| ecture 26:;

Spring 2024
Jason Tang

Parallel

Processing

Topics

- Static multiple issue pipelines

- Dynamic multiple issue pipelines

* Hardware multithreading

Taxonomy of Parallel Architectures

 Flynn categories: SISD, MISD, SIMD, and MIMD

- Levels of Parallelism:
- Bit level parallelism: 4-bit, 8-bit, 16-bit, 32-bit, now 64-bit processors

- Instruction level parallelism (ILP): Pipelining, VLIW, superscalar, out of
order execution

« Process/thread level parallelism (TLP): Running different programs, or
different parts of same program, on one processor

Multiple Issue Pipelining

* In classic pipelining, processor fetches one instruction per cycle

 In multiple issue pipelining, processor fetches two (or more) instructions

- Therefore, its CPl is less than 1.0

« Two ways to implement multiple issue pipelines:

- Static multiple issue: software writer and compiler decide instruction
Issues, before execution

- Dynamic multiple issue: hardware decides issues, during execution

Issue Slots

 Portion within a processor from which an instruction can execute

* In simple processors, there is exactly one issue slot, which can perform any
kind of instruction (integer arithmetic, floating point arithmetic, branching, etc)

- Modern processors have multiple issue slots, but not all slots are equal

Issue Slots

- Example: Apple’s A14 processor has different issue slots, for different

urposes
p p >=192KB L1| (Herirg:t;;‘:ons) A[P)[P)[]@ Aﬂ@}
[Firestorm

8-Wide Decode

Dispatch / Commit
~630 Reorder-Buffer

INT Rename FP Rename
PRF~354?? Entries PRF~3847?? Entries

ALU § ALU § ALU § ALU

FP/SIMD + fDIV

~154e LDQ § ~106e STQ

3072pg
L2-TLB

256pg
L1-DTLB

128KB L1D

FAINANDIECH

https://www.anandtech.com/show/16226/
apple-silicon-m1-al14-deep-dive/2

6

Static Multiple Issue Pipeline

Slot 0 Fetch Decode Write Back

Slot 1 Fetch Decode Write Back
Slot 0 Fetch Decode Write Back
Slot 1 Fetch Decode Write Back
Slot 0 Fetch Decode Write Back
Slot 1 Fetch Decode Write Back

- Multiple instructions execute simultaneously, in different slots

* Issue packet: set of instructions executed together

- Compiler is responsible for generating contents of issue packet

- Compiler is responsible for preventing data and control hazards

Very Long Instruction Word (VLIW)

- Compiler generates a single “instruction” that commands each issue slot

- If the instruction cannot be parallelized or if a data/control hazard is to be
resolved via a bubble, then place a no-op for that issue slot

- Example: Itanium was Intel’s first attempt at a 64-bit processor

* Not in any way related to x86-64 (more properly “AMD64” or “Intel 647)

- EPIC: Explicitly Parallel Instruction Computing, term invented by Intel for
its VLIW implementation

« Each |A-64 issue packet is 128-bits, containing three instructions within

|A-04 Instruction Format

IA-64 INSTRUCTION FORMAT
127 87 86 46 45 54 0
| Instruction slot 2 I Instruction slot 1 Instruction slot 0 Template
41 4 41 5

RELATIONSHIP BETWEEN INSTRUCTION AND EXECUTION UNIT TYPE

Instruction type Description Execution unil type
A Integer ALU I-unit or M-unit
I Non-ALU integer [-unit
M Memory M-unit
F Floating-point F-unit
B Branch B-unit
L+X Extended [-unit

SCLRLT INTTL COne

https://www.eetimes.com/
document.asp?doc_id=1139305

|IA-64 Example Instruction Flow

127 87 26 46 45 >4 0

In Z In] In () e
_T bundle

Template Field

addr N Instruction

group 1

addr N+16 Instruction
- o 2
addr N+32 group
Instraction
addr N+48 B-unit Instr I-unit Instr M-unit Instr group 3

. R Instruction
N 46 5 (),
addr N+64 M-unit Instr S—_
addr N+80 0115 . Instruction

group 3

https://www.realworldtech.com/

10
intel-history-lesson/4/

-nd of the “Itanic”

- Effectively discontinued within ten years of release

40

. / ltanium Sales Forecasts
Servers, $Bn/yr

30 . 1997-06

. 1998-06
. 1999-08

25
/ / / / . 2000-06
\. 2001-06
20 \\ 2001-10
/ / / / \\ 2002-03
\\ 2003-04

// // / N
B

0 T r T T T T T T ,
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

https://helgeklein.com/blog/itanium-ia-64-an-obituary/ 11

Dynamic Multiple Issue Pipeline

Superscalar processor fetches multiple instructions at once

Dynamic pipeline schedule: Processor decides which instruction(s) to execute
each cycle, to avoid hazards

Out of order execution: Processor may execute instructions in a different
order than given by compiler, to minimize stalls

Requires duplicate and much more complex hardware

12

Dynamic Pipeline Scheduling

Instruction fetch
and decode unit

v v v v
Reservation Reservation Reservation Reservation
station station station station
f 1 [Floating | [)

Integer Integer : Load/store
. . point :
functional functional) functional
. . functional .
unit unit . unit
1\ J 1\ J \§ unlt J \§ J
Commit unit

- Instructions are fetched in-order, and later committed (“retired”) in-order

 Functional units execute instructions out-of-order

Out of Order Execution

- With standard pipelining, if an instruction stalls, all instructions after it are also
stalled

« With dynamic scheduling, split Decode into substages:

» Issue: decode instruction, checking for structural hazards

 Dispatch: wait until all data hazards have been resolved, then fetch
operands; hold instruction until a functional unit can execute it

- Commit unit is responsible for reordering functional units’ results to achieve
iIn-order results

14

Dynamic Scheduling Example

- For a modern Intel Skylake processor, 64-bit integer division can take up to
90 clock cycles, while integer addition takes just one cycle

« With a single pipelined processor, a division followed by 8 additions would
take 98 cycles

« With a single superscalar processor with 4 ALUs and a single FPU, and where
there are no data dependencies between instructions, that same sequence
would take 92 cycles

- If that superscalar processor also executes out of order, that same sequence
would take 90 cycles

http://www.agner.org/optimize/instruction_tables.pdf 15

Cortex-A53 Pipeline Stages

EEE B = 6 3 EX EX
ARM Cortex-A53

| e m) | ALU/INT (MAC)
ANANDIECH
=) | ALUANT (DIV) | | _
U
L)
Instruction T ‘ h ﬁ
(@) 1=
CoeT ‘ g ‘ Branch =
- A
I 1 = m) | AGU LD/ST
6 m m) | NEON/FP FO ¥
U w o
o = L0
- QU
23 £
= m) | NEON/FP F1 =

https://www.anandtech.com/show/8542/cortexm?7 -

16
launches-embedded-iot-and-wearables/2

Threading

- A software multithreaded system
has a single program, but with

multiple program counters and
stacks

« Operating system decides
which thread to run on which
processor, based upon the
process scheduler

code

data

files

code

data

files

registers

stack

registers

registers

registers

thread — 3

stack

stack

stack

single-threaded process

:

:

34—— thread

multithreaded process

A processor normally executes only one thread at a time

* A hardware multithreaded system has a processor that can truly execute

multiple threads simultaneously, via dynamic scheduling

Operating System Concepts,
Silberschatz, Galvin, and Gagne

17

Hardware Multithreading

« Processor fetches from 2 (or more) different program counters, where each
program counter corresponds to a thread

- Superthreading: processor executes instruction(s) from one thread on one
clock cycle, then instruction(s) from second thread on next clock cycle

« Number of instructions to execute is based upon available issue slots

* Instead of the operating system choosing how long to run each thread, the
hardware switches threads after every clock cycle

- Simultaneous Multithreading (SMT): processor fills issue slots with mix of
iInstructions from all threads, to keep all functional units busy

https://arstechnica.com/features/2002/10/hyperthreading/ 18

Hardware Multithreading

- Example: processor has 4 issue slots,
and is to execute 2 threads

- Suppose that threads normally execute on
a superscalar processor as per top right

- With a fine-grained superthreading
(switch thread each clock cycle) and a
SMT processor, execution would instead
look like lower left

- With course-grained superthreading,
processor switches threads only on
expensive stalls, instead of every cycle

Time Thread A Thread B
1112 111213
3 4115
4115|116 6
7118 7
v 9| 10| 11| 12 8
Fine-Grained Simultaneous
Time Superthreading Multithreading

1

2

—h

2

10

11

12

o o] [N [N o] [&] | 2] [w

1

2

1

2

3
5
6
8

10

11

12

0| (O] [N] |Of || |W

19

Comparison of Hardware Multithreading

Number of different threads in a
pipeline stage in a given cycle

Scheduling algorithm

Processor usage

Stall penalty

Power consumption

Superthreading

Symmetric Multithreading

Exactly 1 1+

Round-robin, or
processor may have
priority scheduling

Simultaneous

Fill every available

Same as superscalar .
Issue slots

Partially hidden, Completely hidden,
because other threads because other threads
will execute during stall will fill issue slots

Same as superscalar Uses more power

20

