
Lecture 23: I/O Performance

Spring 2024

Jason Tang

 1



Topics

• Measuring I/O performance


• Disk I/O performance


• Increasing availability

 2



I/O Design Decisions

• I/O Interface: device drivers, device controller, service queues, interrupt 
handling


• Design Issues: performance, expandability, standardization, failure prevention


• Impact on Tasks: blocking conditions, priority inversion, access ordering

 3

Computer
Processor Memory Devices

Control

Datapath

Input

Output



Impact of I/O on System Performance

• Example: A particular application takes 100 seconds to execute, where 90 
seconds is CPU time and the rest is I/O time. If CPU time is halved every year, 
but I/O time does not decrease, how much faster will this application run after 
five years?

 4

Year CPU Time I/O time Total Time % I/O Time

0 90 s 10 s 100 s 10.00%

1 45 s 10 s 55 s 18.18%

2 22.5 s 10 s 32.5 s 30.77%

3 11.25 s 10 s 21.25 s 47.06%

4 5.625 s 10 s 15.625 s 64.00%

5 2.8125 s 10 s 12.8125 s 78.05%



Typical I/O System

• Usually, a bus connects the processor to devices


• Modern systems have multiple buses, for different types of devices


• Processors and devices use bus protocols and interrupts to communicate

 5



Typical x86 I/O Layout

 6https://linuxdevices.org/x86-system-on-chip-adds-vga-graphics/



Modern I/O Device Examples

 7

Device Interconnect Maximum Data Rate

Keyboard USB 3.0 3.2 Gb/s

Hard Disk Serial ATA 3.2 16 Gb/S

Graphics PCI Express 4.0 64 Gb/S

Local Area 
Networking Ethernet 100GbE 100 Gb/S

High Performance 
Computing InfiniBand HDR 12x 600 Gb/S



Measuring I/O Performance

• I/O system performance depends upon:


• Hardware: CPU, memory systems, buses, controller, device itself


• Software: operating system, application itself


• Two common I/O performance metrics (similar to CPU metrics):


• Response Time: latency


• Throughput: I/O bandwidth

 8



Producer/Server Model

• Throughput: number of tasks completed per unit time


• To maximize throughput, queue should never be empty and server should 
never be idle


• Response time: elapsed time from when a task is enqueued until task begins


• To minimize response time, queue should be empty and server is idle

 9

Producer Queue Server

Low response time is user-
desirable but is system-undesirable



Producer/Server Model

• Throughput can be increased by adding more hardware to problem


• Response time is harder to reduce, limited by mechanical subsystem

 10

Producer

Queue Server

Queue Server



Disk Access Patterns

• Supercomputer:


• Few large files, one large read and many small writes


• Data Rate: MB/s between memory and disk


• Database Server:


• Frequent small changes to large shared database


• I/O Rate: Number of disk accesses / second

 11



Disk Performance

• Different ways to measure “disk performance”: sequential read, sequential 
write, random read, random write, power consumption, responsiveness, etc.

 12https://www.atpinc.com/blog/nvme-
vs-sata-ssd-pcie-interface



Hard Disk I/O Performance

• Hard Disk Access Time = Seek Time + Rotational Latency + Transfer Time + 
Controller Time + Queuing Delay


• A hard disk platter rotates on average 1/3 when seeking


• For solid state disks, seek and transfer times are much faster, and there is 
no rotational latency

 13

Processor
Queue

Disk 
Controller

Disk
l m

Service RateRequest Rate

Queue

Disk 
Controller

Disk



Hard Disk I/O Performance Example

• Example: A 5400 RPM hard disk transfers 4 MB/s. The average seek time is 
12 ms. The controller overhead is 1 ms. Assume that queue is idle (thus no 
service time). What is its average disk access time for a single sector?


• Usually 512 bytes per sector

 14



Reliability and Availability

• Reliability: how long a system performs as intended (is it broken?)


• Availability: percent time that a system is an operable state (can I use it?)


• Reliability and availability are related, but are not the same


• Mean Time Between Failure (MTBF): how long until system breaks, on 
average


• Mean Time to Repair (MTTR): how quickly to fix system

 15http://www.barringer1.com/ar.htm



Increasing MTBF

• Many ways to increase MTBF (and thus improve availability):


• Prevent faults by improving manufacturing


• Use redundancy to allow system to continue processing despite faults


• Predict faults, allowing component to be replaced before failure


• Can thus design hardware to increase availability

 16



RAID

• Redundant Array of Inexpensive Disks (RAID): use multiple disks to store data


• Different configurations, all resulting in improving some aspect of 
performance


• RAID 0: striping


• RAID 1: mirroring


• RAID 3: parity


• RAID 5: striping + parity

 17https://datapacket.com/blog/advantages-
disadvantages-various-raid-levels/



RAID

• Increase read and write speed, but 
failure of one disk loses all data


• Increase read speed (no change to 
write speed), provide redundancy, but 
doubles cost of storage

 18



RAID

• Increase read and write speed, but not as fast as RAID 0


• Higher cost for storage, but not as expensive as RAID 1

 19



Parity

• Algorithm that can detect errors in a string of data bits


• In simplest case, append a parity bit after data


• Set parity bit to 0 when data bits have an even number of bits that are 0, 
otherwise set parity bit to 1 (so-called even parity)


• Thus if number of zeroes of (data + even parity bit) is ever odd, then an 
error occurred


• With single parity bit, can detect, but not correct, a single bit flip


• Unable to detect double bit flip

 20



More Complex Parity Algorithms

• When multiple parity bits are calculated and stored with data stream, then 
hardware / software can correct multiple errors


• Cyclic Redundancy Check (CRC): Ethernet, Zip archives


• Hamming: Used in Error-correcting Code (ECC) memory


• Reed-Solomon: Used in optical medium (CD, DVD, Blu-Ray)


• Bose-Chaudhuri-Hocquenghem (BCH): Used in solid-state drives

 21



Hamming Code

• By increasing parity bits, a Hamming Code allows correcting single bit error 
correction, and double bit error detection (so-called SEC/DED)


• Hamming code numbers bit positions from right to left, with the rightmost bit 
having bit position 1 (not 0)


• Check Bits at positions that are a power of 2 are even parity bits; all other 
bits are data bits


• Check Bits cover overlapping portions of the data

 22



8-bit Data Hamming Code

• Responsible check bits = bit position, as expressed as its binary value


• An extra check bit over all bits can then detect double bit errors

 23

Bit 
Position

12 11 10 9 8 7 6 5 4 3 2 1

Encoded 
Data Bits

d8 d7 d6 d5 p8 d4 d3 d2 p4 d1 p2 p1

p1 X X X X X X

p2 X X X X X X
p4 X X X X X

p8 X X X X X



Hamming Code Example

• Let data to encode = 0x9A (binary 1001 1010)


• P1 checks all odd numbered positions = (0, 1, 1, 1, 0) = 1


• P2 checks bits 11, 10, 7, 6, 3, 2 = (0, 0, 1, 0, 0) = 1


• P4 checks bits 12, 7, 6, 5, 4 = (1, 1, 0, 1) = 1


• P8 checks bits 12, 11, 10, 9, 8 = (1, 0, 0, 1) = 0


• Resulting code (the syndrome) = 1001 0101 1011

 24

Bit Position 12 11 10 9 8 7 6 5 4 3 2 1
Encoding 1 0 0 1 p8 1 0 1 p4 0 p2 p1

p1 X X X X X X
p2 X X X X X X
p4 X X X X X
p8 X X X X X



Hamming Code Example

• If stored data bits are 0111 0010 1110, what is the corrected value?


• Calculated parity for P1 = (1, 1, 0, 0, 1, 0) = 1


• Calculated parity for P2 = (1, 1, 0, 1, 1, 1) = 1


• Calculated parity for P4 = (0, 0, 1, 0, 1) = 0


• Calculated parity for P8 = (0, 1, 1, 1, 0) = 1


• Because parity bits P1, P2, and P8 are odd, then bit 11 (1 + 2 + 8) is flipped

 25

Bit Position 12 11 10 9 8 7 6 5 4 3 2 1
Encoding 0 1 1 1 0 0 1 0 1 1 1 0

p1 X X X X X X
p2 X X X X X X
p4 X X X X X
p8 X X X X X



SEC/DED Example

• Let received data = 0xbc, parity bits = 
0x19


• Poverall = (1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 
0, 1) = 0 (correct)


• P1 = (0, 1, 1, 0, 0, 0) = 0 (correct)


• P2 = (0, 1, 1, 1, 0, 0) = 1 (error)


• P4 = (1, 1, 1, 0, 1) = 0 (correct)


• P8 = (1, 0, 1, 1, 1) = 1 (error)


• Poverall indicates 0 errors, but P2 + P8 
indicate flips = Double Errors

 26

Bit Position 12 11 10 9 8 7 6 5 4 3 2 1 0
Encoding 1 0 1 1 1 1 1 0 1 0 0 0 1

poverall X X X X X X X X X X X X X
p1 X X X X X X
p2 X X X X X X
p4 X X X X X
p8 X X X X X


