Lecture 22: Address Spaces

Spring 2024
Jason Tang

Topics

* Page table entries

« Memory-mapped I/O

* Direct memory access

System Interconnect

{ Processor] [Processor } Processor

| | o

I I I

Snoop Cache Tag Snoop Cache Tag Snoop Cache Tag
Tag and Data Tag and Data Tag and Data

I I I I I I

Memory /O Bus

Disk Network .
DRAM (Controller) < Interface > <I/O Br|dge>

* When the processor generate an address, how does the computer know
which device to access on the memory-1/0O bus?

Intel Paging

- Traditional Intel x86 (32-bit) had segmented memory; modern (64-bit) has a
flat memory model with 64-bit addresses (called long mode)

- Address of the page table is set in the Page-Directory-Table Base Address

* Long mode supports multiple page sizes:

Page Size Page Table Levels

4 KiB 4
2 MiB 3
1 GiB 2

AMDG64 Architecture Programmer’s Manual, §5.3 4

Intel Paging

- Even though virtual addresses extend to 64 bits, currently x86-64 only use the
lower 48 bits (256 TiB virtual address space)

Virtual Address
63 48 47 3938 30 29 2120 12 11 0
Page-Map . . .
, Page-Directory- | Page-Directory Page-Table Physical-
Sign Extend Level-4 Offset | ' pinter Offset Offset Offset Page Offset
A9 A9 9 /9 A12
Page-
Page-Map Directory- Page- 4 Kbyte
Level-4 Pointer Directory Page Physical
Table Table Table Table Page
- PTE 52
521!’
. ™ PDPE
2 Physical
™| PML4E 50+ - Adz '
—» PDE | A
R N . — S
*This is an architectural limit. A given processor
51 12 implementation may support fewer bits.

‘ Page-Map Level-4 ‘ I
Base Address CR3

AMDG64 Architecture Programmer’s Manual, §5.3

Intel Page Table Entries

 Currently x86-64 supports up to 52 bits of physical memory (4 PiB physical
address space)

- Page table entries differ slightly between the different levels, but generally

contain the similar information
63 62 52 51 32
N Available Page-Directory-Pointer Base Address
X (This is an architectural limit. A given implementation may support fewer bits.)
31 12 11 9 8 7 6 5 4 3 2 1 0
I PIPIU|R
Page-Directory-Pointer Base Address AVL MBZ | GIA|C|W|/|/]|P
N D|T|S|W

Figure 5-18. 4-Kbyte PML4E—Long Mode

63 62 52 51 32
N Available Page-Directory Base Address
X v (This is an architectural limit. A given implementation may support fewer bits.)
31 12 11 9 8 7 6 5 4 3 2 1 0
M I PIPIU|R
Page-Directory Base Address AVL BIOIGIA|IC\W|/|!]|P
Z N D|T|S|W

Figure 5-19. 4-Kbyte PDPE—Long Mode

Intel Page Table Entry Fields

Field Meaning

Present (P) If set to 1, page is loaded in physical memory
Read/Write (R/W) If set to 1, both read and write accesses are allowed
to page
User/Supervisor If set to 1, both user and supervisor accesses are
(U/S) allowed to page
Page-Level

Writethrough (PWT) If set to 1, page has a writethrough caching policy

Processor sets this bit to 1 the first time the page is

Accessed (A) read from or written to

Processor sets this bit to 1 the first time there is a

Dirty (D) write to the page

No Execute (NX) @ If set to 1, code cannot be executed from the page

Meltdown Vulnerabillity

- Meltdown and Spectre are well publicized vulnerabilities
of Intel, AMD, ARM, and other processors

- Meltdown relies upon several properties of modern CPUs:

« CPU data caches,

 Protection bits in page table entries, and o

« Qut of order execution

- With all of the above combined, an attacker could obtain any value from
memory, including passwords and other security credentials

https://meltdownattack.com/, https://hackernoon.com/a-simplified-

8
explanation-of-the-meltdown-cpu-vulnerability-ad316cd0fOde

Meltdown Vulnerabillity

- Attacker allocates 256 memory pages (256 x 4096 bytes)

- Attacker does not access memory, keeping data cache cold

- It then executes C code that causes a data cache fill, even though the
instruction never finishes executing
char *xreceiver_addr = malloc(256 *x 4096);
char xvictim_value; // pointer to value to exfiltrate

*(0) = 1; // cause a memory violation
receiver_addr[xvictim_value x 4096] = 1;

- Then measure how long it takes to read from each of the 256 memory pages

* The page with fastest access is the secret value

/O Access

* Processor-to-memory access is handled via loads and stores

* Processor generates a virtual address, which is translated by MMU into a
memory physical address, and then the memory controller fetches data
from main memory

- Two ways to handle processor-to-device:

- Port I/0 (PMIO): special instructions to access devices

- Memory-mapped I/0 (MMIO): same normal load and store instructions, but
address decoder redirects request to a device instead of main memory

http://www.bogotobogo.com/Embedded/
memory_mapped_io_vs_port_mapped_isolated_io.php

10

Port /0

- Dedicated address space for
|/O devices

| IORQ=1 IORQ=0
#FFFF OFFFF
. Memory and /O devices
Necessary on older systems, A s
where physical [memory] Devices space. PN
: foeee Memory
address space is only 16 or opace The IORQ control line
space the CPU want to
| #0000 == access.

- Separate lines for memory and devices
+ Allows each component run at different clock speeds

- Harder for software to transfer data between memory and devices

11

Memory-Mapped /0O

- Memory and devices share same
physical address space

mf 7 #FFFF
: : Memory The Address Space
- MMU still translates a virtual % is shared between
address to physical address address | lmiio | memory and l/O devices. o
Space | |STFFF | ote that some areas of the address space
may not necessarly be assigned to either
B eSO devoue e e soece
. e
* Physical addresses may refer #0000 | soo0o ”

to devices or main memory

- Common on modern systems, with 32-bit and 64-bit physical addresses

« Same bus connects memory and devices

* Data cache must be disabled when accessing devices

12

Address Decoder

- Component that takes a physical address and routes the load or store
request to memory or to a given |/O device

- For a MMIO system, physical memory only part of physical address space;
the rest of address space is used by |I/O devices

- Example: the original Raspberry Pi has a Broadcom BCM2835 system on
chip (SoQ):

Physical addresses start at 0x00000000 for RAM.

Physical addresses range from 0x20000000 to Ox20FFFFFF for peripherals. The
bus addresses for peripherals are set up to map onto the peripheral bus address
range starting at 0x7E000000. Thus a peripheral advertised here at bus address
Ox7Ennnnnn is available at physical address 0x20nnnnnn.

BCM2835 ARM Peripherals, §1.2.3 13

Datasheets

- Manufacturer describes device’s layout in its published datasheets

- Example: BCM2835 has a memory mapped UART device:

Address Register Name Description
Ox7E21 5000 AUX_IRQ Auxiliary Interrupt status = 3
Ox7E21 5004 AUX_ENABLES Auxiliary enables

3
Ox7E21 5040 AUX_MU_IO_REG Mini Uart I/0O Data 8
Ox7E21 5044 AUX_MU_IER_REG Mini Uart Interrupt Enable 8
Ox7E21 5048 AUX_MU_IIR_REG Mini Uart Interrupt Identify 8
8
8

Ox7E21 504C AUX MU LCR REG Mini Uart Line Control
Ox7E21 5050 AUX MU MCR_REG Mini Uart Modem Control

» Reading from a device register usually returns the device’s status; writing to a
device register usually causes some physical reaction

BCM2835 ARM Peripherals, §2.1 14

Direct Memory Access

« Memory controller handles processor-to-memory, and address decoder
handles processor-to-device, but what about between memory and devices?

« Programmed 1I/O (PIO): processor responsible for copying data from device to
CPU reqister, and then from CPU register to memory

- Direct Memory Access (DMA): allows devices to read and write directly to
memory, bypassing processor

- DMA controller handles DMA requests

 Allows devices to work in the background, while processor continues
executing main software

15

DMA Controllers

* In simple case, processor writes a transaction descriptor (TxD) to DMA
controller

- TxD, at a minimum, consists of a source address (memory or device),
destination address (memory or device), and number of bytes to transfer

- TxD are bus addresses, neither physical nor virtual

* Processor then commands DMA controller to start processing TxD

- Usually, DMA controller raises an interrupt when it completes transaction

16

Simple DMA Transfer

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer cache
and decreasing C at address X
untilC =0 DMAbus/
_ u . X
6. when C = 0, DMA interrupt |~ CPU memory bus — | memory | buffer
interrupts CPU to signal e
transfer completion
| 1 PCI bus
3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends
each byte to DMA
@ @ controller
disk) (disk

Operating System Concepts,

17
Silberschatz, Galvin, and Gagne

DMA Transfer Types

- Single-cycle: write a single word to/from device

- Good for slow-speed devices, like UARTs

 Burst: transfer a block of data, over many clock cycles

- Used when writing to GPU memory, network cards, and hard disks

* During transfer, processor is unable to use bus

- Cyclic: repeatedly transfer data

« Used for sound cards

http://www.pebblebay.com/direct-

18
memory-access-embedded-systems/

DMA Coherency

* Processor’s data cache is usually not updated when DMA controller transfers
from device to memory

- If data cache is still dirty, DMA controller will transfer stale contents from
memory to device

- Some fancier systems allow DMA controller to snoop the memory bus (same
resolution as SMP caches)

- If DMA controller cannot snoop, software must explicitly flush and/or
iInvalidate the data cache, at the virtual address associated with memory’s
physical address

19

Sus Address

—~— " Virt Addr

* Whereas processors mostly run

Phys Addr I
within virtual addresses, and B
memory is accessed with physical o
addresses, devices have their own -
address space]
Length
Next
* When building TxDs, software Y
needs to be careful when writing PysA]
source and destination addresses Virtua Length Physical PCiSpace
Base Addr Next Base Addr 0x0 Base Addr
0x10000000 0x80000000

- Often, a bus address is equal to physical address, plus some offset

- Example: For BCM2835, “a peripheral advertised here at bus address
Ox7Ennnnnn is available at physical address 0x20nnnnnn.”

20

/0 MMU

- Just as the MMU translates virtual to physical addresses, and has protection
bits, a /0O MMU translates I/0O virtual addresses to bus addresses

- Without I/O MMU, a malicious device could initiate a DMA to overwrite
memory with malware, bypassing all software security

- /0 MMU Dblocks attempts to overwrite unmapped memory

- /0 MMU permits virtualization of 1/O, useful for virtual machines

https://thehackernews.com/2019/02/
thunderbolt-peripheral-dma-attacks.html

21

