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•  Data containers are infrastructures that facilitate storage, retrieval, and analysis of data sets. Big data applications in 
Earth Science require a mix of processing techniques, data sources and storage formats that are supported by different 
data containers. The data containers compared in this study are  
•  AsterixDB,  
•  RasDaMan, 
•  SciDB 
•  Hadoop 
•  HDF 

•  These infrastructures optimize different aspects of the data processing pipeline and are, therefore, suitable for different 
types of applications.  These containers are also all undergoing rapid evolution and the ability to re-test, as they evolve, 
is very important to our handling of the large volumes of observational data and model output. We have identified a 
selection of steps that are relevant to most data processing exercises in Earth Science applications and we evaluate 
these systems for optimal performance for each of these steps in the data processing pipeline. The steps evaluated in 
this study: 
•  Hardware/software dependencies  
•  Data ingestion 
•  Data preparation/processing 
•  Data analysis 
•  Result reporting 

AsterixDB Rasdaman SciDB Hadoop HDF 
Time to convert to .adm file: 
~7541 sec 
~ 32 sec/ MB  
 

Disk space required: 
Raw data ~ 235 MB  
AsterixDB  format  ~2.43 GB 
10 fold increase in disk space 
requirement 
 

 
Workflow: 
 

Time to convert Geotiff file: 

~1 sec/MB 
Can be parallelized 
 
Disk space required: 
Raw data ~ 45 MB  
AsterixDB  format  ~77 MB 
Less than 2 fold increase in 
disk space requirement 
 
Workflow: 
 

Time to convert file: 
Pull data on the fly (OPenDAP); 
Write (1-D) binary data); Load 1-
D and redimension):  
~0.3 sec/MB 
Can be parallelized 
 
Disk space required: 
~2.5 fold increase in disk space 
requirement 
 
 
Workflow: 
 
 

Time to convert to HDFS 
file: 
Involves sequencing, 
mapping, and then using 
Bloom filter for reducer 
~0.4 sec/MB 
Can be parallelized 
 
Disk space required: 
~2.5 fold increase in disk 
space requirement 
 
Workflow: 
 

Time to convert HDF file: 
Data sets are re-chunked and 
compressed 
~ 0.2 sec/MB 
Can be parallelized 
 
Disk space required: 
63% reduction in file size 
 
 

Workflow: 
 

Earth Science Application and Data 

 Data Ingestion and Workflow Data Analysis 

AsterixDB Rasdaman SciDB Hadoop HDF 
Operations 
•  Subsetting (50x50 chunks)  
•  Sorting (**bugs in current 

version) 
 
Operations are parallelizable 
 
Bottlenecks 
•  For parallel sorting (e.g., 

parallel order by) final merge 
is done on one node, which 
does not scale. 
•  The CC (master node) 

compiles all queries. To be 
changed in future versions. 
•  Current design requires 

returning entire result of a 
query in a single object. 
Current max size allowed for 
objects may not suffice for 
large queries. 

 

Operations 
None: Data ingested in 
Geotiff format and entire data 
set used. 
 
 
Bottlenecks 
•  Physical memory and disk 

I/O are main performance 
bottlenecks 
•  Performance can be really 

slow when subsetting 
portions of source images 

Operations 
•  Subsetting 
•  Table join 
•  Constructing alternative 

representation 
 
Operations are parallelizable 
 
Bottlenecks 
•  Operations are local, little 

or no data exchange 
•  Performance bottlenecks 

are being investigated 
 

Operations 
•  Write custom NetCDF to 

Hadoop convertor to keep 
files as sequence files 

•  These files sent to Hadoop 
for storage 

•  Hadoop splits and distributed 
the sequence files across 
HDFS; builds index for 
Hadoop access 

•  Maintains NetCDF metadata 
for each file 

 
Operations are parallelizable 
 
Bottlenecks 
•  Processing is offline mode – 

not useful for adhoc queries 
•  Very large and skewed data 

causes memory issues both at 
mappers and reducers 

 
 

Operations 
•  HDF5 dataset chunks with 

all-missing data not stored 
during the data ingest 
stage. 

•  No subsetting; entire 
temporal and spatial extent 
of data is used after 
ingestion 

•  Sorting only in the 
temporal domain, if 
required, to ensure 
monotonic order of the 
temporal axis. 

•  Data are indexed by 
calculating descriptive 
statistics for each HDF5 
dataset chunk. 

•  Initial data files are 
collated into a single file 
with optimized HDF5 
dataset chunking/
compression. 

Operations are parallelizable 
 
Bottlenecks 
•  File granularity 

(inefficient to copy same 
file to multiple nodes if 
number of nodes > number 
of files). 

•  One processor performs 
aggregation of results, 
could result in bottleneck 
depending on data. 

Data Preparation/Preprocessing 

AsterixDB Rasdaman SciDB Hadoop HDF 
Primitives Tested 
Standard statistics 
computation (mean, std 
deviation) 
•  Calculations cannot be 

performed on 50x50 
chunks due to 
unresolved bugs in 
software. 

Computing similarity or 
distance between every pair 
of records 
•  Supports edit distance 

(on strings) and Jaccard 
coefficient  (on sets) 

Largest connected subgraph 
search 
•  Can be integrated with 

Pregelix for graph 
computation.  

 
 

 

Primitives Tested 
Extract individual dust 
storm object (region-
growing based algorithm)  
Mean computation 
•  Done using queries 
 
Example queries 
-Select a single pixel from 
all images  ~66msec 
-Select a subset from all 
images  ~1sec 
Select mean value of each 
band of a single image 
~0.3sec 
Select mean value of each 
band across all images 
~4.5sec 
 
 
 

Primitives Tested 
Finding all connected 
components in a graph  
~0.688 (µsec.core)/
data_point 
 
Observations: 
Data exchange is 
expensive across 
nodes 
 

Primitives Tested 
Use of Bloom filter to 
speed up Hadoop jobs by 
leveraging the 
probabilistic search 
capability. Speed up by 
30-80% obtained 
Example performances: 
•  83.9% efficient for 

reading a single 
parameter (“T”) from a 
single sequenced 
monthly means file 

•  29% efficient for  
single MR job across 4 
months of data seeking 
“T” (period = 2) 

 

Primitives Tested 
Standard statistics 
computation (mean, std 
deviation) 
•  Calculation performed on 

original data (as obtained 
from the archive) 

     ~Single node: 5.4 sec/GB 
     ~50 nodes: 0.05 sec/GB 
Clustering 
•  Searching for points/

regions based on a set of 
temporal, spatial, data 
value conditions 

Data subsetting  
•  Slicing; selectionbased on 

temporal, spatial, data 
value criteria 

 Observations 

Result Reporting 

AsterixDB Rasdaman SciDB Hadoop HDF 

Application:  
Dynamic data subsetting 
and statistics aggregation 
using selected 
oceanographic data 
 
Data:  
GHRSST Level 4 CMC 
0.2o Global Foundation 
Sea Surface Temperature 
Analysis. Grid size: 
1800x901 
 
 

Subset Used: 
Spatial span: 50 x 50 grid  
Temporal span: 4 months 
Size: 2.43 GB 
 

Application:  
Dust storm analysis 
framework consisting of dust 
storm feature identification, 
attribute calculation, and 
object tracking.  
 

Data: 
Non-hydrostatic Mesoscale 
Dust Model (NMM-dust) 
fromNCEP, simulating dust 
event in Phoenix, Arizona 
during 3rd and 4th of July 
2014.  
Horizontal resolution: 3 km 
with 45 vertical levels in the 
vertical and the 
Vertical Resolution: Between 
2.5 KM and ~5 KM 
Time Resolution: 3 hours.  
 
Subset Used: 
Full data set 
Size: ~1 TB 

Application:  
Identify grid cells meeting 
blizzard conditions using 
(imprecise) NWS definitions. 
Identify blizzard events using 
spatio-temporal CCL and 
appropriate statistics. 
Compare results with 
observed data. 
 
Data: 
Modern Era Retrospective 
Analysis for Research and 
Analysis (MERRA) 
Spatial resolution:  ⅔ox ½o  
Hourly resolution: Hourly 
 
 
Subset Used: 
Winter 2010 (DJF) time 
period with 16 attributes from 
MERRA (MAT1NXFLX, 
MAT1NXSLV, MAT1NXLND,  
MACONXASM) 
Size: ~25 GB 

Application: 
Climatology research to 
enable simple canonical 
operations including 
subsetting, averaging, 
searching for minimum and 
maximum values, etc. 
 
Data:  
Modern Era Retrospective 
Analysis for Research and 
Analysis (MERRA) 
Spatial resolution:  ⅔ox ½o  
Hourly resolution: Hourly 
 
 
Subset Used:   
MERRA data for northern 
India/Pakistan, North China 
Plain, California Central 
Valley,, and  Nile Valley 
Size: ~ 132 GB 
 

Application:  
Supporting multiple 
applications and various 
data sets 
 
Data:  
•  NCEP/DOE Reanalysis 

II, for GSSTF, Daily 
Grid, V3  

Spatial: 0.25ox0.25o, global 
Temporal: 1987-08, daily 
•  NOAA Coral Reef 

Temperature Anomaly 
Database 

Spatial: ~4km global 
Temporal: 1982-12, weekly 
 
Subset Used: 
Full data set 
Size of NCEP/DOE 
Reanalysis2 ~ 17GB 
NOAA Coral Reef 
temperature data ~ 24MB 
 
 

•  AsterixDB is inefficient for big data applications because its storage format requires 10x more disk space than raw 
archive format. Current version has many bugs. 

•  Hadoop requires significant parameter tuning for optimal performance and has high bandwidth requirements. 
•  Most containers suffer from parallelization bottlenecks due to aggregation/merging of results at a single node 
•  HDF files can cause issues during concurrent read/copy in multicore architectures 
•  Rasdaman can be slow for large I/O operations and inefficient for big data applications. Also development support for 

Rasdaman is also low compared to some other containers 
•  SciDB data format is not compatible with other common big data processing frameworks thereby requiring duplicate 

data storage.  
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AsterixDB Rasdaman SciDB Hadoop HDF 

Version 
AsterixDB 0.8.7-Snapshot 
 
Hardware dependency  
Share Nothing Architecture, 
uses controller nodes 
 
Software dependency 
JDK 1.7 
Password-less SSH 
configuration 

Version 
9.1 
 
Hardware dependency  
3GHz, 8GB RAM, 400MB 
HDD for installation 
 
Software dependency 
Git, lib, Tomcat (or another 
suitable servlet container),  
Java Runtime Environment 
(JRE) 1.6 or higher, 
PostgreSQL 8.x 

Version 
14.12 
 
Hardware dependency  
Distributed file system for 
data 
(Optional) shared file system 
for software 
 
Software dependency 
PostgreSQL, Apache Maven, 
Apache log4cxx, Fedora 
mock, Google protobuf, 
ScaLAPACK, Shim, SciDB-
Py, SciDB-R, SciDB cluster 

Version 
Cloudera 5.0 
 
Hardware dependency 
for datanode 
12-24 1-4TB hard disks, 2 
quad-/hex-/octo-core 
CPUs, running at least 
2-2.5GHz 
64-512GB of RAM, 
10Gigabit Ethernet 
 
Software dependency 
CentOS  
OpenVZ for RHEL 6 –
LXC version 1.1.3 
Inifiniband 
JDK 1.7.0_67, python, perl 

Version 
HDF5 v1.8.15 

 

Hardware dependency 

Xeon, Ethernet, Ephemeral 
file system, S3 

 

Software dependency 
HDF5 library v1.8.15, 
h5dump, h5repack, Python 
3, h5py, numpy, ipyparallel 

AsterixDB Rasdaman SciDB Hadoop HDF 

Graph Plotting: 
•  Pregelix supports 

parallel graph 
computations using the 
Pregel programming 
model 

•  Query results in json 
format can be used as 
input to visualizations 
(software or web 
visualizations) 

•  Cannot be used for 
plotting figures with 
overlay for showing 
results on the Earth’s 
grid 

•  Cannot be automated 

Graph Plotting: 
•  Provides several Open 

Geospatial Consortium 
(OGC) standard 
interfaces through its 
web services wrapper, 
Petascope. 

•  Can be used to plot 
figures with 
geographic overlays 

•  Plotting can be 
automated but using 
spatial/temporal 
indexing which would 
require Petascope to 
store the temporal and 
spatial metadata 

 

Graph Plotting: 
•  Plotting is possible using 

“shim” SciDB client to 
interact with external tools 
like SciDB-py and SciDB-
R 

•  Exporting data also 
possible (for other 
external tools) 

•  Figures with overlay can 
also be plotted using 
SciDB-py or SciDB-R. 

•  Automation can be done 
via scripting around 
SciDB-Py or SciDB-R 

Graph Plotting: 
•  Plotting is possible by 

exporting data to 
standard formats and 
using external plotting 
software 

•  Visualization tool IDL 
can be used to visualize 
and diagnose data 
stored in the native 
Hadoop file format, 
HDFS 

•  Process can be made 
faster by using parallel 
reader for data 
ingestion before 
visualization 

Graph Plotting: 
•  Hdf file formats 

allows storage of 
meta information that 
can be used for 
plotting results using 
overlays. 
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