
to the removed subtree. For each node it calculates the desired semantics of its
child by invoking the Invert function (a detailed description of this function
and the RDO operator in general can be found in [12]).

For instance, let us assume that a training set contains just two cases with
inputs x = [1, 2] and desired outputs t = [0, 2]. As shown in Fig. 1, in the
first step the algorithm finds out that to produce desired semantics at the root,

x2

⇥
+

x x

⇥

subtree

1 +

x x

⇥
1

[1, 2] [1, 2]

[1, 4] [1, 1]

t = [0, 2]

[1, 3]

[0, -1]

Inv
er

t

Inv
er

t

p1

context
p2

context
p2

p⇤l library
procedure

Fig. 1. A mutation performed by Random Desired Operator using semantic backprop-
agation. Desired semantics are denoted in italics.

knowing that outputs of its right child are equal to [1, 1], the desired semantics of
the left child must be equal to [1, 3]. This result is used in the subsequent step to
calculate desired semantics for the next node. Finally, given desired semantics at
the mutation node, the RDO operator attempts to replace the removed subtree
with a subprogram that would produce such values. To this end, it employs a
precomputed library of programs (procedures) that allows to efficiently retrieve
a program p∗l that has the smallest semantic distance to the desired semantics.
Additionally, RDO also checks if a single constant real value would provide a
better match to the desired semantics than p∗l .

Importantly, in the process of semantic backpropagation, inverting certain
functions can be ambiguous (if the function is not injective) or impossible (if
the function is not surjective). As a result, the desired semantics may contain
several values for each training case or special inconsistent elements. The library
must be able to handle such queries efficiently [12,15].

4 Semantic Forward Propagation

Inspired by semantic backpropagation and RDO we propose an alternative muta-
tion operator based on the complementary idea, which we term semantic forward
propagation. Similarly to RDO, Forward Propagation Mutation (FPM) relies on
decomposability of a program p into a subtree p1 and a context p2. However,
while RDO assumes that a context can be preserved and attempts to replace
the subtree, FPM makes the opposite assumption preserving the subtree and
building a matching context for it.

The FPM operator starts by choosing a random mutation node in the parent
program. The subtree p1 rooted at this node is extracted from the tree and used
as a starting point for creating an offspring. In order to build a new context for
this subtree, we assume a fixed structure of the context pc containing 4 new nodes

x2

⇥

u

b

⇥

c
real

constant

desired
semantics

x2

⇥
+

x x

⇥
1

Invert

[2, 2] [1, 2]

subtree
semantics
s = [2, 4]

d = [d1, d2]

subtree
p1

context
p2

p1

p⇤l library
procedure

Fig. 2. An operation performed by Forward Propagation Mutation.

and a matching library procedure (see Fig. 2). We apply an exhaustive search
to identify a context p∗c of the assumed structure, that minimizes fitness of the
entire offspring program p∗c = arg minpc

f(pc ◦ p1). To this end, we consider all
pairwise combinations of the available unary (e.g., {sin, cos, log, exp}) and binary
functions (e.g., {×,+,−, /}) that could be placed directly above the selected
subtree, as nodes u and b, respectively (cf. Fig. 2). Importantly, we extend the
unary function set with the identity function id(x) = x. If the best found context
p∗c uses this function we skip adding the node u to the tree. For each pair of
functions (u, b) placed above the subtree p1, we forward propagate the semantics
of the subtree up to the root of the new tree. Then, we apply just a single
backpropagation step, using the same Invert function as in RDO, to calculate
desired semantics d of the other child of the node b, given the the target semantics
t and the forward-propagated semantics s(u ◦ p1).

Since in this case the desired semantics is usually unambiguous, we can use a
different method of searching the library, which could not be easily applied within
the RDO operator. Here, we search for the library procedure which achieves high-
est cosine similarity. In other words, if we treat semantics as an n-dimensional
vector, we return library procedure p∗l that makes the smallest angle with the
desired semantics d, i.e.:

p∗l = arg min
pl∈L

arccos
s(pl) · d
‖s(pl)‖‖d‖

.

Finally, we add a constant node c to scale the semantics of the library procedure
making it closer to the desired semantics, i.e., c = (s(p∗l) · d) / ‖s(p∗l)‖2. An
alternative, more computationally expensive approach, would be to run simple
linear regression for each candidate program in the library, using its semantics
as a single explanatory variable and desired semantics d as a response. This
approach would require extending the context structure to accommodate both
an intercept and a slope coefficient.

5 Experimental setup

The main goal of the experiments is to compare the performance of RDO and
FPM mutation operators on a suite of symbolic regression benchmarks. Addi-
tionally, as a control setup we employ traditional subtree-replacing mutation
(SRM). All three mutation operators are used along with conventional subtree-
swapping crossover in a standard generational tree-based GP algorithm with
tournament selection. Each mutation operator is employed in five setups with
different values of mutation and crossover probabilities (the source code of our
experiments is available at https://github.com/mszubert/ppsn_2016).

Most of the GP parameters (summarized in Table 1) are adopted from the
recent work on semantic backpropagation [12]. In particular, whenever a random
mutation/crossover node needs to be selected, a uniform depth node selector is
used. Given a program p, it first calculates program’s height h, then draws
uniformly an integer d from the interval [0, h] and finally selects a random node
from all nodes at depth d in program p. This technique has been recently shown
to reduce bloat when compared to conventional Koza-I node selectors [6,12].

Moreover, both RDO and FPM use population-based library which is con-
structed at each generation from all semantically unique subtrees (subprograms)
in the current population. Since we impose an upper limit on the tree height (17),
when searching the library we ignore all the procedures that would violate this
constraint when inserted into the parent program.

We investigate training error, generalization performance (error on 1 000 un-
seen test cases) and the size of programs produced by using particular muta-
tion operators on 11 symbolic regression benchmarks. We consider six univari-
ate and five bivariate problems that are adopted from previous studies [4,8,12].
Selected benchmarks (see Table 2) include polynomial, rational and trigono-
metric functions. For each problem, fitness was calculated as root-mean-square
error on a number of training cases. The univariate problems use 20 cases dis-
tributed equidistantly in the [−1, 1] range, while the bivariate ones use a grid of
10× 10 = 100 points spaced evenly in the [−1, 1]× [−1, 1] square.

Table 1. Genetic programming parameters

Parameter Value

population size 256
generations 100

initialization
ramped half-and-half with height range 2− 6
100 retries until accepting a syntactic duplicate

instruction set {+,−,×, /, exp, log, sin, cos} (log and / are protected)
tournament size 7
fitness function root-mean-square error (RMSE)
node selection uniform depth node selector
maximum tree height 17
number of runs 30

https://github.com/mszubert/ppsn_2016

Table 2. Symbolic regression benchmarks.

Benchmark name Objective function Variables Training cases

P4 (Quartic) x4 + x3 + x2 + x 1 20

P7 (Septic) x7 − 2x6 + x5 − x4 + x3 − 2x2 + x 1 20

P9 (Nonic)
∑9

1 x
i 1 20

R1 (x + 1)3/(x2 − x + 1) 1 20

R2 (x5 − 3x3 + 1)/(x2 + 1) 1 20

R3 (x6 + x5)/(x4 + x3 + x2 + x + 1) 1 20

K11 (Keijzer-11) xy + sin((x− 1)(y − 1)) 2 100

K12 (Keijzer-12) x4 − x3 + y2

2
− y 2 100

K13 (Keijzer-13) 6 sin(x) cos(y) 2 100

K14 (Keijzer-14) 8
2+x2+y2 2 100

K15 (Keijzer-15) x3

5
+ y3

2
− x− y 2 100

6 Results and Discussion

Table 3 presents detailed characteristics of the best-of-run individuals evolved
with particular mutation operators. Each row of the table corresponds to a sin-
gle combination of one of the five GP setups (with different crossover (X) and
mutation (M) probabilities) and one of the three considered mutation opera-
tors (either FPM, RDO or SRM). We performed 30 independent GP runs for
each of such 15 combinations on each of the 11 symbolic regression problems.
To confirm statistically significant differences between the results obtained with
particular mutation operators, for each problem and parameters setup we con-
ducted the Kruskal-Wallis test followed by a post-hoc analysis using pairwise
Mann-Whitney tests (with sequential Bonferroni correction). We set the level of
significance at p ≤ 0.05. Table 3 shows with an underline the results that were
found significantly better than those achieved with the other operators.

The first part of Table 3 shows the average training errors. Although RDO
achieves the best overall results for most univariate problems, for the bivari-
ate ones FPM produces more competitive results. Regardless of the parameter
settings, the traditional SRM operator leads to the highest training error. Note-
worthy, the RDO and FPM operators obtain their best results under different
crossover and mutation settings. While both of them benefit from using tradi-
tional crossover as an additional variation operator, the performance of FPM de-
creases when mutation is performed too frequently (i.e., if M = 1.0). To explain
this phenomenon let us note that for a given subprogram, the FPM operator
builds a context in a deterministic way. As a result, if two semantically equiva-
lent subprograms are selected in the same generation, they will result in identical
offspring. Consequently, FPM can lead to creating too many duplicated programs
and thus losing diversity in the population. Importantly, although RDO is also
deterministic, it is less susceptible to this problem because typically the number
of distinct contexts is much larger than that of distinct subtrees.

In order to assess generalization performance of evolved programs, we cal-
culate the root-mean-square error on 1 000 test cases drawn uniformly from the
same range as for the training cases. The median test errors committed by the
best-of-run individuals are presented in the second part of Table 3. In most cases,
the RDO operator (especially for setups that achieve the lowest training error)
suffers from substantial overfitting resulting in large test error. Although the
FPM operator is also vulnerable to overfitting (in particular on problem P9)
it is not as severe as in the case of RDO. With a few exceptions, for each of
the considered problems and parameter setups, the FPM operator obtains the
highest generalization performance.

Finally, we investigate the average size of best-of-run individuals which is
presented in the last part of Table 3. Not surprisingly RDO is the most bloating
operator and this is one of the reasons for its poor performance on the unseen
test data. On the other hand, in preliminary experiments with imposed program
size limit of 300 nodes, we also observed overfitting of the RDO operator. The
programs produced by FPM tend to be much smaller. In particular, on two rel-
atively simple problems, P4 and K13, the FPM operator finds short programs
that obtain zero test error. Apparently, employing FPM allows to discover so-
lutions that are very close to the original function underlying the training data.
However, on all the other problems, the programs produced by RDO and FPM
are significantly larger than those created by the traditional SRM operator.

7 Conclusions

Semantic GP operators have proved to be effective on a number of symbolic
regression problems [14,13,11]. In this study, we confirmed these observations by
analyzing the performance of the RDO operator based on semantic backpropa-
gation [12] and the FPM operator that employs a novel idea of semantic forward
propagation. When applied to a suite of symbolic regression benchmarks, both
operators significantly outperformed the subtree-replacing mutation operator
conventionally applied in GP. However, while both considered semantic opera-
tors achieved competitive performance on the training data, the RDO operator
was found much more susceptible to overfitting. The proposed FPM operator,
on the other hand, consistently produced shorter programs that obtained signif-
icantly lower error on the unseen test data.

Despite achieving superior predictive accuracy and producing shorter pro-
grams than RDO, the programs constructed with the FPM operator are still too
large to be easily understood. This is unfortunate since finding comprehensible
solutions has been always considered as one of the primary benefits of using GP
instead of black-box machine learning methods. As most semantic-aware oper-
ators tend to produce large or very large programs [10], the problem of bloat
remains the major challenge that can limit the practical applicability of such
methods. Therefore, one of the most important directions of future work is to
investigate the performance of RDO and FPM operators combined with parsi-
mony pressure mechanisms that control the complexity of evolved programs.

Table 3. Detailed characteristics of best-of-run individuals produced by particular
mutation operators (FPM, RDO, SRM), aggregated over 30 GP runs. Each operator
was employed in 5 GP setups with different crossover (X) and mutation (M) proba-
bilites. Bold marks the best results achieved under certain X/M settings on particular
problems. Underline indicates statistically significant superiority.

Average training error

X M P4 P7 P9 R1 R2 R3 K11 K12 K13 K14 K15

0.0 1.0 0.0011 0.0072 0.0153 0.0064 0.0049 0.0024 0.0626 0.0418 0.0000 0.0031 0.0061
0.5 0.5 0.0001 0.0018 0.0025 0.0012 0.0018 0.0006 0.0299 0.0111 0.0000 0.0012 0.0007
0.5 1.0 0.0001 0.0025 0.0037 0.0020 0.0025 0.0007 0.0358 0.0154 0.0000 0.0021 0.0007
1.0 0.5 0.0000 0.0015 0.0022 0.0012 0.0013 0.0004 0.0283 0.0086 0.0000 0.0012 0.0004F

P
M

1.0 1.0 0.0001 0.0026 0.0029 0.0018 0.0019 0.0006 0.0334 0.0116 0.0000 0.0017 0.0007

0.0 1.0 0.0030 0.0034 0.0147 0.0071 0.0043 0.0030 0.0709 0.0444 0.0440 0.0587 0.0302
0.5 0.5 0.0004 0.0017 0.0029 0.0023 0.0014 0.0018 0.0455 0.0090 0.0038 0.0132 0.0024
0.5 1.0 0.0001 0.0008 0.0004 0.0006 0.0004 0.0002 0.0294 0.0029 0.0007 0.0044 0.0015
1.0 0.5 0.0003 0.0020 0.0008 0.0014 0.0015 0.0004 0.0504 0.0063 0.0015 0.0087 0.0041R

D
O

1.0 1.0 0.0001 0.0003 0.0003 0.0008 0.0004 0.0004 0.0294 0.0047 0.0011 0.0033 0.0008

0.0 1.0 0.0518 0.0742 0.0758 0.0744 0.0811 0.0097 0.2025 0.3049 0.1552 0.2145 0.0723
0.5 0.5 0.0323 0.0968 0.0732 0.0834 0.0608 0.0156 0.1769 0.2328 0.1040 0.1138 0.0608
0.5 1.0 0.0449 0.0926 0.0638 0.0792 0.0880 0.0115 0.1781 0.2128 0.1267 0.1603 0.0748
1.0 0.5 0.0217 0.0882 0.0715 0.0663 0.0666 0.0078 0.1598 0.2005 0.0866 0.1690 0.0623S

R
M

1.0 1.0 0.0282 0.0845 0.0792 0.0698 0.0754 0.0120 0.1942 0.2479 0.1437 0.1724 0.0628

Median test error

X M P4 P7 P9 R1 R2 R3 K11 K12 K13 K14 K15

0.0 1.0 0.0009 0.0084 0.0342 0.0071 0.0044 0.0026 0.0555 0.0529 0.0000 0.0028 0.0057
0.5 0.5 0.0000 0.0046 0.0256 0.0025 0.0123 0.0030 0.0425 0.0581 0.0000 0.0017 0.0008
0.5 1.0 0.0000 0.0045 0.0142 0.0037 0.0045 0.0015 0.0333 0.0290 0.0000 0.0032 0.0008
1.0 0.5 0.0000 0.0069 0.0306 0.0030 0.0042 0.0017 0.0260 0.0311 0.0000 0.0021 0.0005F

P
M

1.0 1.0 0.0000 0.0055 0.0227 0.0025 0.0027 0.0009 0.0300 0.0295 0.0000 0.0024 0.0008

0.0 1.0 0.0039 0.0593 0.0346 0.0087 0.0145 0.0071 0.1089 0.0988 0.0215 0.0774 0.0185
0.5 0.5 0.0025 0.5159 0.0469 0.0406 0.0148 0.0028 0.0738 0.0374 0.0070 0.0252 0.0036
0.5 1.0 0.0117 0.3084 0.0715 0.1522 0.0652 0.0618 0.0639 0.2124 0.0022 0.0556 0.0097
1.0 0.5 0.0006 0.0704 0.0104 0.0081 0.0319 0.0057 0.0445 0.0364 0.0030 0.0283 0.0014R

D
O

1.0 1.0 0.0097 19.486 8E+3 0.0607 0.0466 0.0155 0.0402 0.3878 0.0023 0.0378 0.0026

0.0 1.0 0.0485 0.1170 0.1017 0.0836 0.0585 0.0123 0.2005 0.2649 0.1986 0.1458 0.0814
0.5 0.5 0.0240 0.0958 0.0810 0.0730 0.0592 0.0106 0.1770 0.1874 0.1122 0.0988 0.0525
0.5 1.0 0.0572 0.1865 0.0922 0.0800 0.0694 0.0105 0.1686 0.2037 0.1311 0.1207 0.0882
1.0 0.5 0.0191 0.0899 0.0785 0.0711 0.0641 0.0101 0.1493 0.1874 0.0998 0.1126 0.0446S

R
M

1.0 1.0 0.0257 0.0734 0.0725 0.0739 0.0727 0.0142 0.1894 0.1853 0.1843 0.1723 0.0389

Average program size

X M P4 P7 P9 R1 R2 R3 K11 K12 K13 K14 K15

0.0 1.0 172.6 179.0 195.9 162.2 187.9 161.0 210.9 172.4 9.1 204.9 207.7
0.5 0.5 150.4 341.4 322.1 325.3 352.8 347.7 328.3 305.5 7.4 326.5 260.6
0.5 1.0 78.3 292.4 271.7 287.9 283.3 265.9 286.4 264.5 8.5 258.9 239.6
1.0 0.5 44.0 346.6 354.4 327.2 339.2 311.0 328.0 311.1 7.8 298.6 300.0F

P
M

1.0 1.0 99.2 283.4 271.0 255.7 253.3 270.6 244.8 230.6 8.9 239.8 264.4

0.0 1.0 537.6 690.6 550.8 777.5 2656.9 1203.7 418.6 434.8 85.0 147.2 250.2
0.5 0.5 503.6 637.9 686.0 493.9 529.6 485.7 358.4 482.4 497.1 346.4 1299.6
0.5 1.0 626.9 1004.3 934.1 906.7 854.0 747.2 654.2 841.2 464.3 548.6 1137.2
1.0 0.5 378.6 631.2 588.4 473.0 508.9 486.7 316.8 472.9 311.0 325.5 673.8R

D
O

1.0 1.0 645.6 903.6 909.9 668.6 746.4 696.2 542.9 838.7 426.7 514.6 1034.4

0.0 1.0 122.9 176.1 152.4 133.8 116.2 155.9 109.3 95.1 95.7 63.0 74.7
0.5 0.5 60.0 109.4 95.4 79.7 76.1 95.8 62.7 69.4 59.6 53.5 57.5
0.5 1.0 111.8 172.8 159.6 154.3 122.3 173.6 99.2 95.3 96.1 79.1 82.0
1.0 0.5 97.9 106.4 107.1 96.8 89.9 137.2 89.5 86.6 81.1 87.6 64.4S

R
M

1.0 1.0 119.0 160.9 147.5 150.6 131.0 165.7 95.3 83.2 95.9 80.4 96.5

Acknowledgments

This work was supported by the National Aeronautics and Space Administration
under grant number NNX15AH48G.

References

1. Beadle, L., Johnson, C.G.: Semantically Driven Crossover in Genetic Programming.
In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008.
pp. 111–116. IEEE (2008)

2. Beadle, L., Johnson, C.G.: Semantic Analysis of Program Initialisation in Ge-
netic Programming. Genetic Programming and Evolvable Machines 10(3), 307–337
(2009)

3. Jackson, D.: Promoting Phenotypic Diversity in Genetic Programming. In: Parallel
Problem Solving from Nature, PPSN XI, Lecture Notes in Computer Science, vol.
6239, pp. 472–481. Springer Berlin Heidelberg (2010)

4. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

5. Krawiec, K.: Behavioral Program Synthesis with Genetic Programming, Studies in
Computational Intelligence, vol. 618. Springer (2016)

6. Krawiec, K., O’Reilly, U.M.: Behavioral Programming: A Broader and More De-
tailed Take on Semantic GP. In: Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation. pp. 935–942. GECCO ’14, ACM (2014)

7. Liskowski, P., Krawiec, K., Helmuth, T., Spector, L.: Comparison of Semantic-
aware Selection Methods in Genetic Programming. In: Proceedings of the Genetic
and Evolutionary Computation Conference. pp. 1301–1307. ACM (2015)

8. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L.,
Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., O’Reilly, U.M.: Genetic
Programming Needs Better Benchmarks. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference. pp. 791–798. ACM (2012)

9. McPhee, N.F., Hopper, N.J.: Analysis of genetic diversity through population his-
tory. In: Proceedings of the Genetic and Evolutionary Computation Conference.
vol. 2, pp. 1112–1120. Morgan Kaufmann (1999)

10. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric Semantic Genetic Program-
ming. In: Parallel Problem Solving from Nature - PPSN XII, Lecture Notes in
Computer Science, vol. 7491, pp. 21–31. Springer Berlin Heidelberg (2012)

11. Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and Comparative Analysis of Geo-
metric Semantic Crossovers. Genetic Programming and Evolvable Machines 16(3),
351–386 (2015)

12. Pawlak, T., Wieloch, B., Krawiec, K.: Semantic Backpropagation for Designing
Search Operators in Genetic Programming. IEEE Transactions on Evolutionary
Computation 19(3), 326–340 (2015)

13. Uy, N.Q., Hoai, N.X., O’Neill, M., Mckay, R.I., Galván-López, E.: Semantically-
based Crossover in Genetic Programming: Application to Real-valued Symbolic
Regression. Genetic Programming and Evolvable Machines 12(2), 91–119 (2011)

14. Vanneschi, L., Castelli, M., Silva, S.: A Survey of Semantic Methods in Genetic Pro-
gramming. Genetic Programming and Evolvable Machines 15(2), 195–214 (2014)

15. Wieloch, B., Krawiec, K.: Running Programs Backwards: Instruction Inversion for
Effective Search in Semantic Spaces. In: Proceedings of the 15th Annual Conference
on Genetic and Evolutionary Computation. pp. 1013–1020. GECCO ’13, ACM,
New York, NY, USA (2013)

	Semantic Forward Propagation for Symbolic Regression

