Detecting Abnormal Machine Characteristics in Cloud Infrastructures

Kanishka Bhaduri Kamalika Das Bryan L. Matthews
MCT Inc., NASA Ames SGT Inc., NASA Ames SGT Inc., NASA Ames
Moffett Field, CA-94035 Moffett Field, CA-94035 Moffett Field, CA-94035
Kanishka.Bhaduri-1@nasa.gov Kamalika.Das@nasa.gov Bryan.L.Matthews@nasa.gov

Abstract—In the cloud computing environment resources are in the system. In case of failures, these faults may quickly
accessed as services rather than as a product. Monitoring # propagate causing wide spread damage. Therefore system

system for performance is crucial because of typical pay-pe — 5qminjstrators would like to automatically detect thesétéa
use packages bought by the users for their jobs. With the huge as earlv as possible for earlv mitigation strateaies
number of machines currently in the cloud system, it is often y P y g gies.

extremely difficult for system administrators to keep track of all Event monitoring programs such as Ganglia provides a
machines using distributed monitoring programs such as Gan ~ web based visualization interface for allowing the system
glial which lacks system health assessment and summarization gdministrators to view different parameters pertaininthe
capabilities. To overcome this problem, we propose a techgile ha451th of each of the machines in the distributed infrastruc
for automated anomaly detection using machine performance - . .) .

data in the cloud. Our algorithm is entirely distributed and tu.re. Detailed list of the parameters are given in SeCt'qn V.
runs locally on each computing machine on the cloud in order ~ Given there are hundreds to thousands of machines in the
to rank the machines in order of their anomalous behavior — system, visual inspection of system performance may be too
for given jobs. There is no need to centralize any of the |ate or nearly impossible. Moreover, it is also imperative t
performance data for the analysis and at the end of the analys, jgq|ate the fault to a few subset of variables (fault isokali

our algorithm generates error reports, thereby allowing the
system administrators to take corrective actions. Experirents AN automated fault detection and isolation technique is

performed on real data sets collected for different jobs vatlate necessary in such scenarios.

the fact that our algorithm has a low overhead for tracking In this paper, we describe an automated fault detection
anomalous machines in a cloud infrastructure. framework for cloud systerRDCSwhich runs on top of the
Ganglia system. The algorithm is entirely decentralized; a
|. INTRODUCTION a result does not burden any single machine with excessive

Cloud Computing [1] refers to the infrastructure in which workload and at the same time does not require all the
applications are delivered as services over the Internetlata to be centralized for executioRDCS takes all the
These infrastructures are supported by very large netwlorkemeasurements of Ganglia into consideration and reports a
distributed machines. Users typically can pay for the timeranked list of the machines based on its anomaly or fault
they would like to use these resourcesy. CPU usage per score. Moreover, for each machine in this list, a system
hour or storage costs per day. This mode of computation igdministrator can display the most faulty variable which
beneficial to both the user and provider for several reasonsaused the anomaly. The algorithm uses distance based

« by allowing pay-per-use model, the users can run theinomaly definition to identify if a machine is faulty or not.

jobs with less cost investment compared to owning thdt is extremely fast and can run continuously on changing
machines themselves data, thereby allowing an uninterrupted monitoring of the

. since there is a cost associated with the loan of thénachine performance. Usirf§DCS one can take corrective

resources, users will always have an incentive to retur@ctions early before they become fatal faults and thereby

them, when no longer needed degrading the overall system performance.
. an easy way for the cloud provider to add resources The rest of the paper is organized as follows. In Section
when the demands are not met anymore Il we discuss some previous work related to this area of

With the introduction of any new technology, there is a|WaySresearch. N.e>_<t. in Sectlon_ Il we discuss the notations and
a need for developing techniques for health assessment BfoPlem definition. In Section IV we present our fault detec-
these systems. This is true even in the case of clouds, wheHon and isolation kDCS) framework. Empirical evaluation
providers strive for availability and responsiveness ainc IS Presented in Section V. Finally, we conclude and discuss
expectations on the side of the users are high. System admifome future directions in Section VI.

istrators in charge of such systems have a daunting task in T

maintaining them given hundreds and thousands of machines _))
In this section we present some work related to this area

lganglia.sourceforge.net/ of research.

. RELATED WORK

Arshad et al. [2] presents a framework for intrusion and based on statistical tests for fault detection. The main
detection and diagnosis for clouds. The goal of the papeidea behind it is to compare machines performing the same
was to map the input call sequences to one of the fivéask at the same time. A machine is flagged as abnormal
severity levels: “minimal”, “medium”, “serious”, “critial”, when it deviates from the normal behavior. The authors
and “urgent”. The authors have used decision trees for thidemonstrate three tests within this framework and provide
task. The tree learns rules which can perform predictionsheoretical guarantees on the false detection rates of the
on unseen instances. Experiments with publicly availablgoroposed tests. The experiments are performed on several
system call sequences from the University of New Mexicoproduction services of various sizes and natures, inctudin
(UNM) show that the algorithm exhibits good performance.ones using virtual machines. However, this method is not
A similar approach was also developed by Zhengal. [3] distributed, thereby requiring one machine to run the tests
and [4]. The last paper uses canonical correlation analysis
(CCA) for tracking maximally correlated subspaces over
time. One problem with both these techniques is that they In this section we present some notations which are

both need labeled examples for training which are difficulthecessary for discussing oBDCS framework.
to acquire. Let P,..., P, bep machines in the cloud infrastructure

Most of the existing techniques for failure detection connected to each other via a communication infrastructure

are rule-based [5] which defines a set of watchdogs. Théuch that the set of (one-hop) neighbors/f I'; is known
method comprises of monitoring a single sensor using som#® Fi. EachP; holds a dataseb; (e.g.its status or log file)
hard thresholds. Whenever, the sensor value crosses tg@ntainingn vectors each irR?. We assume

threshold, an alarm is raised. However, this threshold sieed « Disjoint property: D; N D; =0, Vi # j

to be changed for different types of jobs to prevent missed « Global property: D = J!_, D;

detections and false alarms. In real applications, it is not feasible to compufedue to
Bodik et al. [6] develop a method for identifying time massive data sizes, changing datasets or both. In this,paper

cycles in machine performance which fall below a certainwe have only introduced this notation to formally define our

threshold. They use quantiles of the measured data tglobal fault detection task via distributed processing.

statistically quantify faults. They optimize the false pive Given two user-defined parameterg > 0, let Ny (z, D)

rate and provide the user to directly control it. This methoddenote the set of nearest neighbors frodD \ {z}}

was evaluated on a real datacenter running enterprise levg} » (with respect to Euclidean distance with ties broken

services giving around 80% detection accuracy. Howeverccording to some arbitrary but fixed total orderirg.

as with some of the previous techniques, this method toQet 4, (x, D) denote the maximum distance betweeand

requires labeled examples. An overview article on thisdopi all the points inNy(z, D) i.e. the distance between and

is available at [7]. its k-nearest neighbors . ;(z, D) can be viewed as
Pelleget al. [8] explore failure detection in virtual ma- an outlier ranking function Let O, x(D) denote the top

chines. They use decision trees to monitor counters of the points (outliers) inD according tod,(., D). In the rest

system. First of all, this method requires labeled instanceof the description, for simplicity, we rewrite\, (b, D),

for training and. Moreover, the counters which are moni-5; (b, D) and O; (D) as Ny (b), dx(b) and Oy,.

tored are manually detected which reduces the scope of its

general applicability. It is only suitable for well managed Definition 3.1 (Distributed fault detection)siven
settings that include predictable workloads and previouslintegerst, k > 0, and dataseD; at each machine’;, the

seen failures. goal of distributed fault detection algorithm is to compute
Some data mining techniques have also been applied fahe outliersO;, (in D = |J Dy).

monitoring distributed systems.g. the Grid Monitoring

System (GMS) by Palatiret al. [9] and the fast outlier |n the above definition, we have assumed that the dis-
detection by Bhaduret al. [10]. GMS uses a distributed tributed outlier detection algorithm produces the samefet
distance-based outlier detection algorithm, which deteCtout“ers as its centralized counterpart []_2] The disteiou

outliers using the average distanceitonearest neighbors. a|gorithm that we discuss in this paper guarantee g|0ba|
Similar to our method, GMS is based on outlier detectioncorrectness.

and is unsupervised and requires no domain knowledge. But

the detection rate of GMS can be very slow due to the !V- FAULT DETECTION IN CLOUD SYSTEMS (FDCS)

guadratic time complexity of-nn computation. The authors In this section we describe our Fault Detection in Cloud

in [10] propose to speed up this computation using fasSystems FDCS) framework in which the participating ma-

database indexing and distributed computation. chines in a cloud computing environment can collaborativel
Gabelet al. [11] presents a technique for latent fault de- track the performance of other machines in the system

tection on clouds. The proposed framework is unsupervisednd raise an alarm in case of faults. Our algorithm relies

IIl. NOTATIONS AND PROBLEM DEFINITION

on in-network processing of messages, thereby making itAlgorithm 2: FDCS pull mode at any maching&;.
faster than the brute force alternative approach of data procedure PULL_Anom()
centralization. Moreover, as we discuss in this section, it pegin

also allows fault isolation — determining which features ar for all = € received buffedo
most faulty — which is valuable to take remedial actions. Extract (¢, NNy (2),7.) from received buffer

In our distributed setup, we assume that there is a central UpdateLy,(z) using Ny (z) and NNy (x);
machine in the cloud infrastructure called reporter which Updater;
does the final reporting of all the outliers. We also as- if r, > ¢; then
sume that all computational entiti€y, ..., P, form a uni- if # originated in machineP; then
directional communication ring (except the leader machine Send(z,r,, Lx(z)) (a potential outlier
Py) i.e. any machineP; can communicate with the machine L message) to the reporter machirg)
with the higher idP; + 1, 1 < i < p. Furthermore, each else Send(z, £y, (z), ;) to machinePi,
machine holds its own data partitidp; while the test points mod p;
are either sent by?, or read from the disk.

At any point of time, P, maintains a current list of | elseri <7+ 1

» 40 L

outliers O, found so far. These are the points which, by
definition, currently have the highest anomaly sca@igsD)

on the global dataseD. When the algorithm starts));

is empty and it gets updated as new candidate outlier
are received fromP, ..., P,. Another quantity which the
reporter needs to maintain is the cutoff thresholahich is

g’he goal of the push mode is to test a block of data read from
the memory, populate ité-nn based on its local dataset,
prune the points which are less than the current threshold
and then send the residual number of test points to the next

initially set to —oo and it monotonically increases in value o . : X
as more and more outliers are found. WheneWgrchanges machine in the ring. The details of this step are as follows.
' ‘1 Machine P, maintains a threshold; it has received from

it is set to the smallest value iR, and then broadcast to all < C=
the reporterP,. Initially ¢; = —oco. For each poinbt in the

the other machines in the cloud for more efficient pruning data blocks hi | A
of outlier points. test data blockB, machineP; also maintains:

e Li(b)— the k-nearest neighbors found thus far for

o mp=max{[[b—y| :y € Li(b)}
Initially, £;(b) + 0 andr, = 0 for each pointb € B.
The algorithm populate€(b) for b and checks to see if
the current score ob is belowc; i.e. if r, < ¢;. If this is

Algorithm 1: FDCS push mode at any machine.

Procedure PUSH Anom()
begin

for all blocks of data inD; do true, then the point is no longer tested and pruned; otherwis
B+ getNextBlock(D;); b along with its nearest neighbors found so f3y(b) and
for all pointsb € B do r, are forwarded gushedl to the next machineP,, for
| Li(b) < 0; validation.
for all pointsz € D; do In the second phase &DCS which is thepull phase,
for b€ B,b+# x do the goal of the algorithm is to check the received buffer for
if dist(,z) < r, or |L(b)| < k then messages, extract the anomalies and their nearest nesghbor
UpdateLy(b) with 2 by removing and merge the nearest neighbors with the existing ones.
the farthest point; The pseudo code is shown in Alg. 2. For every paint
Recomputery; in the received bufferp; finds the nearest neighbors from
if 7, < ¢; then NN (x) (which are the best set éfneighbors found so far)
removeb from B; and D;. The neighbor list and the value of are updated
T — T+ 1 accordingly. As a result, if, becomes less than;, then
L - x is pruned. Otherwise, if: originated in P; itself, it has
fo_r be B do survived the pruning of all the machines and is sent to the
Send(b, £, (b),) to machineP,;, leader machine?, (since it can be a potential outlier data
mod p; point). If x did not originate onP;, is forwarded toP; .,
_] with the updated nearest neighbors. Machifethen goes
| L Call PULL _Anom(); back to thepushmode and begins testing the new set of

points. In any step of the execution, if any machine gets
a new cutoff threshold, it immediately sets:; «+ ¢ and

In FDCS each worker has two modes of operatjmmsh resumes the processing.
andpull. Alg. 1 gives the pseudo code for the push mode. Alg. 3 shows the tasks executed by the leader machine in

=

-
==
il -@ |- L _ ~@ [0 | @ -@
Test points

Reference da S5 Reference data Reference dal Reference datdReference dat Reference di
[Test points Test points
B S —
B —_— B > B
11

o = /e = /m

&[] &[] &[]
Reference data Reference data Reference data

Figure 1. Execution of distributed algorithm. The leftmpsatture shows the setup: the test points are color codeddw sthich block is assigned to
which machine. Second picture shows that assignment. Tigiude shows how the non-pruned points are tested at the othehines.

FDCS It initializes the outlier listO;, to null. Whenever it Algorithm 3: FDCSat master machine
receives a new potential outlier it does one of the following Output: Oy, the set of outliers

« If O, contains less than outliers, z is added toO, Initialization : Oy « 0;
« If O, containst outliers, the outlier already i), with if (z, 72, Li(x)) is receivedthen
the smallest score is replaced by peptls
if |Ox] <t—1then
If due to either of these computations, the outlier list LAddx to Og;

becomes full, the cutoff is set to the score of the smallest .
) L . if |Ox] =t—1 then
outlier and it is then broadcast to all the machines. . .
¢+ min{di(y, D) : y € O };

Fig. 1 shows a snapshot of the distributed algorithm. The Broadcast: to all machines:
leftmost figure shows how 3 machines are connected in a
ring. The test points are shown in the middle, color coded to
show that each block is assigned to one machine. The second
figure shows its initial assignment. As the test blocks move
in the ring, each machine prunes points as nearest neighbors
are found. As a result, the size of the test blocks shrinks.
This is shown in the last figure.

One critical component of any distributed algorithm is the
termination criterion. INFDCS this can be implemented in
one of two ways. Each machirf keeps track of;, the total
number of points that it has pruned, and the leader machin@heredist(x, y;) is the squared euclidean distance between
keeps track ofp, the total number of points it received as = andy;:

((G _)2

potential outliers. Periodically the leader polls the waxk
This shows that the overall score can be decomposed

for their values ofr;'s. Whenever) ! 7, + p = |D|,
amongst its individual components and the contribution of

if |Og| >t then

if r, > min{dx(y, D) : y € O} then
Drop y € Oy with minimum d;
Add z to Oy;
¢ < min{og(y, D) : y € Ok };
Broadcast: to all machines;

M&

i) dist(z,y;)
the leader sends a terminate message to all the machines.

Alternatively, each machine can send a termination signal
to the leader when the remaining test block size becomes

j=1

zero.
the j-th (= 1 : d) variable towards the outlier score is:
k
1 . AN 2
A. Fault Isolation - 3 (x(.y) _ ylw) .
=1

In FDCS it is fairly easy to isolate the attribute or feature This is the quantity that we have used in our experiments

which caused the outlier score to be high. Lgtbe the as the contribution of thg-th feature towards the overall
entity with the highest anomaly scoree(dx(x, D)) and score.

Y1, Y2, - - -, Yr b€ itsk-nearest neighbors. Then, the anomaly
score is: B. Efficient Preprocessing for Faster Computation

k
_ 1 Zdz’st z, ;) It has been shown earlier in [10][13] that distance based
algorithms suffer from computational overhead due to its po

tential quadratic time complexity. To overcome this, Bhadu CPU usage, RAM usage, disk access, secondary memory
et al.[10] proposed a novel reordering technique of the dataaccess, job submission time, job completion time, boot time
In the main technique, the test points are ordered accordingf the machine and so on. The parameter list is shown in
to their distance to a fixed (randomly chosen) point in spaceTable V-C. The system monitors the performance parameters
with the largest being the one tested first. Moreover, wherevery 15 seconds and logs the average for each 6 minute
searching thek-nn of a single point, the data is processedinterval. The files are exported daily at this resolution in
in a spiral fashion as shown in Fig. 2. They have showncomma separated format.

that this search strategy exploits better spatial logadihyd)

therefore, shorter running times. Also by ordering the tesC: EXPerimental Setup

points in largest to smallest distance to a fixed point, it is For our experiments, we monitored the cluster perfor-
intuitive that the cut off may increase faster, resulting inmance in a controlled environment by submitting a fixed
better pruning. We have used this index at each machine afet of 64 jobs to run on 8 machines for 3 days. Our job
our distributed algorithm to execute the local computationconsists of reading 200 MB numerical data followed by a
faster. kernel and SVD computation, and finally writing the solution
on disk files. The code written in MATLAB is shown in
Figure 3. TheFDCS algorithm in our experiment uses the
last 27 parameters.

D. Results

The cluster performance data for each of the 8 machines
concatenated as 6 minute composites for 3 days is stored
locally at each machine and we run the distribukCS
algorithm on this data to identify the top 50 global out-
liers. The outliers identified are uniquemachine-id-time
interval> tuples in this data set. The report generated by

: FDCSidentifies the most frequent machine id in this list of
e top 50 outliers and returns that machine as the highest danke

, - _ _ _ faulty machine for the given job and time period. Figure

Figure 2. Description of the index. Left figure shows a ddtasth normal .

points in blue, outliers in red and the reference and testtpdihe right 4 shows a possible report generated as the output of the
figure shows the order in which the test points are processtadhve points ~ FDCS algorithm. The report lists the top (user specified)
farthest from the reference point being processed first. number of anomalies from the entire data set. For each of the
anomalies, the algorithm computes the anomaly scores and
also the respective weights associated with the parameters
responsible for the anomalous behavior. The histogram on
In this section we describe an empirical evaluation of ourthe right of Figure 4 shows the counts of the most anomalous

Test point

J1apJo uiod 1581
-0-000-6-0-00- 66 0090806

Reference point

V. EXPERIMENTS

FDCS algorithm. machines in the tog list. The most frequently occurring
o machine id in the togk list is designated as the most faulty
A. Infrastructure Description machine in the list.

FDCS algorithm is implemented in C/C++ using MPI The FDCSalgorithm can not only identify the most faulty
architecture for message passing. We have run all oumachine for a job, but also can isolate the cause of the
experiments in a cluster infrastructure at NASA containingfault by indicating the parameter which behaves in the most
128 nodes with 16 machines each having two, quad corerratic fashion compared to the others. In our analysis,
Intel Xeon 2.66 GHz processors and 8 GB of memorythe cluster shows no signs of anomaly and, therefore, we
running Red Hat Linux. Cluster jobs are managed by thehave artificially injected faults for demonstration purpss
open source torque PBS scheduler. All machines have aWe have made the free swap space of machine number 8
NFS mounted raid array for data storage from a centratlecrease by 80% for 10 consecutive intervals towards the

machine connected through Gigabit Ethernet. tail end of the job and then run tieDCSalgorithm on this
o data set. We see that the algorithm reports machine 8 as
B. Data Description the most anomalous machine and the free swap space and

The data collection for this experiment has been doné¢he processor load as the two most anomalous features in the
using the cluster performance parameters recorded by thaata set. Figure 5 shows the plot of these two features for the
Ganglia monitoring system version 3.0.7. There are a tota¢ntire job span. The red curve represents the time series for
of 30 parameters measured here which cover different pemachine 8 while the blue curve represents the most normal
formance aspects of the cloud (cluster in this case) such asne series for the same feature. We call the machine with

job schedule| date, time, boottime
network bytes in, bytes out, pktsin, pkts out
processor | cpu aidle, cpuidle, cpunice, cpunum, cpuspeed, cpusystem, cpuuser, CpUwio
process load fifteen, loadfive, load one, procrun, proc total

main memory| mem buffers, memcached, menfree, memshared, mentotal, part max used
storage disk_free, disk total, swapfree, swaptotal

Table |
LIST OF PERFORMANCE PARAMETERS OBTAINED USINGANGLIA

tic
SRCDir=indtruct.3RCDir;
filelist=dir([SECDir, '*.mat']):
filelist={filelist.name};
E=zeros(length(filelist));
%% Read Files and build sub kernel %%
for i=l:length(filelist)
Flightl=load([$RCDir,filelist{i}]):
for j=l:length(filelist)
FlightZ=load([$RCDir,filelist{i}]):

Eii,j)=neaninean(exp (Flightl.Flight.data(: , 1:10))) J+nean (nean {exp (Flight2, Flight.data(: ,1:10))))

end
end
Results.Puntime.ReadBuildiubKernel=toc;
%% Build full kernels
Efull=zeros(length(filelist)¥6);
count=1;
for i=l:6

for j=1:6
if (mod(count,2))

Efull((i-l)*length(filelist)+l:i*length{filelist), (j-11*length{filelist)+l:i*length(filelist)) =K;
elae

Efull({i-l)*length(filelist)+l:i*lengthifilelist), (j-1)*lengthifilelist)+l:j*length(filelist)) =inv(K);
end

end
end
%% HSolwe for SVD%%
[U,%,V]=awd (Kfull) ;
Fesults.Puntime.BuildEigKSolveiVD=toc-Results.Runtine. ReadBuildiubEernel ;
%% Write out 3VD%%
cavwrite ([' /datad /bnatthew/IDU Cluster Test/U',nunZstr{initruct.plum),'.caw'], T ;
cavwrite ([' /dataZ/buatthew/IDU Cluster Test/3',numZstri{initruct.plhum),'.cavw'],3);
cavurite (['/datad /bnatthew/IDU Cluster Test/V' nunistriinitruct.plum),'.caw'], 5
Fesults,Puntime.WritefutResults=toc-Results.RBuntine.BuildBigKEiolvedVD;

Figure 3. Matlab code for fictitious job used to measure eluperformance

the lowest frequency of occurrence in the topist as the been extremely memory intensive. On the other hand, quite
most normal machine. a few anomalies in the processor load variable occur during
the execution of our submitted job, indicating that the out

In another scenario, we have run our experiment in gop, js 5 computation intensive job adding to the processor
regular cluster environment with multiple other jobs rurgi |554.

simultaneously. For this data, we identify the featureg tha

occur the maximum number of times in the tbgnomaly VI. CONCLUSION

list. The processor load and memory cache appear to be Given a cloud infrastructure with hundreds to thousands
the two most frequent parameters identified to be mosbf machines, it is always a challenge for the system admin-
anomalous. Figures 6 and 7 shows the time series of boftistrators to monitor the health of the machines. Monitoring
of these features for the entire 26 hour period that weprograms such as Ganglia only allow the administrators
have monitored the cluster system. This experiment vaiat to visualize the performance of all the machines using a
that the anomalies identified by the centralized and theveb based GUI. As the scale of the system increases, it
distributed algorithm are identical. Most of the anomaliesis imperative to develop automated methods to detect the
for the cache memory are outside of our submitted jobfaulty machines and isolate the causes before these faults
execution indicating that the other job(s) running mustehav have cascading effects on the entire system. By replacing

System Load

12

10

—Anomalous Node (8)

—Normal Node (1)

5 10

.15
Time (Hours)

(a) CPU load vs. time

20 25

—Anomalous Node (Node 8)
—Normal Node (Node 1)

5 10 15 20 25
Time (Hours)

(b) Free swap space vs. time

Figure 5. Time series plots of two most anomalous featureshi® most faulty machine identified by tf#DCS algorithm

Fault Report

Cluster Name: IDU
Submission date: 08. 15. 2011
Start time: 09:08:22

Cluster
Finish date: 08. 18. 2011
Finish time: 08:48:16

Job ID: XXXXX

[T NE RS

Top k (=10) Faults Identified

. <M-508152011_2016>
. <M-808182011_0118>
. <M-808172011_2312>
. <M-808172011_2318>
. <M-108162011_1516>

6. <M-808172011_2330>
7.<M-108162011_1522>
8. <M-8 08172011_0106>
9. <M-408162011_0702>
10. <M-4 08152011_0012>

M-8

Most Faulty Machine

List of fault parameters
O swap_free
QO cpu_system

Anemaly Count

15—
WNomal Nodes
WAnomalous Node

Nodes

10
=% 2 @ & £ 8 7°°8

Figure 4. Sample report generated for identifying the taputliers in the
performance data. The report highlights the most faulty himecfrom the

top & list.

—cpu system
+ Anomaly Identified
2.5/1---Job Start
—Job Finished
ok
1.5r
1
0.5r
A
A
0 5 10

Figure 6. Time series plot of CPU load for the entire monitgrduration

15
Time (Hours)

with anomaly time points highlighted for Machine 8

6

15%20 .
~|—Mem cache :
« Anomaly Identified
1.4/~ 30b Start 4
—Job Finished
1.3F
1.2f
1.1F
1 L
0975 10 15
Time (Hours)
Figure 7. Time series plot of cache memory for the entire hooing

duration with anomaly time points highlighted for Machine 8

the human in the loop by an automated fault detection tech-
nique, the response time decreases dramatically.FD@S
framework achieves this goal by deploying a distributed
outlier detection algorithm that does not require data to be
centralized, allowing extremely fast detectidfDCS has a
reporting system which returns the top few faulty machines
along with the reasons as to why they are faulty.

As part of future work, we plan to deploy this system to
large production systems to test the performancEE€S

ACKNOWLEDGMENTS

This research is supported by the NASA System Wide
Safety Assurance Technologies project under NASA Aero-
nautics Mission Directorate.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, |. Stoica,
and M. Zaharia, “Above the Clouds: A Berkeley View of
Cloud Computing,” Electrical Engineering and Computer
Sciences University of California at Berkeley, Tech. Rep.
UCB/EECS-2009-28, 2009.

[2] J. Arshad, P. Townend, and J. Xu, “An Automatic Intrusion
Diagnosis Approach for Clouds,hternational Journal of
Automation and Computingol. 8, pp. 286—296, 2011.

[3] A. X. Zheng, J. Lloyd, and E. Brewer, “Failure Diagnosis-U
ing Decision Trees,” irProceedings of the First International
Conference on Autonomic ComputirP04, pp. 36—43.

[4] H. Chen, G. Jiang, and K. Yoshihira, “Failure Detection i
Large-Scale Internet Services by Principal Subspace Map-
ping,” IEEE Trans. on Knowl. and Data Engvol. 19, pp.
1308-1320, 2007.

[5] M. Isard, “Autopilot: Automatic Data Center Managemgnt
Operating Systems Revigwol. 41, pp. 60-67, 2007.

[6] P.Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. An-
dersen, “Fingerprinting the datacenter: automated dleasi
tion of performance crises,” ifProceedings of EuroSys’10
2010, pp. 111-124.

[7] M. Goldszmidt, D. Woodard, and P. Bodik, “Real-time
identification of performance problems in large distrilolite
systems,” inMachine Learning and Knowledge Discovery for
Engineering Systems Health Managemeét Srivastava and
J. Han, Eds. Taylor and Francis, 2011.

[8] D. Pelleg, M. Ben-Yehuda, R. Harper, L. Spainhower, and
T. Adeshiyan, “Vigilant: out-of-band detection of failgrén
virtual machines,"SIGOPS Oper. Syst. Revol. 42, pp. 26—
31, 2008.

[9] N. Palatin, A. Leizarowitz, A. Schuster, and R. Wolff,
“Mining for misconfigured machines in grid systems,” in
Proceedings of KDD’062006, pp. 687—692.

[10] K. Bhaduri, B. Matthews, and C. Giannella, “Algorithnfer
Speeding up Distance-Based Outlier Detection,Pioceed-
ings of KDD'11, 2011, pp. 859-867.

[11] M. Gabel, R. Gilad-Bachrach, N. Bjorner, and A. Schyste
“Latent Fault Detection in Cloud Services,” Microsoft Re-
search, Tech. Rep. MSR-TR-2011-83, 2011.

[12] S. Bay and M. Schwabacher, “Mining distance-basedianstl
in near linear time with randomization and a simple pruning
rule,” in Proceedings of SIGKDD’'Q32003, pp. 29-38.

[13] M. Otey, A. Ghoting, and S. Parthasarathy, “Fast Distied
Outlier Detection in Mixed-Attribute Data SetsPMKD,
vol. 12, pp. 203-228, 2006.

