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Abstract

Regression problems on massive data sets are ubiquitous

in many application domains including the Internet, earth

and space sciences, and aviation. Support vector regression

(SVR) is a popular technique for modeling the input-

output relations of a set of variables under the added

constraint of maximizing the margin, thereby leading to

a very generalizable and regularized model. However, for

a dataset with m training points, it is challenging to

build SVR models due to the O(m3) cost involved in

building them. In this paper we propose ParitoSVR — a

parallel iterated optimizer for Support Vector Regression

in the primal that can be deployed over a network of

machines, where each machine iteratively solves a small

(sub-)problem based only on the data observed locally and

these solutions are then combined to form the solution to the

global problem. Experiments on real datasets demonstrate

the accuracy and scalability of our algorithm. As a real

application, we use ParitoSVR to detect flights having

abnormal fuel consumption from a fleet-wide commercial

aviation database.

1 Introduction

In many application domains, it is important to predict
the value of one feature based on certain other mea-
sured features. For example, in commercial aviation, it
is very important to model the fuel consumption based
on input parameters such as aircraft speed, wind speed,
control surfaces, engine power, pitch, roll, yaw etc. This
is because according to the Air Transportation Associ-
ation (ATA), fuel is an airline’s largest expense at a
staggering 17.5 billion gallons per year1. Identifying
flights with abnormal fuel consumption may help the
airlines to do proper maintenance of these aircrafts and
save operating costs. For such problems, a regression
model can be learned that predicts the fuel flow based
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on these input parameters. One such popular regression
method is Support vector machines (SVM) [1] which is a
class of maximum margin classifiers, that demonstrates
good generalization performance. SVM’s can also ex-
ploit the kernel trick, thereby making them suitable for
non-linear model learning as well. SVMs however are
computationally expensive for large datasets.

In this paper we propose Parallel Iterated Optimizer
for Support Vector Regression in the Primal (Pari-
toSVR), a new support vector regression algorithm that
can be deployed over a network of machines, where each
machine solves a small (sub-)problem based only on the
data observed locally and these solutions are then com-
bined to form the solution to the global problem. Our
proposed method is based on the Alternating Direction
Method of Multipliers (ADMM) optimization technique
[2][3], which is parallelizable for separable convex prob-
lems, and converges to the exact solution as the central-
ized version with theoretical guarantees.

2 Background

Our ParitoSVR algorithm uses as a building block
two components: (1) Alternating Direction Method of
Multipliers (ADMM), and (2) SVR. In this section, we
discuss these two topics.
ADMM: ADMM [3] is a decomposition algorithm for
solving separable convex optimization problems of the
form:

min
x,y

G1(x) + G2(y)(2.1)

subject to Ax− y = 0, x ∈ Rn, y ∈ Rm

where A ∈ Rm×n and G1 and G2 are convex functions.
ADMM is an iterative technique and the update equa-
tions are:

xt+1 = min
x

{
G1(x) + ρ/2

∥∥Ax− yt + pt
∥∥2
2

}
yt+1 = min

y

{
G2(y) + ρ/2

∥∥Axt+1 − y + pt
∥∥2
2

}
pt+1 = pt +Axt+1 − yt+1

where p = (1/ρ)z. ADMM effectively decouples the
x and y updates such that parallel execution becomes
possible. In a distributed computing framework, this
becomes even more interesting since each computing
node can now solve a (smaller) subproblem in x inde-



pendently, and then, these solutions can be efficiently
gathered to compute the consensus variable y and the
dual variable p. ADMM converges within a few itera-
tions when moderate precision is required. This can be
particularly useful for many large scale problems, simi-
lar to what we consider here.
SVR: Give m data tuples (training set) D = (xi, yi)

m
i=1,

where xi ∈ Rn is the input and yi ∈ R is the cor-
responding output or target, SVR solves the following
optimization problem:

min
w,b

[
λ||w||2 +

m∑
i=1

`ε(w · xi + b− yi)

]
(2.2)

where λ is a constant and `ε is the ε-insensitive loss
function defined as, `ε(r) = max(|r| − ε, 0). This is a
convex optimization problem which can be solved using
convex optimization solvers such as CVX2.

In the next section we show how to build SVR mod-
els for very large datasets using distributed computing
via the ADMM technique.

3 ParitoSVR formulation

For the linear ParitoSVR algorithm setup, we assume
that the training data is distributed among N client
processors (nodes) P1, . . . , PN with a central machine
P0 acting as the server or collector. The dataset at
machine Pj , denoted by Dj , consists of mj data points

i.e. Dj =
{
x
(j)
i , y

(j)
i

}mj

i=1
. It is assumed that the

datasets are disjoint: Di

⋂
Dj = ∅ and

⋃N
j=1Dj = D,

where D is the total (global) data set. The goal is
to learn a linear support vector regression model on D
without exchanging all of the data among all the nodes.

Given Eqn. 2.2, the optimization problem is now:

min
w

[
m∑
i=1

`ε(w · xi − yi) + λ||w||2
]

⇔ min
w

 N∑
j=1

mj∑
i=1

`ε
(
w · x(j)

i − y(j)i

)
+ λ ‖w‖2


The inner sum can be computed by each node indepen-
dently (assuming that w is known). We next write it in
a form such that it is decoupled across the nodes:

min
w1,...,wN ,z

 N∑
j=1

mj∑
i=1

`ε
(
wj · x

(j)
i − y(j)i

)
+ λ ‖z‖2

(3.3)

subject to wj = z

In the ADMM decomposition, each node can solve
its local problem using its own data and optimization
variable and then coordinate the results across the nodes
to drive them into consensus. The nodes update the
consensus variable z iteratively, based on their local

2http://cvxr.com/cvx/

−8 −6 −4 −2 0 2 4 6 8
−150

−100

−50

0

50

100

x

y
 =

 x
 β

 +
 n

o
is

e

Centralized

ADMM final
ADMM Iteration 1

Figure 1: Models formed by node 1 on synthetic dataset
as the algorithm progresses.

data and scatter-gather operations on z until they
converge to the same result.

Theorem 3.1. The ADMM update rules for the linear
support vector regression primal optimization are:

wt+1
j = min

wj

{ mj∑
i=1

`ε
(
wj · x

(j)
i − y(j)i

)
+
ρ

2

∥∥wj − zt − ut
j

∥∥2
2

}

zt+1 = min
z

{
λ ‖z‖22 +

Nρ

2

∥∥z−wt+1 − ut
∥∥2
2

}
ut+1
j = ut

j + wt+1
j − zt+1

where u ∈ Rn is the (scaled) dual variable and wt+1

and ut+1 are the averages of the variables over all the
nodes.

Proof. We omit the proof here due to shortage of space.

The w update can be executed in parallel for each
machine. It involves solving a convex optimization
problem in n + 1 variables at each node. This solution
depends only on the data available at that partition.
The z update step involves computing the average of
the w and u vectors in order to combine the results
from the different partitions. Critical to the working
of ADMM is the convergence criteria. The primal and
dual residuals can be written as: rtp = ‖wt − zt‖22 , rtd =∥∥ρ(zt − zt−1)

∥∥ Also, given the thresholds εpri and εdual,
the primal and dual thresholds can be written as,
εpri = εabs

√
m + εrel max(‖w‖ , ‖z‖) and and εdual =

εabs
√
m+ρεrel ‖u‖ . The iterations terminate when rtp <

εpri and rtd < εdual.

4 Experiments

In this section we demonstrate the performance of the
ParitoSVR algorithm.

ParitoSVR has been implemented in MATLAB
2011b. The experiments have been executed in NASA
Pleiades supercomputer facility3. For solving the con-
vex problems at each iteration, we have used the convex
optimization toolbox CVX for Matlab4.

3http://www.nas.nasa.gov/hecc/resources/pleiades.html
4http://cvxr.com/cvx/
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(a) Squared error for all flights
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(b) Outlier flight fuel consumption
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(c) Normal flight fuel consumption

Figure 2: Fuel flow study on CarrierX dataset. Fig. (a) shows squared error for all test flights, the 3-σ bound and
flights which cross the threshold. Fig. (b) shows the observed and predicted fuel flow of top ranked anomalous
flight. Fig. (c) shows the same for a normal flight.

Fig. 1 shows the sample dataset generated from
a linear model following y = w × x + noise, where
w is the weight of the regression model. We have
used 2 nodes in this experiment and, for each node,
chosen a different w vector so that each node sees
a different data distribution. The data of the two
nodes are shown in two different colors (circle and plus
markers). Also shown in the figure are the models
(straight lines) formed by node 1 at different iterations
of linear ParitoSVR algorithm.

4.1 Anomaly detection on CarrierX dataset We
use the linear ParitoSVR algorithm to detect anomalous
fuel consumption in a commercial aircraft. We model
the average fuel flow as a function of 29 different
parameters that measure system parameters such as
lateral and longitudinal acceleration, roll and pitch
angle, air pressure, and velocity, as well as external
parameters such as wind speed and direction. We have
used all 1500 flights (≈ 4.5 million training instances) for
a specific tail number for a particular year for training,
and tested subsequent years’ flights for predicting fuel
consumption. Flights for which the mean squared errors
of the predicted instantaneous fuel consumption fall
outside the 3-σ boundary of the average mean squared
error, are tagged anomalous (σ is the standard deviation
of the mean predictions). Out of approximately 1800
flights for a test year, 14 flights were determined to
be anomalous. Figure 2(a) shows the mean squared
errors for each of the flights in blue and the 3-σ bounds
in green. The instantaneous fuel flow for the top
ranked anomalous flight among these 14 flights is shown
in Figure 2(b). The red graph depicting observed
fuel flow is significantly higher than the predicted fuel
consumption, shown in blue.

5 Conclusion

In this paper we have proposed ParitoSVR — a par-
allel iterated optimizer which solves support vector re-

gression in the primal. Our formulation is paralleliz-
able among a number of computing nodes connected to
a central computing node. Empirical study show that
our algorithm is accurate and scalable, ideal for large
scale deployment. As future work, we plan to develop
asynchronous version of this problem for peer-to-peer
architectures.
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