
Software and Hardware Dependency

 Abstract

Evaluation of Big Data Containers for Popular Storage, Retrieval, and
Computation Primitives in Earth Science Analysis

Thomas Clune$, Kamalika Das§, Daniel Duffy$, Ted Habermann*, Thomas Huang§§, Kwo-Sen Kuo$, Chris Mattman§§, Chaowei Phil Yang$$

AGU Fall Meeting, San Francisco, December 2015
$NASA Goddard Space Flight Center$, §NASA Ames Research Center, *The HDF Group, §§NASA JPL , $$George Mason University, Contact: Kamalika.Das@nasa.gov

•  Data containers are infrastructures that facilitate storage, retrieval, and analysis of data sets. Big data applications in
Earth Science require a mix of processing techniques, data sources and storage formats that are supported by different
data containers. The data containers compared in this study are
•  AsterixDB,
•  RasDaMan,
•  SciDB
•  Hadoop
•  HDF

•  These infrastructures optimize different aspects of the data processing pipeline and are, therefore, suitable for different
types of applications. These containers are also all undergoing rapid evolution and the ability to re-test, as they evolve,
is very important to our handling of the large volumes of observational data and model output. We have identified a
selection of steps that are relevant to most data processing exercises in Earth Science applications and we evaluate
these systems for optimal performance for each of these steps in the data processing pipeline. The steps evaluated in
this study:
•  Hardware/software dependencies
•  Data ingestion
•  Data preparation/processing
•  Data analysis
•  Result reporting

AsterixDB Rasdaman SciDB Hadoop HDF
Time to convert to .adm file:
~7541 sec
~ 32 sec/ MB

Disk space required:
Raw data ~ 235 MB
AsterixDB format ~2.43 GB
10 fold increase in disk space
requirement

Workflow:

Time to convert Geotiff file:

~1 sec/MB
Can be parallelized

Disk space required:
Raw data ~ 45 MB
AsterixDB format ~77 MB
Less than 2 fold increase in
disk space requirement

Workflow:

Time to convert file:
Pull data on the fly (OPenDAP);
Write (1-D) binary data); Load 1-
D and redimension):
~0.3 sec/MB
Can be parallelized

Disk space required:
~2.5 fold increase in disk space
requirement

Workflow:

Time to convert to HDFS
file:
Involves sequencing,
mapping, and then using
Bloom filter for reducer
~0.4 sec/MB
Can be parallelized

Disk space required:
~2.5 fold increase in disk
space requirement

Workflow:

Time to convert HDF file:
Data sets are re-chunked and
compressed
~ 0.2 sec/MB
Can be parallelized

Disk space required:
63% reduction in file size

Workflow:

Earth Science Application and Data

 Data Ingestion and Workflow Data Analysis

AsterixDB Rasdaman SciDB Hadoop HDF
Operations
•  Subsetting (50x50 chunks)
•  Sorting (**bugs in current

version)

Operations are parallelizable

Bottlenecks
•  For parallel sorting (e.g.,

parallel order by) final merge
is done on one node, which
does not scale.
•  The CC (master node)

compiles all queries. To be
changed in future versions.
•  Current design requires

returning entire result of a
query in a single object.
Current max size allowed for
objects may not suffice for
large queries.

Operations
None: Data ingested in
Geotiff format and entire data
set used.

Bottlenecks
•  Physical memory and disk

I/O are main performance
bottlenecks
•  Performance can be really

slow when subsetting
portions of source images

Operations
•  Subsetting
•  Table join
•  Constructing alternative

representation

Operations are parallelizable

Bottlenecks
•  Operations are local, little

or no data exchange
•  Performance bottlenecks

are being investigated

Operations
•  Write custom NetCDF to

Hadoop convertor to keep
files as sequence files

•  These files sent to Hadoop
for storage

•  Hadoop splits and distributed
the sequence files across
HDFS; builds index for
Hadoop access

•  Maintains NetCDF metadata
for each file

Operations are parallelizable

Bottlenecks
•  Processing is offline mode –

not useful for adhoc queries
•  Very large and skewed data

causes memory issues both at
mappers and reducers

Operations
•  HDF5 dataset chunks with

all-missing data not stored
during the data ingest
stage.

•  No subsetting; entire
temporal and spatial extent
of data is used after
ingestion

•  Sorting only in the
temporal domain, if
required, to ensure
monotonic order of the
temporal axis.

•  Data are indexed by
calculating descriptive
statistics for each HDF5
dataset chunk.

•  Initial data files are
collated into a single file
with optimized HDF5
dataset chunking/
compression.

Operations are parallelizable

Bottlenecks
•  File granularity

(inefficient to copy same
file to multiple nodes if
number of nodes > number
of files).

•  One processor performs
aggregation of results,
could result in bottleneck
depending on data.

Data Preparation/Preprocessing

AsterixDB Rasdaman SciDB Hadoop HDF
Primitives Tested
Standard statistics
computation (mean, std
deviation)
•  Calculations cannot be

performed on 50x50
chunks due to
unresolved bugs in
software.

Computing similarity or
distance between every pair
of records
•  Supports edit distance

(on strings) and Jaccard
coefficient (on sets)

Largest connected subgraph
search
•  Can be integrated with

Pregelix for graph
computation.

Primitives Tested
Extract individual dust
storm object (region-
growing based algorithm)
Mean computation
•  Done using queries

Example queries
-Select a single pixel from
all images ~66msec
-Select a subset from all
images ~1sec
Select mean value of each
band of a single image
~0.3sec
Select mean value of each
band across all images
~4.5sec

Primitives Tested
Finding all connected
components in a graph
~0.688 (µsec.core)/
data_point

Observations:
Data exchange is
expensive across
nodes

Primitives Tested
Use of Bloom filter to
speed up Hadoop jobs by
leveraging the
probabilistic search
capability. Speed up by
30-80% obtained
Example performances:
•  83.9% efficient for

reading a single
parameter (“T”) from a
single sequenced
monthly means file

•  29% efficient for
single MR job across 4
months of data seeking
“T” (period = 2)

Primitives Tested
Standard statistics
computation (mean, std
deviation)
•  Calculation performed on

original data (as obtained
from the archive)

 ~Single node: 5.4 sec/GB
 ~50 nodes: 0.05 sec/GB
Clustering
•  Searching for points/

regions based on a set of
temporal, spatial, data
value conditions

Data subsetting
•  Slicing; selectionbased on

temporal, spatial, data
value criteria

 Observations

Result Reporting

AsterixDB Rasdaman SciDB Hadoop HDF

Application:
Dynamic data subsetting
and statistics aggregation
using selected
oceanographic data

Data:
GHRSST Level 4 CMC
0.2o Global Foundation
Sea Surface Temperature
Analysis. Grid size:
1800x901

Subset Used:
Spatial span: 50 x 50 grid
Temporal span: 4 months
Size: 2.43 GB

Application:
Dust storm analysis
framework consisting of dust
storm feature identification,
attribute calculation, and
object tracking.

Data:
Non-hydrostatic Mesoscale
Dust Model (NMM-dust)
fromNCEP, simulating dust
event in Phoenix, Arizona
during 3rd and 4th of July
2014.
Horizontal resolution: 3 km
with 45 vertical levels in the
vertical and the
Vertical Resolution: Between
2.5 KM and ~5 KM
Time Resolution: 3 hours.

Subset Used:
Full data set
Size: ~1 TB

Application:
Identify grid cells meeting
blizzard conditions using
(imprecise) NWS definitions.
Identify blizzard events using
spatio-temporal CCL and
appropriate statistics.
Compare results with
observed data.

Data:
Modern Era Retrospective
Analysis for Research and
Analysis (MERRA)
Spatial resolution: ⅔ox ½o
Hourly resolution: Hourly

Subset Used:
Winter 2010 (DJF) time
period with 16 attributes from
MERRA (MAT1NXFLX,
MAT1NXSLV, MAT1NXLND,
MACONXASM)
Size: ~25 GB

Application:
Climatology research to
enable simple canonical
operations including
subsetting, averaging,
searching for minimum and
maximum values, etc.

Data:
Modern Era Retrospective
Analysis for Research and
Analysis (MERRA)
Spatial resolution: ⅔ox ½o
Hourly resolution: Hourly

Subset Used:
MERRA data for northern
India/Pakistan, North China
Plain, California Central
Valley,, and Nile Valley
Size: ~ 132 GB

Application:
Supporting multiple
applications and various
data sets

Data:
•  NCEP/DOE Reanalysis

II, for GSSTF, Daily
Grid, V3

Spatial: 0.25ox0.25o, global
Temporal: 1987-08, daily
•  NOAA Coral Reef

Temperature Anomaly
Database

Spatial: ~4km global
Temporal: 1982-12, weekly

Subset Used:
Full data set
Size of NCEP/DOE
Reanalysis2 ~ 17GB
NOAA Coral Reef
temperature data ~ 24MB

•  AsterixDB is inefficient for big data applications because its storage format requires 10x more disk space than raw
archive format. Current version has many bugs.

•  Hadoop requires significant parameter tuning for optimal performance and has high bandwidth requirements.
•  Most containers suffer from parallelization bottlenecks due to aggregation/merging of results at a single node
•  HDF files can cause issues during concurrent read/copy in multicore architectures
•  Rasdaman can be slow for large I/O operations and inefficient for big data applications. Also development support for

Rasdaman is also low compared to some other containers
•  SciDB data format is not compatible with other common big data processing frameworks thereby requiring duplicate

data storage.

Acknowledgement: This research is supported by funding from the NASA
ESTO-AIST Program.

AsterixDB Rasdaman SciDB Hadoop HDF

Version
AsterixDB 0.8.7-Snapshot

Hardware dependency
Share Nothing Architecture,
uses controller nodes

Software dependency
JDK 1.7
Password-less SSH
configuration

Version
9.1

Hardware dependency
3GHz, 8GB RAM, 400MB
HDD for installation

Software dependency
Git, lib, Tomcat (or another
suitable servlet container),
Java Runtime Environment
(JRE) 1.6 or higher,
PostgreSQL 8.x

Version
14.12

Hardware dependency
Distributed file system for
data
(Optional) shared file system
for software

Software dependency
PostgreSQL, Apache Maven,
Apache log4cxx, Fedora
mock, Google protobuf,
ScaLAPACK, Shim, SciDB-
Py, SciDB-R, SciDB cluster

Version
Cloudera 5.0

Hardware dependency
for datanode
12-24 1-4TB hard disks, 2
quad-/hex-/octo-core
CPUs, running at least
2-2.5GHz
64-512GB of RAM,
10Gigabit Ethernet

Software dependency
CentOS
OpenVZ for RHEL 6 –
LXC version 1.1.3
Inifiniband
JDK 1.7.0_67, python, perl

Version
HDF5 v1.8.15

Hardware dependency

Xeon, Ethernet, Ephemeral
file system, S3

Software dependency
HDF5 library v1.8.15,
h5dump, h5repack, Python
3, h5py, numpy, ipyparallel

AsterixDB Rasdaman SciDB Hadoop HDF

Graph Plotting:
•  Pregelix supports

parallel graph
computations using the
Pregel programming
model

•  Query results in json
format can be used as
input to visualizations
(software or web
visualizations)

•  Cannot be used for
plotting figures with
overlay for showing
results on the Earth’s
grid

•  Cannot be automated

Graph Plotting:
•  Provides several Open

Geospatial Consortium
(OGC) standard
interfaces through its
web services wrapper,
Petascope.

•  Can be used to plot
figures with
geographic overlays

•  Plotting can be
automated but using
spatial/temporal
indexing which would
require Petascope to
store the temporal and
spatial metadata

Graph Plotting:
•  Plotting is possible using

“shim” SciDB client to
interact with external tools
like SciDB-py and SciDB-
R

•  Exporting data also
possible (for other
external tools)

•  Figures with overlay can
also be plotted using
SciDB-py or SciDB-R.

•  Automation can be done
via scripting around
SciDB-Py or SciDB-R

Graph Plotting:
•  Plotting is possible by

exporting data to
standard formats and
using external plotting
software

•  Visualization tool IDL
can be used to visualize
and diagnose data
stored in the native
Hadoop file format,
HDFS

•  Process can be made
faster by using parallel
reader for data
ingestion before
visualization

Graph Plotting:
•  Hdf file formats

allows storage of
meta information that
can be used for
plotting results using
overlays.

Additional Contributors

John Thompson, NASA Goddard
Namrata Malarout, NASA JPL

Fei Hu, George Mason University
John Ready, HDF Group

Aleksander Jelenak, HDF Group
Amidu Oloso, NASA Goddard

