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ABSTRACT
Coral reefs are one of the most biologically complex and diverse
ecosystems within the shallow marine environment. Unfortunately,
these underwater ecosystems are threatened by a number of an-
thropogenic challenges, including ocean acidification and warming,
overfishing, and the continued increase of marine debris in oceans.
This requires a comprehensive assessment of the world’s coastal
environments, including a quantitative analysis on the health and
extent of coral reefs and other associated marine species, as a vital
Earth Science measurement. However, limitations in observational
and technological capabilities inhibit global sustained imaging of
the marine environment. Harmonizing multimodal data sets ac-
quired using different remote sensing instruments presents addi-
tional challenges, thereby limiting the availability of good quality
labeled data for analysis. In this work, we develop a deep learning
model for extracting domain invariant features from multimodal
remote sensing imagery and creating high-resolution global maps
of coral reefs by combining various sources of imagery and limited
hand-labeled data available for certain regions. This framework
allows us to generate, for the first time, coral reef segmentation
maps at 2-meter resolution, which is a significant improvement
over the kilometer-scale state-of-the-art maps. Additionally, this
framework doubles accuracy and IoU metrics over baselines that
do not account for domain invariance.
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1 INTRODUCTION
As one of the most biologically complex and diverse ecosystems
within the shallow marine environment, coral reefs are not only
of great ecological value [14], but also of economic value [6]. Reef
ecosystems support the activities of modern civilization and mit-
igate changes in our planet’s biosphere through a diversity and
density of species few other ecosystems possess [16]. At present,
however, coral reefs are experiencing one of the most significant
changes in their history on Earth, triggered by unprecedented an-
thropogenic pressures, warming seas, ocean acidification, sea-level
rise, habitat destruction, agricultural runoff, and overfishing, among
other contributing stressors [1].

Our understanding of the impacts of these rapidly-changing
ecosystems is limited by a lack of global baseline habitat mapping
data and knowledge of reef makeup over regional areas. This can be
attributed to limitations in observational technology that inhibits
global sustained imaging of the marine environment. The standard-
ization and normalization of terrestrial remote sensing practices,
geo-referencing, and data set processing algorithms are not directly
applicable to marine data sets. Additionally, ground truth data is
often not representative of the entire population distribution, and
corresponds only to reefs within their immediate geographical
vicinity, which are known to vary worldwide compositionally and
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structurally. Due to the difficulties associated with harmonizing
multimodal data sets, performing ecosystem assessment at a global
scale is an unsolved problem in this domain.

In this paper, we present a framework for fusing images from two
different remote sensing platforms at multiple spatial scales to ar-
rive at accuratemarine habitat classification that can take advantage
of labeled data from higher resolution platforms to predict scenes at
a lower resolution and then improve the generated labeled scenes
to match the high-resolution imagery. High-resolution images (and
ground-truth) are rare to obtain, whereas low-resolution imagery
is available in abundance, providing better (albeit poor quality)
coverage of the global coral reef makeup. Additionally, these low-
resolution satellite images are usually not good for manual labeling
due to their low visual quality. This necessitates the need for a
classifier that can learn from the limited amount of high-resolution
ground-truth data and predict classes on previously unseen low-
resolution scenes, thereby creating global coral reef maps. Since
these reef cover and morphology classification maps allow marine
biologists to delve deeper into areas of interest in certain geograph-
ical regions, it is essential for these maps to match the resolution
of the best remote sensing instrument so that scientists can make
use of these images for their assessment and analysis. In order to
facilitate that, it is important to synthesize these labeled coral reef
maps at a higher resolution. Therefore, we apply super-resolution
to our generated reef maps, and show that our approach yields
significantly better results than traditional approaches of doing
super-resolution on poor quality satellite imagery. State-of-the-art
global assessments of coral reef cover and morphology classifica-
tion are on kilometer-scale satellite data that have a classification
error greater than 40% [5]. Using this framework we are able to
generate coral reef segmentation maps at 2-meter resolution with
double the accuracy of the previous product on an average and
having much higher geographical coverage. In details, the main
contributions of this study are as follows:

• Introducing an instrument invariant approach for coral reef
classification using a deep learning domain adaptation tech-
nique.

• Improving the domain adaptation algorithm for image-to-
image segmentation rather than image-to-point classifica-
tion using a U-NET structure [17] to prevent loss of resolu-
tion problem.

• Improving the domain invariance capabilities of the model
by removing the covariate shifts in the data through batch
normalization.

• Increasing the spatial resolution of the instrument invari-
ant coral reef classification by applying an advanced super-
resolution deep learning algorithm, downscaling coral reef
classification maps from 10 meters to 1.85 meters.

The rest of the paper is organized as follows. In Section 2 we
discuss our deep neural net framework that is being used to circum-
vent existing challenges. Section 3 describes our data sets and the
different experimental results obtained for this study. We conclude
the paper with discussions on future directions in Section 4.

2 PROPOSED FRAMEWORK
Although deep neural networks have successfully been used for
classification and segmentation tasks in remote sensing [3], [4], [19]
the issue of amalgamating multi-resolution, multi-spectral, multi-
modal remote sensing has remained a pertinent and challenging
problem in ecosystem science.

In this paper, we present LAPDANN, our framework for rec-
onciling multimodal remote sensing inputs for improving scien-
tific discovery. The LAPDANN framework consists of two neural
networks: (i) an improved version of Domain Adaptation Neural
Network (DANN) adapted from [11], and (ii) super-resolution neu-
ral network-based on [7]. The DANN network is improved in two
main areas: (i) altering the image-to-point classification approach
to an image-to-image segmentation structure using a U-NET, and
(ii) improving the domain invariance by removing covariate shifts
using BatchNormalization layers [12]. We describe each of these
components individually, and then show how they fit together in
the context of LAPDANN.

2.1 Domain Adaptation
Domain adaptation aims to learn from one or more source do-
main(s) and successfully transfers the learned task to a target do-
main through transfer learning. The Domain Adaptation Neural
Network (DANN) proposed by Ganin [11] accomplishes this task
by implementing a three-part neural network: (1) a generative net-
work to learn and extract domain invariant features, (2) a label
classification network to predict class labels of input patches and
(3) a domain discriminative network to discriminate the features
originated from the source and target domains.

The generative part (G) learns to map the input image of domain
A (𝑥𝐴) to an intermediate feature representation (f ) i.e.𝐺 : 𝑥𝐴 → 𝑓 .
The proposed generator is a modified version of the generator in the
original DANN [11]. The original DANN has three building blocks
in the generator consisting of a convolutional layer followed by a
Rectified Linear Unit (ReLU) [15]. In this study, we included a Batch
Normalization layer [12] in between convolutional and ReLU lay-
ers (Figure 1) to remove the internal covariate shifts and eliminate
layers inputs’ distribution mismatches. Normalizing the layers in-
puts’ distributions allows the model to focus on "real" discrepancies
rather than the trivial variance of data batch distributions. A label
classification network is defined to classify the input images (𝑥𝐴)
into defined class labels. In alteration of the original DANN archi-
tecture, instead of having the classifier predict the center pixel class,
we used a U-Net architecture [17] to obtain image segmentation
of the input images (Figure 1). Following the logic described in the
generator part, the classification network consists of three blocks
with a deconvolutional layer followed by Batch Normalization and
ReLU activation layers (Figure 2). At each resolution level of the
network, a crop and copy connection (blue dotted line) from the
generator to the label classifier is established to prevent the loss of
resolution in the network architecture (Figure 1). In addition to the
three blocks, a convolutional layer with softmax function is applied
as the last layer to obtain the class-conditioned probability maps.

The domain discriminator network is designed to determine the
likelihood of the features generated by G to be from the source
domain or the target domain. To obtain this goal, a network with



Figure 1: Details of the LAPDANN architecture. Modified DANN structure (top) demonstrates the model specifications. The
𝐺 𝑓 , 𝐺𝑐 and 𝐷𝐷𝐴𝑁𝑁 are the generator, classifier and domain discriminator, respectively. The middle row with 𝐺1 and 𝐷1 is
the low-resolution GAN in the LAPGAN architecture and the 𝐺1 and 𝐷1 are the generator and discriminator, respectively.
The (bottom) is the high-resolution GAN in the LAPGAN architecture where 𝐺0 and 𝐷0 are the generator and discriminator,
respectively. The layer details for convolutional layer are described next to each block in the following format: number of
filters ×𝑖𝑚𝑎𝑔𝑒ℎ𝑒𝑖𝑔ℎ𝑡 ×𝑤𝑖𝑑𝑡ℎ(𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑖𝑧𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒𝑠𝑖𝑧𝑒) .𝐹𝑜𝑟 𝑓 𝑢𝑙𝑙𝑦𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑙𝑎𝑦𝑒𝑟𝑠, 𝑡ℎ𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜 𝑓 𝑛𝑜𝑑𝑒𝑠𝑎𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑𝑎𝑠𝑎𝑠𝑖𝑛𝑔𝑙𝑒𝑛𝑢𝑚𝑏𝑒𝑟 .

three blocks of fully-connected, Batch Normalization and ReLU
layers are used. Following the architecture of the original DANN,
the domain discriminator is connected to the generator via a Gra-
dient Reversal Layer (GRL). The GRL does not affect the forward
propagation process; it only reverses the gradient coming from the
discriminative loss by multiplying the gradient to a negative value
of 𝜆.

The DANN framework is trained by optimizing the following
equation:

𝐸 (𝜃 𝑓 , 𝜃𝑦, 𝜃𝑑 ) =
1
𝑛

𝑛∑
𝑖=1

ℓ𝑖𝑦 (𝜃 𝑓 , 𝜃𝑦) − 𝜆( 1
𝑛

𝑛∑
𝑖=1

ℓ𝑖
𝑑
(𝜃 𝑓 , 𝜃𝑑 )

+ 1
𝑛′

𝑁∑
𝑖=𝑛+1

ℓ𝑖
𝑑
(𝜃 𝑓 , 𝜃𝑑 ))

(1)

In equation 1, 𝜃 𝑓 , 𝜃𝑦 , and 𝜃𝑑 are the trainable parameters in the
generator, classifier and discriminator parts, respectively. ℓ𝑦 and
ℓ𝑑 are the classification and discrimination losses and the 𝜆 is the
gradient reversal coefficient. 𝑛 and 𝑛′ are respectively the number
of samples in source and target domains with a total sum equal to
𝑁 .

Implementing the GRL, as the connection between the generator
and the discriminator (Figure 2) units, allows the optimization to
find the saddle point of equation 1 and obtain:

(𝜃 𝑓 , 𝜃𝑦) = argmin
𝜃 𝑓 ,𝜃𝑦

𝐸 (𝜃 𝑓 , 𝜃𝑦, 𝜃𝑑 ) (2)

𝜃𝑑 = argmax
𝜃𝑑

𝐸 (𝜃 𝑓 , 𝜃𝑦, 𝜃𝑑 ) (3)

𝜃 𝑓 , 𝜃𝑦 , and 𝜃𝑑 are the optimum set of parameters for the genera-
tor, classifier and discriminator parts, respectively.

2.2 Statistical Downscaling
Statistical downscaling refers to the process of generation of high-
resolution (HR) images given their low-resolution (LR) counterparts.
In this framework, we adapt the Laplacian Generative Adversarial
Networks (LAPGAN) model proposed by Denton [7] for downscal-
ing our segmented images to high-resolution coral reefs maps. In
this architecture, a Laplacian pyramid [2] representation is used to
downscale the given images across each level of the resolution gap.
Despite conventional downscaling approaches (e.g. bilinear interpo-
lation, cubic interpolation, etc.) that leverage low-frequency filters,
Laplacian pyramid uses high-frequency filters to sharpen the edges
of the image resulting in high-quality high-resolution segmentation
images. In the LAPGAN approach, the linear invertible operators
of the Laplacian pyramid are replaced with Generative Adversarial
Networks (GANs) conditioned on images of lower resolution. In
the learning process, first the high-resolution images are upsam-
pled to reach the lowest resolution. Then, in the backward process,
GANs {𝐺0 and 𝐺1} learn the low-frequency residuals conditioned
on the lower-resolution images (Figure 2). In this framework, to
obtain high-quality high-resolution segmentation maps, we use
two GANs {𝐺0 and 𝐺1} for scaling by a factor of 2.0 and 2.5 respec-
tively. The generators in both GANs ({𝐺0 and 𝐺1}) consist of two



Figure 2: Feedforward (top) and backpropagation (bottom) connections of the LAPDANN framework. From left to right, the
DANN, LAPGAN-First Level (for low-resolution) and LAPGAN-Second Level (for high-resolution) are presented.

blocks of convolutional-batch normalization-ReLU. The generators
have an additional convolutional layer with a softmax activation
function to provide higher resolution segmentation. The discrimi-
nator part of the GANs {𝐷0 and 𝐷1} is designed using two blocks
of convolutional-batch normalization-ReLU, and 50% dropout. As
the last layer for the discriminators, a fully connected layer with
sigmoid activation is used to predict whether the input is from the
source distribution or target distribution.

2.3 LAPDANN
The LAPDANN framework is a three-model architecture, where
the first model is DANN and second and third models are the GANs
in the LAPGAN architecture (figure 2).

This structure aims to simplify the learning by decoupling the do-
main adaptation and super-resolution tasks. The input to the DANN
framework is high-resolution image patches and corresponding up-
sampled ground-truth. During the forward pass, the DANN model
generates low-resolution segmentations. Then, by downscaling the
low-resolution segmentation image using a conventional interpola-
tion method (we used bilinear interpolation in this study) shown by
green arrows in figure 2, a mid-resolution segmentation is obtained
in the LAPGAN unit. {𝐺1} predicts the high-frequency residuals
and the residuals are added to the mid-resolution segmentations.
The same process is repeated for {𝐺0} for ultimately obtaining the
high-quality high-resolution segmentations. As demonstrated in
figure 2, during backpropagation, DANN and the LAPGAN are
trained independently. In super-resolution part, {𝐺0} learns the high-
frequency residuals consistent with the upsampled high-resolution
segmentations, and {𝐺1} is trained to the generate high-frequency

residuals consistent with low-frequency upsampled low-resolution
segmentations. We implemented LAPDANN in TensorFlow and
used Adam optimizer [13] for tuning LAPDANN parameters. For
training DANNmodel we used the learning rate schedule suggested
by [11] and for the LAPGAN parts we used constant learning rate
of 0.0008.

3 EXPERIMENTS
Our experiments segment low-resolution images of coral islands in
the Pacific Ocean and the Indian Ocean and produce and synthesize
high-resolution maps of the reef makeup for these regions. In this
section, we describe our data set and the experimental setup. We
then present some numerical results to demonstrate the perfor-
mance of our framework in comparison to some baseline methods.

3.1 Data Description
WorldView-2 (WV-2) satellite is a low-orbit multispectral Earth
observation satellite launched by DigitalGlobe in October 2009. The
WV-2 satellite has 8 spectral bands ranging from 400nm to 1040nm
with 1.85-meter resolution [8], which is well-suited for marine and
coral habitat classification.

European Space Agency (ESA)’s Sentinel-2 (S2) satellite, on the
other hand, is a wide-swath multispectral Earth-observing satellite
which provides 13 spectral bands with spatial resolutions ranging
from 10 to 60 meters [10].

Although S2 images are freely available for download through
AWS opendata services1, the high-resolutionWV-2 images had to be

1https://aws.amazon.com/opendata/
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Figure 3: Worldview2 (left) and Sentinel2 (right) image
patches for a South Pacific coral reef island. The resolutions
are 1.85m and 10m respectively.

obtained through an agreement with the non-profit Living Oceans
Foundation2. The ground truth labels accompanying the WV-2
images are generated by the organization through a segmentation
software, the output of which is curated manually by marine habitat
experts and validated in certain locations through diving missions.
This ground truth, though noisy at times, is the best available in
this field and is considered gold-standard for all purposes.

In order to have consistency across the two sets of images ob-
tained from WV-2 and Sentinel, we used the Red (630-690nm),
Green(510-580nm), Blue(450-510nm), and Near-Infrared 1 (770-
895nm) channels from bothwithWV-2 resolution of 1.85meters and
S2 resolution of 10 meters over the same areas. Figure 3 illustrates,
using a patch of a coral island from both WV-2 and S2 instruments,
the difference in visual clarity for a 5x change in resolution.

Geographically we focus only on those areas for which we have
high-resolution ground-truth data of relatively less noisy and high
quality. For this study, we have such data from WV-2 for the Peros
Banhos islands in the Indian Ocean, and 4 transects of Fiji islands,
namely, Cicia, Fulaga, Mago, and Cobara, in the South Pacific Ocean.
The range of years for the different images is 2010 to 2013.

The ground truth data has 10 habitat classes: (i) reef-crest or
coralline algae ridge, (ii) fore-reef, (iii) backreef pavement or sed-
iment, (iv) backreef coral framework, (v) lagoon, (vi) terrestrial
vegetation, (vii) beach, (viii) seagrass meadows, (ix) deep water, and
(x) other. The other class encompasses noise and elements that are
not of interest in the context of marine habitats, such as clouds.
The first four classes are particularly relevant for coral mapping,
but additional classes, when available in a global labeled data set,
allow marine biologists to investigate morphology, composition
and species makeup of other sea life, depending on which area
(class) in the scene they are focusing on. Figure 4 shows how these
classes appear in our ground truth data and the imbalance across
different classes.

3.2 Data Processing Pipeline
Since these images come from multiple remote sensing instruments
there are a variety of discrepancies across the WV-2 and S2 images.
Additionally, even images obtained from the same instrument suffer
from issues that hinder classification or segmentation performance.

2https://www.livingoceansfoundation.org/

Figure 4: Ground truth color codes for the 10 classes

In this section, we describe the preprocessing steps for preparing
our training data.

(1) Dealing with multimodal data: Preprocessing for harmoniz-
ing images from two different sensors include orthorectifi-
cation and spatial registration on a global reference system
for geo-alignment, and image normalization by scaling the
pixel values to the same scale of [0-255]

(2) Cloud removal: The cloud masks supplied with the WV-2
and S2 data sets are of poor quality and cannot be used for
creating clean ground truth data for training our network.
Therefore, to obtain cloud-free images, we convolve a 40×40
averaging filter over the data and substitute the pixels with
RGB values below 40 with the cloud-free pixel values from
the same geolocation in a different time step. We apply the
same mask to the ground truth data in order to update the
labels with appropriate class information.

(3) Creating training and test sets: We create 400 × 400 patches
from theWV-2 data and decimate the patches down to 80×80
patches using bilinear upsampling. We use 8000 such patches
representing uniformly all classes in our training set, that
we batch normalize before training. All results are reported
on 2000 test patches.

It should be noted here that, other than resolution differences,
there are several differences between the images in our data set.
These include spectral shifts due to sensing and lighting conditions
during imaging. We do not adjust for any of these differences in
our preprocessing since we want our framework to learn domain
invariant features of these reef classes that go beyond spectral
properties.

3.3 Results
In this section, we report the results of several experiments. As men-
tioned in Section 1, our framework not only doubles the accuracy
of state-of-the-art coral reef mapping systems, but also, for the first
time, allows for the creation of meter-scale maps. However, in this
section, we provide more objective comparisons to baseline meth-
ods that could be used instead of this framework for developing
these reef maps.

For our comparison with the different baselines, we train on
certain patches of the Peros Banhos island, and report our results
on unseen patches of the same island.

• Baseline 1: In this setting, we test the performance without
domain adaptation and GAN-based super-resolution. That
is, we switch off the domain classifier branch of the DANN

https://www.livingoceansfoundation.org/


Figure 5: Violin plots for demonstrating the performance of accuracy (top left), IoU (top right), precision (bottom left), and
F1 measure (bottom right) for the LAPDANN framework in comparison to the three baselines described in Section 3.3. The
center lines indicate the average value of the performance metrics and the shapes indicate the distribution of scores over all
classes. A narrow tail of the plot indicates very few observations in that metric value range. For example although LAPDANN
has a relatively high range for both IOU and F1 scores, its narrow tail towards the bottom indicates higher concentration of
high metric value (desired) for most of the data.

network and evaluate what would have happened, had we
trained only on WV-2 data and then tested the classifier on
S2 data. To make sure all metrics are reported at the same
frame of reference, we scale the output of the classifier using
bilinear interpolation.

• Baseline 2: This is a slight variant of Baseline 1, where instead
of using a portion of the DANN network as the shallow
classifier learned on WV-2, we use a deep CNN which is
a variant of the VGG16 architecture [18] that was trained
with optimal hyperparameter settings for WV-2 data to have
86% accuracy on an average overall classes on WV-2. In
addition, an SRCNN network [9] is trained to synthesize
high-resolution versions of the S2 data and the classifier
trained on WV-2 is tested on these synthesized data sets.

• Baseline 3: Baseline 3 is a variant of Baseline 2 where the
VGG16 architecture is trained on decimated WV-2 data,
rather than on the original resolution and then tested on
Sentinel. The output segmented image is then bilinearly in-
terpolated to WV-2 resolution.

Figure 5 shows the performance of our LAPDANN framework
in comparison to the above baseline cases using violin plots. Violin
plots show the distribution of the error metrics over the classes,
in addition to the mean and variance of the metric. For reporting
performance, we chose the following metrics: accuracy, precision,
F-1 score, and intersection over union (IoU).

As seen in Figure 5, the mean performance of LAPDANN is bet-
ter compared to the baselines for all metrics. In addition to that,
the variance of the errors for all classes is low for the accuracy and
precision metrics. The narrow tail of the violin plot for the IoU
and F1-score indicates that for a specific class our framework per-
formed poorly compared to the average performance across other
classes. The mean performance metrics are significantly lower for
all the baseline methods, indicating that irrespective of how good
a classifier is, it does not scale to other domains if not trained for
domain adaptation. Additionally, baseline 2 performance exception-
ally poorly indicating that super-resolution attempts on the original
satellite imagery are a futile exercise for classification purposes,
for a 5x resolution difference. When trained over a single island,
the results show a minimum of 120% improvement in accuracy and
160% improvement in IoU.

In addition to training our framework to data from only the
Indian Ocean, we experiment with training a more generalizable
framework that can learn the domain invariant features from mul-
tiple geographical regions. This poses an additional challenge in
terms of learning, given that coral reefs in different regions have dif-
ferent morphological characteristics. The metrics for this scenario
are reported in Table 1. Although we observe here that our algo-
rithm significantly outperforms baselines for all metrics, it should
be noted that the overall performance drops in this case compared



Figure 6: Segmentation results for the island of Fulaga, that
is unknown during training. Images (a) and (b) are observa-
tions of Fulaga from WV-2 and S2 respectively. Image (c) is
WV-2 based groundtruth. Image (d) is the output of the LAP-
DANN framework.

to the previous set of results based on a single region. This is ex-
pected given the additional complexity of the domain adaptation
problem. However, we anticipate that more training data, over mul-
tiple islands, capturing the variations in sensing conditions will
mitigate this performance issue.

LAPDANN Baseline 1
Accuracy 0.466 0.106
IoU 0.303 0.069
Precision 0.440 0.148
F1 score 0.411 0.121

Table 1: Table showing performance metrics for LAPDANN
trained on Pacific Ocean and Indian Ocean islands simulta-
neously.

Lastly, we also experiment with the scenario where we train on
a subset of islands and test on an island that is new. This scenario
is particularly important for creating global maps, given the fact
that labeled data is not available for all regions on the map. Figure
6 shows the segmentation of the S2 image of the island of Fulaga
that has been left out from the training data. While we can see
classification error on certain classes such as seagrass meadows,
but in general the quality of the coral reef maps, especially for the
coral classes is of comparable quality to the ground truth.

A summary of the results for the three scenarios is shown in
Figure 7. This figure allows a visual comparison of the quality of
results for the different scenarios we experimented with. The first
two rows illustrate results for training on Peros Banhos island alone.

The next two rows show results when training is done on different
geographical locations simultaneously, while the last two rows are
for testing on an unknown island (Fulaga). Although the quality
of the results progressively goes down with increasing problem
difficulty, the overall results still significantly improve state-of-the-
art performance.

4 CONCLUSION
Aquatic ecosystems, particularly coral reefs, remain quantitatively
misrepresented due to low-resolution remote sensing as a result
of refractive distortion from ocean waves, optical attenuation, and
remoteness. Harmonizing multimodal data sets acquired using dif-
ferent remote sensing instruments presents additional challenges
such as spectral shifts across domains that lead to poor generaliza-
tion performance of trained classifiers. This significantly hinders
our understanding of patterns and processes in marine biodiver-
sity at a time when these ecosystems are experiencing unprece-
dented anthropogenic stress. In this work, we develop LAPDANN,
a deep learning-based framework for extracting domain invariant
features from two different remote sensing imagery and creating
high-resolution global maps of coral reefs. Although the DANN
framework has been used for multi-domain classification in the
past, it has never been used for images with varying resolutions.
Additionally, synthesizing high-resolution remote sensing scenes,
given their low-resolution counterparts, is a non-trivial problem
even with the most sophisticated deep neural nets and a significant
amount of training data. Therefore, our idea of training the domain
adaptation part of LAPDANN on decimated high-resolution data
and then using the LAPGANN network to synthesize the high-
resolution segmented map significantly boosted the performance
of our framework, as illustrated in Section 3.3. This framework
allows us to generate, for the first time, coral reef segmentation
maps at 2-meter resolution, which is a significant improvement over
the kilometer-scale state-of-the-art maps. Additionally, this frame-
work improves performance metrics over baselines by significant
margins across all test scenarios.

To improve the performance of LAPDANN, we plan to extend our
work to incorporate multiple options. We are working with marine
habitat experts to gather feedback on scenes that are segmented
using LAPDANN, in order to collect additional and refine existing
training data. We are also designing a game using high-resolution
scenes of coral islands for collecting labels through citizen science.
We envision using active learning for incorporating good quality
labels collected in this way to improve the performance of our
framework. Additional domain knowledge incorporation through
smoothing functions might also help with eliminating noisy seg-
mentation results.
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Figure 7: Segmentation results on image patches from Sentinel. Columns (a) and (b) are WV-2 and S2 image patches from the
test set respectively. Column (c) shows high-resolution ground truth on WV-2 images. Column (d) presents the results of the
LAPDANN framework. The first two rows are results of training and testing based on a single island. Rows 3 and 4 show results
when the framework is trained and tested on all available islands. The last two rows correspond to results obtained on patches
of the Fulaga island, not included during training.
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