
Lecture 22: Address Spaces

Spring 2024

Jason Tang

1

Topics

• Page table entries

• Memory-mapped I/O

• Direct memory access

2

System Interconnect

• When the processor generate an address, how does the computer know
which device to access on the memory-I/O bus?

3

Processor

Cache Tag
and Data

Memory-I/O Bus

Snoop
Tag

DRAM

Processor

Cache Tag
and Data

Snoop
Tag

Processor

Cache Tag
and Data

Snoop
Tag

Disk
Controller

Network
Interface I/O Bridge

MMU MMU MMU

Intel Paging

• Traditional Intel x86 (32-bit) had segmented memory; modern (64-bit) has a
flat memory model with 64-bit addresses (called long mode)

• Address of the page table is set in the Page-Directory-Table Base Address

• Long mode supports multiple page sizes:

4AMD64 Architecture Programmer’s Manual, §5.3

Page Size Page Table Levels
4 KiB 4
2 MiB 3
1 GiB 2

Intel Paging

• Even though virtual addresses extend to 64 bits, currently x86-64 only use the
lower 48 bits (256 TiB virtual address space)

5AMD64 Architecture Programmer’s Manual, §5.3

Intel Page Table Entries

• Currently x86-64 supports up to 52 bits of physical memory (4 PiB physical
address space)

• Page table entries differ slightly between the different levels, but generally
contain the similar information

6

Intel Page Table Entry Fields

7

Field Meaning

Present (P) If set to 1, page is loaded in physical memory

Read/Write (R/W) If set to 1, both read and write accesses are allowed
to page

User/Supervisor 
(U/S)

If set to 1, both user and supervisor accesses are
allowed to page

Page-Level
Writethrough (PWT) If set to 1, page has a writethrough caching policy

Accessed (A) Processor sets this bit to 1 the first time the page is
read from or written to

Dirty (D) Processor sets this bit to 1 the first time there is a
write to the page

No Execute (NX) If set to 1, code cannot be executed from the page

Meltdown Vulnerability

• Meltdown and Spectre are well publicized vulnerabilities 
of Intel, AMD, ARM, and other processors

• Meltdown relies upon several properties of modern CPUs:

• CPU data caches,

• Protection bits in page table entries, and

• Out of order execution

• With all of the above combined, an attacker could obtain any value from
memory, including passwords and other security credentials

8https://meltdownattack.com/, https://hackernoon.com/a-simplified-
explanation-of-the-meltdown-cpu-vulnerability-ad316cd0f0de

Meltdown Vulnerability

• Attacker allocates 256 memory pages (256 × 4096 bytes)

• Attacker does not access memory, keeping data cache cold

• It then executes C code that causes a data cache fill, even though the
instruction never finishes executing

• Then measure how long it takes to read from each of the 256 memory pages

• The page with fastest access is the secret value

9

char *receiver_addr = malloc(256 * 4096);
char *victim_value; // pointer to value to exfiltrate
*(0) = 1; // cause a memory violation
receiver_addr[*victim_value * 4096] = 1;

I/O Access

• Processor-to-memory access is handled via loads and stores

• Processor generates a virtual address, which is translated by MMU into a
memory physical address, and then the memory controller fetches data
from main memory

• Two ways to handle processor-to-device:

• Port I/O (PMIO): special instructions to access devices

• Memory-mapped I/O (MMIO): same normal load and store instructions, but
address decoder redirects request to a device instead of main memory

10http://www.bogotobogo.com/Embedded/
memory_mapped_io_vs_port_mapped_isolated_io.php

Port I/O

• Dedicated address space for 
I/O devices

• Necessary on older systems, 
where physical [memory] 
address space is only 16 or 
32 bits

• Separate lines for memory and devices

• Allows each component run at different clock speeds

• Harder for software to transfer data between memory and devices

11

Memory-Mapped I/O

• Memory and devices share same 
physical address space

• MMU still translates a virtual 
address to physical address

• Physical addresses may refer 
to devices or main memory

• Common on modern systems, with 32-bit and 64-bit physical addresses

• Same bus connects memory and devices

• Data cache must be disabled when accessing devices

12

Address Decoder

• Component that takes a physical address and routes the load or store
request to memory or to a given I/O device

• For a MMIO system, physical memory only part of physical address space;
the rest of address space is used by I/O devices

• Example: the original Raspberry Pi has a Broadcom BCM2835 system on
chip (SoC):

13

Physical addresses start at 0x00000000 for RAM.
…
Physical addresses range from 0x20000000 to 0x20FFFFFF for peripherals. The
bus addresses for peripherals are set up to map onto the peripheral bus address
range starting at 0x7E000000. Thus a peripheral advertised here at bus address
0x7Ennnnnn is available at physical address 0x20nnnnnn.

BCM2835 ARM Peripherals, §1.2.3

Datasheets

• Manufacturer describes device’s layout in its published datasheets

• Example: BCM2835 has a memory mapped UART device:

• Reading from a device register usually returns the device’s status; writing to a
device register usually causes some physical reaction

14BCM2835 ARM Peripherals, §2.1

Address Register Name Description Size
0x7E21 5000 AUX_IRQ Auxiliary Interrupt status 3
0x7E21 5004 AUX_ENABLES Auxiliary enables 3
0x7E21 5040 AUX_MU_IO_REG Mini Uart I/O Data 8
0x7E21 5044 AUX_MU_IER_REG Mini Uart Interrupt Enable 8
0x7E21 5048 AUX_MU_IIR_REG Mini Uart Interrupt Identify 8
0x7E21 504C AUX_MU_LCR_REG Mini Uart Line Control 8
0x7E21 5050 AUX_MU_MCR_REG Mini Uart Modem Control 8

Direct Memory Access

• Memory controller handles processor-to-memory, and address decoder
handles processor-to-device, but what about between memory and devices?

• Programmed I/O (PIO): processor responsible for copying data from device to
CPU register, and then from CPU register to memory

• Direct Memory Access (DMA): allows devices to read and write directly to
memory, bypassing processor

• DMA controller handles DMA requests

• Allows devices to work in the background, while processor continues
executing main software

15

DMA Controllers

• In simple case, processor writes a transaction descriptor (TxD) to DMA
controller

• TxD, at a minimum, consists of a source address (memory or device),
destination address (memory or device), and number of bytes to transfer

• TxD are bus addresses, neither physical nor virtual

• Processor then commands DMA controller to start processing TxD

• Usually, DMA controller raises an interrupt when it completes transaction

16

Simple DMA Transfer

17Operating System Concepts, 
Silberschatz, Galvin, and Gagne

DMA Transfer Types

• Single-cycle: write a single word to/from device

• Good for slow-speed devices, like UARTs

• Burst: transfer a block of data, over many clock cycles

• Used when writing to GPU memory, network cards, and hard disks

• During transfer, processor is unable to use bus

• Cyclic: repeatedly transfer data

• Used for sound cards

18http://www.pebblebay.com/direct-
memory-access-embedded-systems/

DMA Coherency

• Processor’s data cache is usually not updated when DMA controller transfers
from device to memory

• If data cache is still dirty, DMA controller will transfer stale contents from
memory to device

• Some fancier systems allow DMA controller to snoop the memory bus (same
resolution as SMP caches)

• If DMA controller cannot snoop, software must explicitly flush and/or
invalidate the data cache, at the virtual address associated with memory’s
physical address

19

Bus Address

• Whereas processors mostly run 
within virtual addresses, and 
memory is accessed with physical 
addresses, devices have their own 
address space

• When building TxDs, software 
needs to be careful when writing 
source and destination addresses

• Often, a bus address is equal to physical address, plus some offset

• Example: For BCM2835, “a peripheral advertised here at bus address
0x7Ennnnnn is available at physical address 0x20nnnnnn.”

20

I/O MMU

• Just as the MMU translates virtual to physical addresses, and has protection
bits, a I/O MMU translates I/O virtual addresses to bus addresses

• Without I/O MMU, a malicious device could initiate a DMA to overwrite
memory with malware, bypassing all software security

• I/O MMU blocks attempts to overwrite unmapped memory

• I/O MMU permits virtualization of I/O, useful for virtual machines

21https://thehackernews.com/2019/02/
thunderbolt-peripheral-dma-attacks.html

