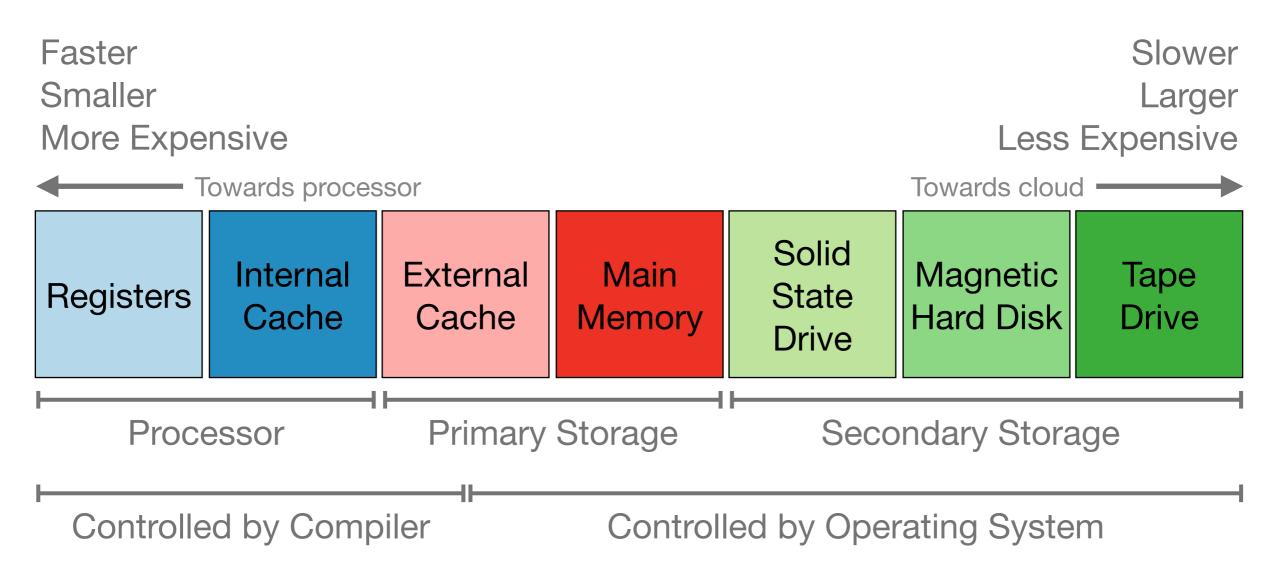
#### Lecture 19: Cache Performance


Spring 2024 Jason Tang

## Topics

- Measuring cache performance
- Increasing hit rates
- Write policies

## Importance of Caching

 Clever software writers can significantly decrease execution times by understanding how caches operate



## Importance of Caching

- System execution time includes not just CPU time, but also time spent on memory accesses
  - Time spent waiting for memory (a stall) is significant, measured in tens to hundreds of nanoseconds
  - Modern processor designs have focused on decreasing stall penalty via improved cache designs



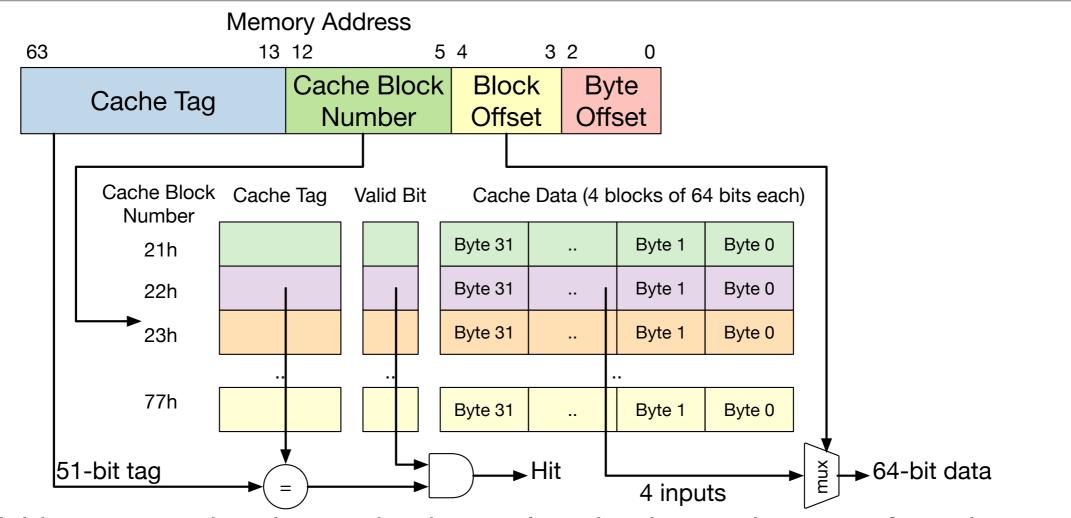
https://www.anandtech.com/show/17019/apple-announcedm1-pro-m1-max-giant-new-socs-with-allout-performance

### Measuring Cache Performance

- CPUTime = (InstructionCycles + MemoryStallCycles) × ClockCycleTime
- MemoryStallCycles = ReadStallCycles + WriteStallCycles
- ReadStallCycles = %ReadInstructions × CacheReadMissRate × CacheReadMissPenalty
  - CacheReadMissRate = 1 CacheReadHitRate
  - For most software, reads occur much more frequently than writes
- Calculating WriteStallCycles is harder
- Let average memory access time (AMAT) = Hit time + Miss rate × Miss penalty

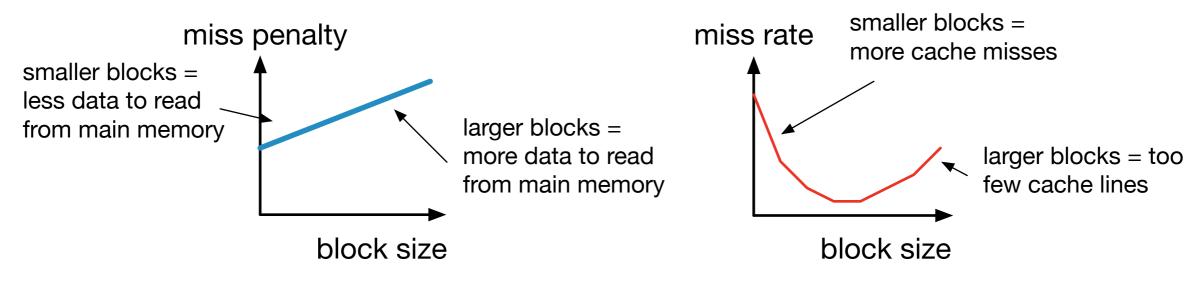
### Cache Performance Example

 Suppose that a particular system's cache takes 1 cycle to access, and the hit rate is 95%. Upon a cache miss, the penalty is 100 cycles to access main memory. What is the AMAT?


# $AMAT = Hit Time + (Miss Rate \times Miss Penality)$ = 1 + (0.05 × 100) = 6 clock cycles

- Suppose the hit rate increases to 98%. What is the new AMAT?
  - = 1 +  $(0.02 \times 100)$  = 3 clock cycles
  - Thus a 3% increase in hit rate **halved** average memory access times

## Decreasing AMAT


- Increase hit rate (or reduce miss rate)
  - Make memory reads more likely to be serviced by cache
  - Decrease unused items from being stored in cache
- Decrease miss penalty
  - Decrease time to find an available cache block
  - Decrease time to flush a used cached block

## Multi-Word Direct Mapped Cache

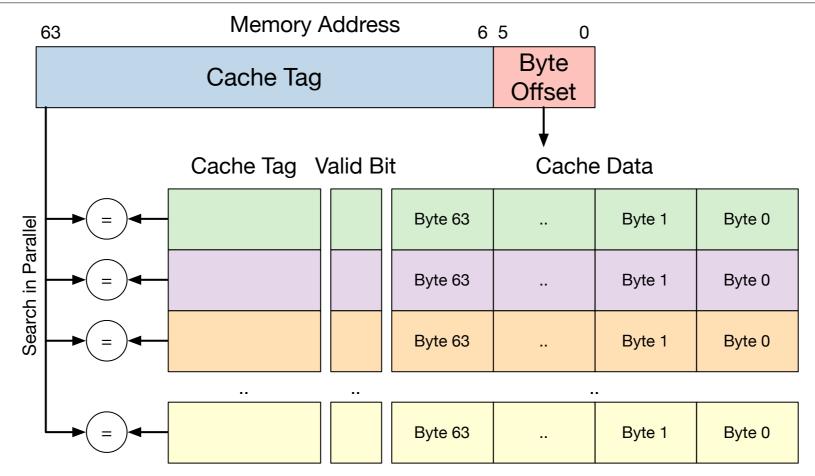


- Diminishing return when increasing internal cache, increasing manufacturing cost and increasing cache access time
- Given finite bits dedicated to cache, could increase the cache block size to increase hit rate, thus exploiting spatial locality

## Multi-Word Direct Mapped Cache



- BlockAddress = ByteAddress / BytesPerBlock
- CacheBlockAddress = BlockAddress modulo NumberOfCacheBlocks
- Larger block increases read miss penalty, as that more memory needs to be transferred to fill up block
- Larger block also increases read miss rate, because too few cache blocks

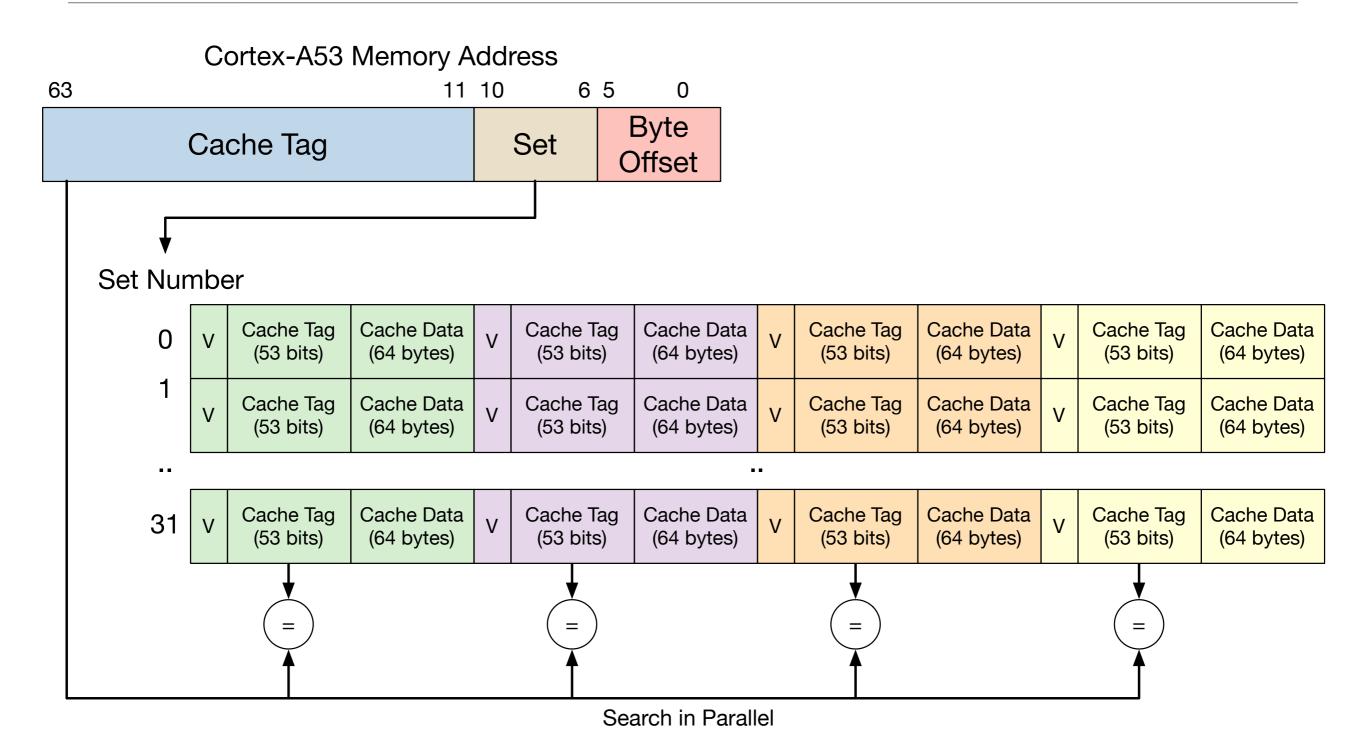

## Fully Associative Cache

- A given memory address is comprised of a block number and an offset within the block
  - Example: a 64-bit address with a block size of 64 bytes has 58 bits for the tag and 6 bits for offset, and there are 2<sup>58</sup> total blocks

| Tag | Byte within a Block |
|-----|---------------------|
| 58  | 6                   |

- In a directly mapped cache each block corresponds to exactly one possible location within the cache, leading to higher conflict
- In a fully associative cache, any block can be stored in any location within the cache

## Fully Associative Cache




- More flexible than direct mapped cache, stores blocks where it needs to be, higher cache hit rate
- Searching for a block takes longer (though done in parallel) and requires more hardware

#### Set Associative Cache

- Compromise between direct mapped and fully associative cache
  - Map a block number to a set (direct mapped)
  - Then search within that set for an available block (associative mapped)
- Example: ARM Cortex-A53's data cache has a cache line of 64 bytes and is 4-way set associative. Supposing its total cache size is 8 KiB, then:
  - Total number of blocks = Cache Size / Cache Line Size = 8 KiB / 64 = 128
  - Total number of sets = Total Blocks / Set Associativity = 128 / 4 = 32

## Cortex-A53 with 8 KiB Data Cache

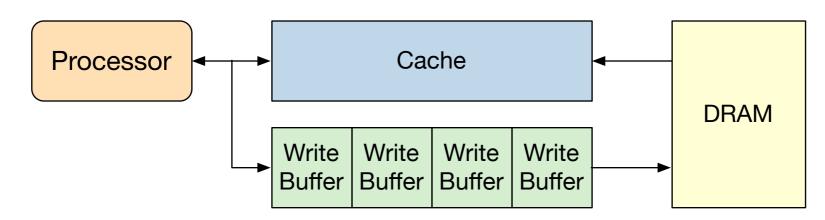


## Cache Alignment

- If a variable (int, struct, etc) spans across two cache lines, then there are two potential cache misses when using that variable
  - Be aware of wasted memory when ordering structures
  - C compiler will by default pad structure elements to be word aligned
- When working with large structures within a loop, reorganize data by splitting the large structure into smaller structures stored in separate arrays
  - Looping over a Row Major Ordered array optimally uses cache
- In C, dynamically allocate a piece of aligned memory via **memalign()** function

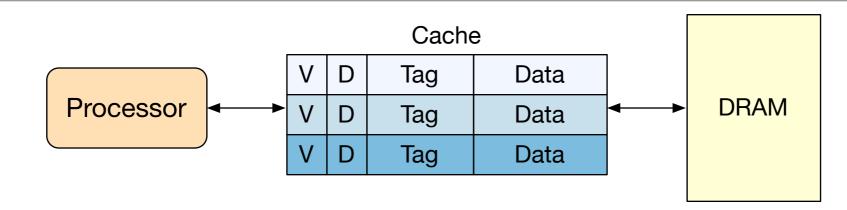
### Alignment Example

```
#include <stddef.h>
#include <stdio.h>
struct s1 {
   char c1; int i; long l; char c2;
};
                                               Sizes: s1 = 24, s2 = 16
                                               Alignment of fields:
struct s2 {
   long l; int i; char c1; char c2;
                                                  c1: 0 12
};
                                                  c2: 16 13
int main(void) {
                                                  i: 4 8
   printf("Sizes: s1 = %zu, s2 = %zu n",
                                                  1:80
      sizeof(struct s1), sizeof(struct s2));
   printf("Alignment of fields:\n");
   printf(" c1: %zu %zu\n",
      offsetof(struct s1, c1), offsetof(struct s2, c1));
   printf(" c2: %zu %zu\n",
      offsetof(struct s1, c2), offsetof(struct s2, c2));
   printf(" i: %zu %zu\n",
      offsetof(struct s1, i), offsetof(struct s2, i));
   printf(" l: %zu %zu\n",
      offsetof(struct s1, l), offsetof(struct s2, l));
    return 0;
}
```


## Prefetching

- Another technique to increase hit rate is to prefetch memory
- Whenever cache is fetching a block from memory, initiate reads in anticipation of using the next block
  - Exploits spatial locality
- Example: PowerPC has a 32 byte cache line. When fetching instructions into cache, by default it also prefetches the next 96 bytes (3 cache lines), as that it assumes that program flow is linear.

### Write Policies


- In many software, a variable that is written will be read again soon (and thus the new value should be stored in cache)
- When writing to cache, should main memory also be updated?
- For some software, values are written into memory, but will not be read back for a long time
  - Storing it in cache prevents more useful things from being cached

# Write Through Policy



- Writes data to both cache and main memory
  - Processor writes data to cache and a write buffer
  - Memory controller commits write buffer to memory, asynchronously
- Good if a block is rarely written, bad if block is constantly updated
  - Write buffer will fill, causing CPU to stall

## Write Back Policy



- Writes data only to cache
- When cache needs to free up a block and if the **dirty** bit is set, then flush the cache line to memory (if not already **invalidated**)
- More complex to implement, but reduces time spent writing to DRAM
  - Reduces redundant writes to memory for repeated changes
  - Can lead to cache coherency

# Write Combining

- Like a write-through system, but instead of writing to a write buffer instead store changed bits in a write combine buffer
  - Wait for write combine buffer to be filled before writing (a burst write)
  - Better than immediately writing many small chunks to memory
- Significantly decreases write times when processor is producing a lot of streaming data (like for a video card)
  - Caution: Reads from that cache line may return original cached data or from write combine buffer

#### **Uncached Writes**

- In uncached memory, read and write accesses bypass cache entirely
  - Write combining is a special type of uncached memory access
- Uncached accesses are necessary when accessing hardware
  - A read should force retrieving latest value from peripheral
  - A write should immediately effect hardware, instead of waiting upon a write buffer to be committed
- Using cache both wastes cache blocks and also leads to incorrect behavior