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Abstract—Regression problems on massive data sets are
ubiquitous in many application domains including the Inter-
net, earth and space sciences, and aviation. Support vector
regression (SVR) is a popular technique for modeling the
input-output relations of a set of variables under the added
constraint of maximizing the margin, thereby leading to a very
generalizable and regularized model. However, for a dataset
with m training points, it is challenging to build SVR models
due to the O(m3) cost involved in building them. In this paper
we propose ParitoSVR — a parallel iterated optimizer for
Support Vector Regression in the primal that can be deployed
over a network of machines, where each machine iteratively
solves a small (sub-)problem based only on the data observed
locally and these solutions are then combined to form the
solution to the global problem. Our proposed method is based
on the Alternating Direction Method of Multipliers (ADMM)
optimization technique. Unlike many other existing techniques,
ParitoSVR is provably convergent to the results obtained from
the centralized algorithm, where the optimization has access
to the entire data set. The experimental results show that
the algorithm is scalable both with respect to accuracy and
time to convergence. We use ParitoSVR to identify flights
having anomalous fuel consumption from a large fleet-wide
commercial aviation database containing thousands of flights.
Along with the algorithmic contributions, this paper also
describes the process of deployment of the ADMM-based SVR
method on a multicore architecture, namely, the NASA Pleiades
supercomputing infrastructure. We have been successful in
running ParitoSVR on millions of training data points and
hundreds of compute nodes.

Keywords-distributed optimization; support vector regres-
sion; aviation;

I. INTRODUCTION

In many application domains, it is important to predict
the value of one feature based on certain other measured
features. For example, in commercial aviation, it is very
important to model the fuel consumption based on input
parameters such as aircraft speed, wind speed, control sur-
faces, engine power, pitch, roll, yaw etc. This is because
according to the Air Transportation Association (ATA), fuel
is an airline’s largest expense at a staggering 17.5 billion
gallons per year1. Identifying flights with abnormal fuel
consumption may help the airlines to do proper maintenance
of these aircrafts and save operating costs. One gallon of
burnt aviation gasoline results in 8.32 kilograms of carbon

1http://www.airlines.org/Energy/Fuels101/Pages/AirlineEnergyQA.aspx

emission2. Given that the aviation industry already is respon-
sible for approximately 5% of the global radiative forcing
(as of 2005) and this green house emission is increasing at
an alarming rate [1], keeping fuel consumption under control
by monitoring the health of an aircraft can also reduce the
carbon footprint of the aviation industry significantly. For
such problems, simple linear regression based on minimizing
the mean squared error between the true and the predicted
values can model the relationship between the input and
the target features, and then these regression models can be
used to identify those observations which are outside of the
normal operating regime.

Support vector machines (SVM) are a class of well-known
classification and regression algorithms which are referred to
as maximum margin learning methods. They maximize the
margin between the inputs and also allow for slack variables
and a regularization term, leading to a more generalizable
model compared to least squares linear regression. Another
advantage of the support vector model is its capability of
handling nonlinearity in the data by first projecting the data
on to a high dimensional space and then drawing a linear
hyperplane in that space, thereby retaining the linear model
fitting algorithm’s benefit of finding the optimal model for
the training set. To avoid this mapping explicitly, support
vector machines exploit the kernel trick, in which a matrix
is built to capture the relationship among all the inputs,
and then a modified optimization problem is solved using
the kernel matrix. Both linear and nonlinear support vector
methods have been shown to have excellent performance for
a variety of tasks.

Support vector machines, however, face computational
challenges — learning is generally O(m3), where m is
the number of training points. This scalability issue renders
this extremely useful data mining tool useless for large
scale applications where m can easily be 106 or more. To
ease this computational burden, many sophisticated SVM
learning methods have been proposed in the literature. For
example, SVM light [2] uses the working set principle,
decomposition-based methods such as SMO [3] solve the
SVM problem by approximating the dual optimization for-

2U.S. Energy Information Administration (http://205.254.135.24/oiaf/
1605/coefficients.html#tbl2)



mulation and solving a smaller problem at each iteration.
More recently, fast algorithms have also been proposed for
solving the primal formulation using some variants of finite
Newton methods. Many parallel/distributed solutions have
also been built relying on some of these techniques, both
for SVM and SVR. Some examples are cascade SVM by
Graf et al. [4] and the PSVM by Chang et al. [5]. Most
of these techniques are approximate and do not guarantee
optimality.

In this paper we propose Parallel Iterated Optimizer for
Support Vector Regression in the Primal (ParitoSVR), a new
support vector regression algorithm that can be deployed
over a network of machines, where each machine solves a
small (sub-)problem based only on the data observed locally
and these solutions are then combined to form the solution
to the global problem. Our proposed method is based on
the Alternating Direction Method of Multipliers (ADMM)
optimization technique [6], which is parallelizable for sepa-
rable convex problems, and converges to the exact solution
as the centralized version with theoretical guarantees. Our
contribution in this paper can be summarized as below:

• We propose an ADMM-based parallel iterated opti-
mizer for solving the primal problem in support vector
regression. We demonstrate that the objective function
in our formulation is separable and propose a parallel
implementation of the above method for addressing
large scale applications.

• Unlike existing distributed support vector regression
techniques, our proposed method computes the globally
optimal solution of the objective function, based on
only the locally available data and minimal message
passing. We solve the global optimization problem in-
volving all the variables with certain amount of numer-
ical approximation errors resulting from the iterative
convergence to the globally optimal solution based on
a user-defined threshold.

• The parallel algorithm is provably convergent to the
results obtained from the centralized algorithm, where
the optimization has access to the entire data set.

• We have implemented and executed the algorithm on
NASA Pleiades supercomputer facility3 and run the
algorithm on millions of data points and hundreds of
computing nodes. Our experiments on a variety of real-
world data sets shows that the proposed method is
highly accurate and scales well both with respect to the
number of training points and the number of distributed
machines.

• We use ParitoSVR to identify flights having anomalous
fuel consumption from a large fleet-wide commercial
aviation database containing thousands of flights.

3http://www.nas.nasa.gov/hecc/resources/pleiades.html

II. BACKGROUND

Our ParitoSVR algorithm uses as a building block two
components: (1) a parallelizable optimization technique
known as Alternating Direction Method of Multipliers
(ADMM), and (2) the primal optimization formulation of
the support vector regression (SVR) problem. In this section,
we discuss these two topics before using these to develop
our ParitoSVR algorithm.

A. Alternating direction method of multipliers (ADMM)
Alternating Direction Method of Multipliers (ADMM) [6]

is a decomposition algorithm for solving separable convex
optimization problems of the form:

min
x,y

G1(x) +G2(y) (1)

subject to Ax− y = 0, x ∈ Rn, y ∈ Rm

where A ∈ Rm×n and G1 and G2 are convex functions. The
method works as follows. First, the augmented Lagrangian
of the actual objective is formed:

Lρ(x,y, z) = G1(x)+G2(y)+zT (Ax−y)+ρ/2 ‖Ax− y‖22
where ρ is a positive constant called the penalty parameter
and z is the dual variable. ADMM iterations can then be
written as:

xt+1 = min
x

{
G1(x) + (zt)TAx+ ρ/2

∥∥Ax− yt
∥∥2
2

}
yt+1 = min

y

{
G2(y)− (zt)Ty + ρ/2

∥∥Axt+1 − y
∥∥2
2

}
zt+1 = zt + ρ

(
Axt+1 − yt+1)

This is an iterative technique where the superscript t denotes
the iteration number, and the initial vectors y0 and z0 can
be chosen arbitrarily. ADMM can be written in a different
form (known as the scaled form) by combining the linear
and quadratic terms of the Lagrangian as follows:

zT (Ax− y) + ρ/2 ‖(Ax− y)‖22 = ρ/2 ‖(Ax− y) + (1/ρ)z‖22 − 1/(2ρ) ‖z‖22

Now defining the scaled dual variable p = (1/ρ)z, the
iterations of ADMM become:

xt+1 = min
x

{
G1(x) + ρ/2

∥∥Ax− yt + pt
∥∥2
2

}
yt+1 = min

y

{
G2(y) + ρ/2

∥∥Axt+1 − y + pt
∥∥2
2

}
pt+1 = pt +Axt+1 − yt+1

ADMM effectively decouples the x and y updates such
that parallel execution becomes possible. In a distributed
computing framework, this becomes ever more interesting
since each computing node can now solve a (smaller)
subproblem in x independently, and then, these solutions can
be efficiently gathered to compute the consensus variable y
and the dual variable p. It has been argued in the literature
that ADMM is slow to converge especially when very high
precision is desired. However, ADMM converges within a
few iterations when moderate precision is good enough. This
can be particularly useful for many large scale problems,
similar to the ones we consider in this paper.



Critical to the working and convergence of the ADMM
method is the termination criterion. The primal and dual
residuals at each iteration are:

rt+1
p = Axt+1 − yt+1 (primal residual)

rt+1
d = ρAT (yt+1 − yt) (dual residual)

A reasonable termination criterion is when the primal and
the dual residuals are below some tolerance i.e.∥∥rt+1

p

∥∥
2
≤ εp and

∥∥rt+1
d

∥∥
2
≤ εd.

where εp and εd are the primal and dual feasibility tolerances
defined as,

εp = ε1
√
m+ ε2 max

(∥∥Axt+1
∥∥
2
,
∥∥yt+1

∥∥
2

)
εd = ε1

√
n+ ε2

∥∥∥ATpt+1
∥∥∥
2
.

where ε1 and ε2 are user-specified thresholds for precision.
These precisions are problem dependent; we have specified
the values for our experiments in Section V.

B. Support vector regression in the primal

Support vector machine [7] is a powerful tool for a wide
variety of regression and classification tasks, yielding good
predictive performance on many datasets. In this section, we
present a brief introduction to support vector regression. For
details, interested readers can refer to the citations above.

Give m data tuples (training set) D = (xi, yi)
m
i=1, where

xi ∈ Rn is the input and yi ∈ R is the corresponding
output or target. To obtain a linear predictor, SVR solves
the following optimization problem:

min
w∈Rn,b∈R

[
1

2
||w||2 + C

m∑
i=1

(ξ+i + ξ−i )

]
subject to

w · xi + b− yi ≤ ξ+i + ξ−i

yi −w · xi + b ≤ ξ+i + ξ−i , and ξ+i ≥ 0, ξ−i ≥ 0,

∀i ∈ {1 : m}, where
• C is a positive constant,
• f(x) = w · x+ b is the learned hyperplane, and
• ξ+, ξ− are the slack variables.

This is called the primal formulation of linear SVR. The
unconstrained optimization problem is:

min
w,b

[
λ||w||2 +

m∑
i=1

`ε(w · xi + b− yi)

]
(2)

where λ = 1
2C and `ε is the ε-insensitive loss function

defined as, `ε(r) = max(|r| − ε, 0). This is a convex
optimization problem which can be solved using convex
optimization solvers such as CVX4. Eqn. 2 is the linear SVR
model, which uses the primal objective function without any

4http://cvxr.com/cvx/

explicit feature mapping. Note that, in the above equation,
we can easily remove the bias term b, by adding a column
of 1’s to the data matrix D and then adjusting the dimen-
sionality of w accordingly.

In the next section we show how to build SVR models
for very large datasets using distributed computing via the
ADMM technique.

III. PARITOSVR FORMULATION

For ParitoSVR algorithm setup, we assume that the train-
ing data is distributed among N client processors (nodes)
P1, . . . , PN with a central machine P0 acting as the server
or collector. The dataset at machine Pj , denoted by Dj ,
consists of mj data points i.e. Dj =

{
x
(j)
i , y

(j)
i

}mj

i=1
. It is

assumed that the datasets are disjoint: Di

⋂
Dj = ∅ and⋃N

j=1Dj = D, where D is the total (global) data set. The
goal is to learn a linear support vector regression model on
D without exchanging all of the data among all the nodes.

Given Eqn. 2, the optimization problem is now:

min
w

[
m∑
i=1

`ε(w · xi − yi) + λ||w||2
]

⇔ min
w

 N∑
j=1

mj∑
i=1

`ε
(
w · x(j)

i − y
(j)
i

)
+ λ ‖w‖2


The inner sum can be computed by each node independently
(assuming that w is known). We next write it in a form such
that it is decoupled across the nodes:

min
w1,...,wN ,z

 N∑
j=1

mj∑
i=1

`ε
(
wj · x

(j)
i − y

(j)
i

)
+ λ ‖z‖2

 (3)

subject to wj = z

In the ADMM decomposition, each node can solve its local
problem using its own data and optimization variable and
then coordinate the results across the nodes to drive them
into consensus. The nodes update the consensus variable
z iteratively, based on their local data and scatter-gather
operations on z until they converge to the same result.

Theorem 3.1: The ADMM update rules for support vector
regression primal optimization are:

wt+1
j = min

wj

{ mj∑
i=1

`ε
(
wj · x

(j)
i − y

(j)
i

)
+
ρ

2

∥∥wj − zt − utj
∥∥2
2

}
zt+1 = min

z

{
λ ‖z‖22 +

Nρ

2

∥∥z−wt+1 − ut
∥∥2
2

}
ut+1
j = utj +wt+1

j − zt+1

where u ∈ Rn is the (scaled) dual variable and wt+1 and
ut+1 are the averages of the variables over all the nodes.

Proof: We can write the augmented Lagrangian for the
objective function in Eqn. 3 as:

Lρ =

N∑
j=1

[ mj∑
i=1

`ε
(
wj · x

(j)
i − y

(j)
i

)
+ λ ‖z‖2

+ mT
j (wj − z) +

ρ

2
‖wj − z‖22

]



where mj ∈ Rn is the dual variable. From Section II-A
we know that each ADMM iteration consists of alternating
between minimizing the primal and consensus variables (w
and z respectively), followed by an update of the dual
variable (m in this case).

wt+1
j = min

wj

{ mj∑
i=1

`ε
(
wj · x

(j)
i − y

(j)
i

)
+ mT

j (wj − z) +
ρ

2
‖wj − z‖22

}

zt+1 = min
z

{
λ ‖z‖22 +

N∑
j=1

[
(−mk

j )
T z+

ρ

2

∥∥∥wt+1
j − z

∥∥∥2
2

]}

mt+1
j = mt

j + ρ
(
wt+1
j − zt+1

)
Let uj = 1

ρmj be the scaled dual variable. Then the w-
update can be rewritten as,

wt+1
j = min

wj

{ mj∑
i=1

`ε
(
wj · x

(j)
i − y

(j)
i

)
+
ρ

2

∥∥wj − zt + utj
∥∥2
2

}
For the z update, let wt+1 = 1

N

∑N
j=1 w

t+1
j and ut =

1
N

∑N
j=1 u

t
j . Then the z-update can be rewritten as:

zt+1 =
Nρ

2λ+Nρ

(
wt+1 + ut

)
(4)

Finally, the dual variable update can be simplified as,
ut+1
j = utj +wt+1

j − zt+1 (5)

The w update can be executed in parallel for each
machine. It involves solving a convex optimization problem
in n+1 variables at each node. This solution depends only on
the data available at that partition. The z update step involves
computing the average of the w and u vectors in order to
combine the results from the different partitions. Critical
to the working of ADMM is the convergence criteria. The
primal and dual residuals can be written as:

rtp =
∥∥wt − zt

∥∥2
2

rtd =
∥∥ρ(zt − zt−1)

∥∥
Also, given the thresholds εpri and εdual, the primal and
dual thresholds can be written as,

εpri = εabs
√
m+ εrelmax(‖w‖ , ‖z‖) and

εdual = εabs
√
m+ ρεrel ‖u‖ .

The iterations terminate when rtp < εpri and rtd < εdual.
The pseudo code of ParitoSVR is presented in Alg. 1,

Alg. 2, and Alg. 3. Alg. 1 is the driver which calls the
ADMM SVR routine to split the data into N chunks. It
then calls the RunDistributedJob function in parallel for
these N subproblems to find the w minimizer. Then it
aggregates the results and updates the z and u variables.
This process is repeated until the primal and dual residuals
fall below the thresholds or the total number of iterations
exceed MAXITER.

——————————————————————
———————————————————————

–

Input: D, ε, λ, ρ, N , MaxIter
Output: w of the SVR model
Initialization: Initialize z0, u0

Split D into D1, . . . , DN ;
Call ADMM SVR(D1, . . . , DN , ε, λ, ρ, N , MaxIter)

Algorithm 1: ParitoSVR

Procedure ADMM SVR(D1, . . . , DN , ε, λ, ρ, N , MaxIter)
forall the t=1 to MaxIter do

forall the j=1 to N do
wt
j = RunDistributedJob(Dj , ε, λ, ρ, ut−1, zt−1);

end
zt = Nρ

2λ+Nρ

(
wt + ut

)
;

forall the j=1 to N do
utj = ut−1

j +wt
j − zt;

end
if rtp < εpri and rtd < εdual then

break;
end

end
Return w

Algorithm 2: Procedure ADMM SVR

IV. ANALYSIS

In this section we present the message complexity, run-
ning time and convergence analysis of ParitoSVR.

A. Message complexity of ParitoSVR

In each iteration, the distributed nodes compute w based
on last iterations u and z. Hence, we need to send u and z
to the compute nodes, resulting in 2n message complexity,
assuming each vector is in Rn. As w needs to be broadcast
by the compute nodes, per node messages increase to 3n.
Hence the overall message complexity is MaxIter× 3nN .
Note that this is independent of the number of training data
points or m.

B. Running time of ParitoSVR

The total running time is comprised of three components.
(1) The w-update which needs iterating over all m training
examples once for computing the inner product with the
n dimensional w vector. The complexity of this step is
O(mn/N) (per node). The worst case number of iterations
in the CVX toolbox has a theoretical bound of

√
n log(1/α),

where α is a very small (≈ 10−9) constant. The cost per

Procedure RunDistributedJob(D, ε, λ, ρ, ut−1, zt−1)
D = {xi, yi}

mj

i=1

w = min
w

{ mj∑
i=1

`ε (w · xi − yi) +
ρ

2

∥∥w − zt−1 + ut−1
∥∥2
2

}
Return w

Algorithm 3: Procedure RunDistributedJob



iteration is a polynomial of the problem dimension using
interior point method ([8], page 8). The overall complexity
of this step is poly(n)

√
n log(1/α). (2) z update requires

us to compute the average of the n dimensional w and
u vectors which costs O(Nn), and (3) u update is an
O(n) computation. Therefore, the overall running time
is O(tmax{poly(n)

√
n log(1/α),mn/N}), where t is the

number of iterations of the ParitoSVR algorithm. It should
be noted that both centralized and distributed ParitoSVR
both need to be run for the same number of iterations to
achieve convergence.

C. Convergence of ParitoSVR

Due to space constraints, formal convergence analysis is
outside the scope of this paper.

Informally, let G1(w) = `ε(w · xi − yi) and G2(w) =
||w||2 be closed, proper, and convex functions of w. Then,
convergence of ParitoSVR is guaranteed [6], thereby imply-
ing:
• primal and dual residual approaches 0 i.e.

∥∥rtp∥∥22 → 0

and ‖rtd‖
2

2 → 0 as k →∞
• the objective function approaches the optimal value
• dual variable approaches feasibility

V. EXPERIMENTS

In this section we demonstrate the performance of the
ParitoSVR algorithm on a variety of real life datasets.

Setup: All experiments to understand the behavior of
ParitoSVR algorithm were run on NASA’s Pleiades Su-
percomputer5 with the following hardware and software
configuration. Each of the worker nodes are based on the
Intel Sandy Bridge architecture with dual 8 core 2.6 GHz
processors and with 32 GB of memory. All nodes’ operating
systems are running SGI ProPack for Linux kernel version
3.0. The nodes are connected to a cluster file system mass
storage device as well as a network file system for home
drives via InfiniBand with a bandwidth of 56 Gb/sec. The
local nodes’ /tmp drive mount is 16 GB, which can be used
to store local files for quick access once the tasks begin.
Pleiades utilizes a PBS scheduler to coordinate the large
amount of jobs submitted by hundreds of users. For solving
the convex problems at each iteration, we have used Matlab
convex optimization toolbox6.

We have run our experiments on five datasets7, four
of which have been previously used in [10]. The fifth
dataset is a proprietary aircraft performance data from a
large commercial airline company. The description of the
datasets along with the parameters used for our study of the
algorithms are given in Table I. Unless otherwise stated, for

5http://www.nas.nasa.gov/hecc/
6http://cvxr.com/cvx/
7http://www.liaad.up.pt/∼ltorgo/Regression/DataSets.html

each dataset, we have used 75% of the data for training and
25% for testing.

For evaluating the performance of our algorithms, we have
measured the RMSE metric on the test dataset defined as:

1

max
i=1:m

yi

√√√√ 1

m

m∑
i=1

(f(xi)− yi)

We have compared the performance (RMSE and running
time) of our ParitoSVR algorithm with a centralized SVR
algorithm using CVX for optimization and having access to
all the data. The reason we have not directly compared our
results with standard SVR solvers is due to two reasons:
(1) most state-of-the-art SVM solvers such as LIBSVM
and SVMLight solve the dual of the optimization problem,
while we solve the primal problem, and (2) the other primal
solvers such as [11][12] use a differentiable approximation
to the original loss function of Vapnik [7] for using a
gradient-based Newton solver. In our ADMM formulation,
we do not require the loss functions to be differentiable.
Nevertheless, we will refer to the accuracy results published
in earlier papers whenever appropriate. We do not report
the number of support vectors since they are very similar
to the ones published in the literature.

ParitoSVR performance: In this section we demonstrate
the performance of ParitoSVR on various datasets. In our
first experiment, we show the behavior of ParitoSVR on
a synthetic dataset. Fig. 1(a) shows the sample dataset
generated from a linear model following y = w×x+noise,
where w is the weight of the regression model. We have
used 2 nodes in this experiment and, for each node, chosen
a different w vector so that each node sees a different data
distribution. The data of the two nodes are shown in two
different colors (circle and plus markers). Also shown in
the figure are the models (straight lines) formed by node
1 at different iterations of ParitoSVR algorithm. As seen,
the algorithm updates the model as iterations proceed. For
comparison, we have also plotted the centralized model
formed by the union of all the data. As clearly shown,
ParitoSVR model in the final iteration is very close to
the model formed by the centralized model. Note that, at
convergence, all nodes have the same model. Fig. 1(b) shows
the primal and dual residuals (rp and rd) in solid blue lines
and the primal and dual thresholds εpri and εdual in red
dotted lines. Fig. 1(c) shows the objective values for different
iterations of the algorithm. For this experiment, we have
used the following values of the parameters: ε = 10, λ =
1, εpri = 10−4, εdual = 10−2.

In the next set of experiments, we report the variation of
RMSE and execution time for different datasets in Table I.
The parameters specific to each dataset are shown in Table I.
The other parameters are set to: εabs = 0.01, εrel = 0.001,
ρ = 0.8, and µ = 1.5. In order to evaluate the performance



Dataset Description Size Parameters
Elevators Predict the elevator position of an F16 aircraft based on other attributes 16559 × 18 λ=30, ε = 10−8

Kinematics Predict the distance of the end-effector of a 8-link robot arm from a fixed 8192 × 32 λ=1, ε = 0.25target. We have used the highly non-linear and medium noisy version.

Friedman[9]
This dataset is generated by first generating the values of 10 attributes,

40768 × 10 λ=0.1, ε = 0.25X1, . . . , X10 each independently ∈ [0, 1]. The target variable Y is
generated as 10 sin(πX1X2) + 20(X2 − 0.5)2 + 10X4 + 5X5 +N(0, 1)

CPU activity Given a number of computer systems activity measures, the task is predict the 8192 × 8 λ=1, ε = 7the portion of time the CPUs run in user mode

CarrierX data This dataset is from a fleet of commercial aircrafts. The task is to predict the 4.4 million × 29 λ=10, ε = 1amount of fuel consumed on an aircraft.

Table I
DESCRIPTION OF THE DATASETS AND PARAMETER VALUES.
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Figure 1. (a) Synthetic dataset. Also shown are the models formed by node 1 as the algorithm progresses. (b) Primal and dual residuals (blue solid line)
for different iterations of ParitoSVR algorithm. The red dotted lines show the εpri and εdual. (c) Change in objective value with different iterations.

of ParitoSVR under distributed setting, we have compared
the algorithm to a centralized execution which has access to
all the data and is run on a single machine. Therefore, in each
subplot of Figure 2, we have 2 graphs – centralized execution
and distributed execution. We have only used 2 nodes for
each of the distributed experiments since the dataset sizes
are reasonably small. As shown in the RMSE plot, both the
executions have similar RMSE values for all the datasets (all
close to 0.1), indicating very good model fit.

Moreover, from literature [10], it is evident that our
results are very similar to those obtained by running
LIBSVM and SVMLight on the same datasets, under
similar settings. For the distributed setting, running time
consists of the total time which includes the job submission
time, the network latency and the time CVX takes to
solve each subproblem. The running time plot in Fig.
2 presents an interesting phenomenon. For each dataset,
the execution time of the distributed setting is greater
than the corresponding centralized setting. Although
each distributed execution solves a smaller subproblem, the
total time is greater due to job overhead and network latency.

Scalability of ParitoSVR: In order to assess the scalability
of ParitoSVR, we have run experiments using the CarrierX
dataset. Specifically, we are interested in analyzing the
effects of varying the (1) number of computing cores, (2)
number of data points per core, and (3) both. We run each
experiment 5 times and report the mean and the variance of

those running times. Fig. 3 presents the results. In Fig. 3(a),
the running time shows a linear growth as the number of
cores is increased while keeping the number of data points
fixed at 250 per core. This trend is primarily due to the
overhead of computation, including network latency, and the
cost to aggregate the information back at the central core.
Fig. 3(b) shows the effect of running time on increasing the
total number of flights, while keeping the total number of
cores fixed. The running time shows super-linear growth.
This is expected, since with increasing number of flights to
process, the per core computation load increases. Finally, in
Fig. 3(c) we show the effect of increasing both the number of
cores and the data points per core. As expected, the running
time decreases, as the number of cores increases. Although
there are two competing forces at play here, viz. increasing
number of cores vs. increasing size of dataset at each core,
we still see a decreasing trend in running time due to greater
benefits of increasing the number of cores.

Figure 4 shows the NMSE on a hold out set of 500
flights, for different runs of the algorithm. In each run, we
varied the size of the training dataset (from 64K to 160K
flights) while keeping the test data fixed. The number of
cores for this experiment were fixed at 640. As we see in
the figure, the NMSE is primarily invariant, demonstrating
excellent accuracy of the algorithm.

Anomaly detection on CarrierX dataset: We use Pari-
toSVR algorithm to detect anomalous fuel consumption in
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Figure 2. RMSE and execution time of ParitoSVR for different datasets both for centralized and distributed setting. For each dataset, test set size is 25%
of the size of the corresponding dataset. As shown here, RMSE values of the centralized and distributed runs of ParitoSVR are comparable. The overall
running time of ParitoSVR in the distributed setting shows some increase due to network latency, while the execution time becomes smaller, since smaller
sub problem is solved at each node.
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Figure 3. Scalability results of ParitoSVR on CarrierX dataset.
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Figure 4. NMSE on test dataset for different runs of ParitoSVR algorithm.
Each run is for a specific size of the training dataset.

a commercial aircraft. We model the average fuel flow as
a function of 29 different parameters that measure system
parameters such as lateral and longitudinal acceleration, roll
and pitch angle, air pressure, and velocity, as well as external
parameters such as wind speed and direction. Since the goal
is to track the fuel consumption of particular tail numbers,
we have used all 1500 flights (≈ 4.5 million training
instances) for a specific tail number for a particular year for
training, and tested subsequent years’ flights for predicting
fuel consumption. Flights for which the mean squared errors
of the predicted instantaneous fuel consumption fall outside
the 3σ boundary of the average mean squared error, are
tagged anomalous (σ is the standard deviation of the mean
predictions). Out of approximately 1800 flights for a test
year, 14 flights were determined to be anomalous. Figure
5(a) shows the mean squared errors for each of the flights
in blue and the 3σ bounds in green. The instantaneous fuel
flow for the top ranked anomalous flight among these 14
flights is shown in Figure 5(b). The red graph depicting

observed fuel flow is significantly higher than the predicted
fuel consumption, shown in blue. The outlier flight was
verified by domain experts to be truly anomalous.

VI. RELATED WORK

Support vector classification and regression techniques are
a class of maximum margin methods. They are posed as
convex optimization problems in the primal and as quadratic
programming (QP) problems in the dual. Typically, the
solution to these problems scales poorly with respect to
the number of training points. Researchers have proposed
efficient algorithms for solving both the primal e.g. [11] and
dual problems e.g. [2].

Several researchers have also developed methods for par-
allelizing or distributing the optimization problem in SVRs.
This is particularly useful when the datasets are large and the
computation cannot be executed on a single machine. The
cascade SVM by Graf et al. [4] uses a cascade of binary
SVMs arranged in an inverted binary tree topology to train
a global model. The input dataset is first split into chunks
and then a set of SVMs is learned in parallel. The SVs of
any two pairs of SVMs in the earlier layer is combined and
then a new SVM model is learned in this step. Hazan et
al. [13] presents a method for parallel SVM learning based
on the parallel Jacobi block update scheme derived from the
convex conjugate Fenchel duality. In a related method, Lu et
al. [14] have proposed techniques in which the computation
is done by the local nodes and then the central node performs
aggregation of the results. In their method, SVMs are learned
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(b) Outlier flight fuel consumption
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(c) Normal flight fuel consumption

Figure 5. Fuel flow study on CarrierX dataset. Fig. (a) shows squared error for all test flights, the 3-σ bound and flights which cross the threshold. Fig.
(b) shows the observed and predicted fuel flow of top ranked anomalous flight. Fig. (c) shows the same for a normal flight.

at each node independently and then the SVs are passed onto
the other nodes for updating the models of the other nodes.

The work most related to the algorithm proposed here is
the consensus SVM method discussed by the et al. [15].
There are several major differences between their work and
ours. Firstly, the goal of [15] is to build a global SVM
model in a sensor network without any central authority.
As a result, they develop an asynchronous algorithm in
which messages are exchanged only among the neighboring
nodes. In contrast, our goal is to build a single SVR model
over a very large dataset and to achieve this we assume a
client-server topology. Secondly, in their work, they assume
that each node has mj number of data points, of which
x1, . . . ,x` are common to all nodes. The ADMM algorithm
discussed in [15] ensures that at termination, each node
achieves a consensus only in these entries of the kernel
matrix. In our case, each node has a partition of the kernel
matrix and our goal is to achieve consensus on all the entries
at termination.

VII. CONCLUSION

In this paper we have proposed a parallel iterated op-
timizer which solves support vector regression in the pri-
mal. Our formulation is parallelizable among a number of
computing nodes connected to a central computing node. In
every iteration of the ParitoSVR algorithm, each node solves
sub problems using its local data and then these partial re-
sults are aggregated to form the solution to the final problem.
Theoretical and experimental results show that our algorithm
is accurate and scalable, ideal for large scale deployment. As
future work, we plan to develop asynchronous version of this
problem for peer-to-peer architectures.
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