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Topics

• Virtual addressing


• Page tables


• Translation lookaside buffer
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Computer Organization

• Discussion thus far has concentrated upon the processor and then memory


• Will now start describing connection between processor and memory, 
processor and devices, and memory and devices
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System Interconnect
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Address Spaces

• Virtual Address (or logical address): address generated by CPU


• Physical Address: address calculated by memory management unit (MMU)


• DMA: direct memory access


• DMA Address (or bus address): addresses used by devices to send data 
between themselves


• DMA addresses do not always match physical address, and rarely match 
virtual address
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Virtual Address Space

• Separation of logical memory from physical memory, to allow for process 
isolation


• Virtual address space size often differs than physical memory size


• From perspective of a running program on the processor, load and store 
instructions are performed relative to that program’s virtual address space


• MMU maps between virtual and physical addresses


• Avoid need for contiguous memory blocks


• Allows programs to be loaded at any physical memory location (relocation)
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Virtual Memory
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Page Fault Handling

• Main memory can be considered as a cache of disk contents


• Upon a page fault, the system [sometimes] loads the missing data from disk 
(“swap in”)


• Very costly, can take millions of cycles to process


• Pages should be large enough to reduce page fault rate


• Modified data are cached as memory pages and then later flushed to disk 
(write back), as that constantly writing to disk is too slow (write through)


• When selecting a victim page to evict, LRU is most common algorithm
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Virtual Addressing

• Address is broken into a virtual page number and a page offset


• MMU translates virtual page number to a physical page number


• Example: ARMv8-A has 64-bit virtual addresses, but only lower 48 bits (256 
TiB) are used. Suppose that physical address space is only 40 bits (1 TiB), 
and a page is 4 KiB. Then:
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Memory Maps

• In a set-associative cache, a particular memory block is mapped to some 
particular set


• With paging, the operating system maintains the memory mappings between 
virtual addresses and physical addresses


• Multiple virtual addresses map to the same physical address to support 
shared memory


• Multiple physical addresses map to the same virtual address to support 
process forking (or after a copy-on-write page has been modified)
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Page Table

• [Usually] Stored in main memory


• Page Table Register holds the address to the beginning of the page table


• Operating system maintains a different page table for each process 


• Each entry in table gives a mapping between from a virtual to a physical 
address


• If a computed load/store virtual address does not have an entry within 
table, then MMU raises an interrupt (a page fault)
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Page Table

• Every page table entry has 
control flags:


• Valid Bit: If set, 
then proceed with 
memory access; 
otherwise raise 
interrupt


• Dirty Bit: Set by hardware 
when page is modified


• In simplest case, virtual page number is an index number into page table
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Page Table Size

• Many systems default to 4 KiB pages (12 bits)


• For a 32-bit virtual address, that means upper 20 bits give a virtual page 
number, and lower 12 bits are an offset into the resulting physical page


• To fully utilize entire 4 GiB address space (32 bits), number of page table 
entries needed is 
 

• If each page table entry is 32 bits (4 bytes), then entire page table requires 222 
bytes = 4 MiB (which is greater than a page itself)


• Need to either increase page sizes (“huge pages”), or use multi-level paging
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Multi-Level Page Table

• Instead of using virtual page number 
as an index into a single page table, 
split those bits to specify a first level 
and second level page


• Example: Let there be a system with 
32-bit virtual addresses and 4 KiB 
pages. The first 10 bits give an index 
within a first level page table. That 
entry gives the physical address of a 
second level page table. Let the next 
10 bits give an index within that 
second level page table. Use that 
entry as the physical address of the 
final page.
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ARMv8-A Multi-Level Page Table

• ARMv8-A has 64-bit virtual addresses, and allows for various page sizes


• For 4 KiB pages (“granules”), bits [47:39] specify one of 512 entries within 
the L0 table; each entry gives an address of a L1 table. Because each 
entry is 8 bytes, 512 × 8 = 4096 bytes, which is the page size. Bits [38:30] 
gives index within L1 table, bits [29:21] gives index with L2 table, bits 
[20:12] gives index within L3 table. 


• For 64 KiB pages, bits [47:42] are index into L1 table, bits [41:29] are index 
into L2 table, and then bits [28:16] are index into L3 table. Bits [15:0] are 
the page offset.

15ARM Cortex-A Series Programmer’s Guide, §12.4.2



ARMv8-A Multi-Level Page Table

16ARM Cortex-A Series Programmer’s Guide, §12.3



TLB

• Each lookup into a page table incurs more memory overhead


• Translation Lookaside Buffer (TLB): cache within MMU that stores recent 
translation lookups


• TLB Hit: Translation of a virtual address resolved by a cached TLB entry


• TLB Miss: Incurs a translation table walk to resolve virtual address


• TLB is limited, so MMU replaces old entries (either automatically or via 
software) as part of TLB miss


• Like normal data cache, TLB entries can be invalidated to force a refetch of 
the page table entries
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TLB Design

18

Page Offset

Page OffsetPhysical Page Number

47 11

1139

12

12 0

0

Va
lid

Virtual Page Number

28

36

If Valid bit is 1, then 
MMU immediately 
returns physical 

page number

Physical Page Number

12

MMU’s TLB 
Contents

If Valid bit is 0, then MMU 
performs translation table walk 
to find physical page number

Page Table 
Entries

28

Virtual Page Number



TLB and Cache

• TLB hit and data cache hit 
are independent


• A TLB entry must exist before 
data cache can be accessed


• Page table itself can be 
cached
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Memory Exceptions Summary

• Cache miss: referenced block not in cache; needs to be fetch from main memory


• TLB miss: referenced page of virtual address needs to be check in page table


• Page fault: reference page not in main memory (may need to load from disk)
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Cache TLB Page Condition
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hit miss hit TLB miss, but entry found in page table and data in cache
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hit hit miss Impossible - no translation possible if page not in memory

hit miss miss Impossible - data cannot be cached if page is not in memory



Memory Protection Bits

• Page table entries support protection bits in addition to valid and dirty bits:


• Read-only (RO) or read-write (RW)


• Executable (X) or non-executable (NX)


• User mode or privileged mode


• Operating system uses protection bits to enforce separation of data between 
system and user processes

21

Memory Region Protection

Stack RW, NX

Heap RW, NX

Text RO, X

Constants RO, NX



Handling TLB Misses and Page Faults

• TLB Miss: handled by hardware


• Check if page is in memory; if is valid then update TLB


• Raise page fault interrupt if page is not in memory


• Page Fault: handled by operating system


• OS interrupt handler determines cause of page fault


• If OS needs to load referenced data from disk, it will restart instruction 
after disk I/O completes; until then OS keeps the process suspended
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