
Lecture 20: Multi-Cache Designs

Spring 2024

Jason Tang

1



Topics

• Split caches


• Multi-level caches


• Multiprocessor caches

2



3 Cs of Memory Behaviors

• Classify all cache misses as:


• Compulsory Miss (also cold-start miss): caused by first access to a block 
that has never been in cache


• Capacity Miss: caused when cache cannot contain all blocks needed 
during execution


• Conflict Miss (also collision miss): multiple blocks compete to be stored 
within same set

3



Memory Control Lines

• Main memory takes a while to access, as 
compared to caches


• CPU is stalled while waiting for data to be read

4http://www.primrosebank.net/computers/mtx/
components/memory/dram/dram_mtx1.htm

z80 Line Meaning

Clk Inverted clock (falling 
edge)

A15 - A0 Address bus

MREQ
Memory request: 
active low when 

address line is valid

RD Active low to request 
a read

WR Active low to request 
a write

Dt - D0 Data bus

Wait Active high to stall 
CPU



Memory Organization

• Wide: DRAM’s data blocks larger than CPU’s data size


• Interleaved: Concurrent, overlapping DRAM accesses, via chip select lines

5

Processor

Cache

DRAM

Processor

Cache

DRAM

Simple Wide

Cache Cache Cache

Processor

Cache

DRAM 
Bank 0

Interleaved

DRAM 
Bank 1

DRAM 
Bank 2

DRAM 
Bank 3



Split Caches

• Unified Cache: single cache holds both instructions and data


• Single set of control logic, but can have multiple cache misses in a single 
clock cycle


• Split Cache: two independent caches, operating in parallel (“Modified 
Harvard” architecture)


• Instruction Cache: optimized for instructions


• Data Cache: optimized for data

6



Instruction Cache

• Every instruction has a data access (at the address of the PC)


• But not every instruction is a data load/store


• Usually implemented to assume only reads (no self-modifying code)


• Uses prefetching to anticipate next sequential instruction to execute


• May have a branch target cache to prefetch instruction at branch target

7



Data Cache

• Supports reads and writes


• In addition to cache tag, each cache entry has a dirty bit indicating that 
contents have been modified, but not yet committed to main memory


• Self-modifying code requires maintaining coherency between memory systems


• Write new instructions to data cache


• Flush data cache


• Then invalidate instruction cache


• Need not have same characteristics as instruction cache

8



Cache Replacement Policies

• Upon a conflict miss, need to decide which victim cache block to evict


• Random: victim block randomly selected


• Round-Robin: victim block is the first one that was loaded


• Least Recently Used (LRU): victim block is one that has been unused the 
longest


• LRU is generally better, but harder to implement in hardware

9



Cache Locking

• Some cache designs allow for a given cache block to be locked


• Cache block will not be evicted upon a conflict miss


• Important for hard real-time software to reduce cache miss penalty


• Reduces amount of cache available to other software

10https://www.ece.umd.edu/~barua/anand-TECS-2014.pdf



Cache Timing Attacks

• Because CPI is higher for cache hits than misses, computer systems are 
vulnerable to cache timing attacks


• By carefully measuring how long certain operations take, an attacker can 
deduce the contents of memory


• Evict+Time: execution time changes by evicting specific cache set (such as 
a crucial branch instruction)


• Prime+Probe: fill cache with data, execute victim program, then observe 
which cache sets are still filled


• Flush+Reload: flush a shared cache line, execute victim program, then time 
how long it takes to read from that cache line

11https://www.usenix.org/system/files/conference/
usenixsecurity16/sec16_paper_lipp.pdf



Cache Timing Attack Example

• A cached value is faster to access than an uncached value


• Suppose that a user allocates a large amount of memory (via malloc()). 
Cache miss occurs the first time a byte is read from it. The CPU determines 
which cache block is associated with that byte’s address. It must then evict 
a cache block from the set-associative data cache, and then load from main 
memory the cache block. This takes many tens to hundreds of 
nanoseconds.


• Attacker ensures that a range of addresses are uncached (by either flushing 
data cache, or by reading other addresses that map to same cache set)


• Attacker performs some operation, then carefully measures the time it takes 
to read each byte from the memory range. A faster read means that byte 
was cached.

12



Multi-Level Caches

• Modern systems have multiple levels of cache


• Level 1 (L1) (closest to processor) is smaller and faster


• Other levels are bigger, but slower


• Different characteristics between cache levels


• L1 cache has smaller blocks and fewer associativity, to be faster


• L2 cache has larger blocks and more associativity, to reduce miss rate

13



L1 vs. L2 Cache

• Infeasible to have an infinite sized 
cache


• L2 cache is larger, cheaper, and 
requires less power than L1, but a 
bit slower


• Newer systems have even more 
levels of caching


• Intel’s Haswell architecture added 
a 128 MiB L4 cache

14https://lwn.net/Articles/252125/



Intel Kaby Lake Access Latency

15https://www.nexthink.com/blog/smarter-cpu-
testing-kaby-lake-haswell-memory



ARM Cortex-A53 Cache Systems

• L1 ICache is up to 64 KiB, has 64-bit cache lines, 
is 2-way set associative, and has a 128-bit read 
interface to L2


• L1 DCache is up to 64 KiB, has 64-bit cache lines, 
is 4-way set associative, has a 128-bit read interface 
to L2, and a 256-bit write interface to L2


• L1 ICache and DCache have random replacement


• L2 Cache is up to 2 MiB, has 64-bit cache lines, 
and is 16-way set associative


• L2 Cache has LRU replacement

16ARM Cortex-A53 Processor Technical Manual, 
§6.1 and §7.1

Processor

L1 ICache

DRAM

L2 Cache

L1 DCache



Intel Golden Cove Cache Systems

• L1 ICache is set associative (8 ways of 64 sets), 32 KiB total, ? cycle latency


• L1 DCache is set-associative (12 ways of 64 sets), 48 KiB total, 5 cycle 
latency


• L2 Unified Cache is set-associative (10 ways of 2048 sets), 1280 KiB total, 15 
cycle latency


• L3 Unified Cache is set-associative (12 ways of 40960 sets), 30 MiB total, 67 
cycle latency

17https://chipsandcheese.com/2022/02/11/going-
armchair-quarterback-on-golden-coves-caches/



Cache Inclusion Policy

• Multi-level caches are designed depending upon if data in one cache level are also in 
other cache levels


• Inclusive Policy: Same data in both L1 and L2 caches


• Exclusive Policy: Data in only one cache


• Exclusive policy increases effective amount of caching, but:


• If data in L2 but not L1, then block is moved from L2 to L1


• If this causes an eviction from L1, then victim cache block moved to L2


• Non-inclusive Non-exclusive (NINE) policy is a blend of inclusive and exclusive policies

18



Comparison of Cache Inclusion Policies

19

Cache Policy Data Not in L1, but in 
L2

Data Neither in L1 nor 
L2 Data evicted from L2

Inclusive

Cache block fetched 
from L2; evicted L1 
cache entry is not 

saved

Read from main 
memory to both L1 

and L2

Back Invalidation: 
matching L1 cache 

block also invalidated

Exclusive

Cache block copied 
from L2 to L1; evicted 
L1 cache entry moved 

to L2

Victim Cache: Read 
from main memory 

directly to L1; evicted 
L1 cache entry moved 

to L2

No change to L1

NINE

Cache block fetched 
from L2; evicted L1 
cache entry is not 
saved (same as 

inclusive)

Read from main 
memory to both L1 

and L2 (same as 
inclusive)

No change to L1 (same 
as exclusive)



Multiprocessor Caches

• On a symmetric multiprocessing (SMP) system, some caches are exclusive to 
each processor and others are shared


• Often L1 and L2 caches are exclusive, while L3 and higher are shared


• Cache coherence problem: when different processors’ caches store different 
copies of the same data


• Write Propagation: If processor A writes to address X, processor B should 
read new value


• Write Serialization: If processor A and then B write to address X, a later 
read from X should return B’s data, not A’s

20



Cache Snooping

• All cache controllers monitor (snoop) on a shared bus for memory 
transactions


• Whenever a processor writes to a cache block, it broadcasts a message

21

Processor

Cache Tag 
and Data

Memory Bus

Snoop 
Tag

DRAM

Processor

Cache Tag 
and Data

Snoop 
Tag

Processor

Cache Tag 
and Data

Snoop 
Tag



Snooping Protocols

• Write Invalidate Protocol: All other caches containing that block are 
invalidated, similar to a write-back policy


• Most common snooping protocol


• Write Update Protocol: All other caches are updated to contain the new 
cache block, similar to a write-through policy

22

Processor 
Activity Bus Activity CPU A’s Cache CPU B’s Cache Contents at 

Address X
uncached uncached 0

CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0

CPU A writes a 1 
to X Invalidate X 1 invalid 1

CPU B reads X Cache miss for X 1 1 1



M

E

S

I

PrRd or
PrWr

PrRd

PrRd or
BusRd

BusRd

BusWr

BusWr

BusRd

PrWr

PrWr

BusRd

PrWr

PrRd
(no other

shared) PrRd
(shared)

MESI protocol

• Common write invalidate 
protocol


• In addition to invalid (I) and 
modified (M) bits, a cache block 
also has these status bits:


• Exclusive (E): cache block 
present only in current cache 
and is clean


• Shared (S): cache block may 
be stored in other caches and 
is clean

23https://vrazdan.github.io/final.html


