
Lecture 19: Cache Performance

Spring 2024

Jason Tang

1

Topics

• Measuring cache performance

• Increasing hit rates

• Write policies

2

Importance of Caching

• Clever software writers can significantly decrease execution times by
understanding how caches operate

3

Registers Internal
Cache

External
Cache

Main
Memory

Solid
State
Drive

Magnetic
Hard Disk

Tape
Drive

Faster

Smaller

More Expensive

Slower

Larger

Less Expensive

Processor Primary Storage Secondary Storage

Controlled by Compiler Controlled by Operating System

Towards processor Towards cloud

Importance of Caching

• System execution time includes not just CPU time, but also time spent 
on memory accesses

• Time spent waiting for 
memory (a stall) is 
significant, measured 
in tens to hundreds 
of nanoseconds

• Modern processor 
designs have focused 
on decreasing stall 
penalty via improved 
cache designs

4https://www.anandtech.com/show/17019/apple-announced-
m1-pro-m1-max-giant-new-socs-with-allout-performance

Measuring Cache Performance

• CPUTime = (InstructionCycles + MemoryStallCycles) × ClockCycleTime

• MemoryStallCycles = ReadStallCycles + WriteStallCycles

• ReadStallCycles = %ReadInstructions × CacheReadMissRate ×
CacheReadMissPenalty

• CacheReadMissRate = 1 - CacheReadHitRate

• For most software, reads occur much more frequently than writes

• Calculating WriteStallCycles is harder

• Let average memory access time (AMAT) = Hit time + Miss rate × Miss penalty

5

Cache Performance Example

• Suppose that a particular system’s cache takes 1 cycle to access, and the hit
rate is 95%. Upon a cache miss, the penalty is 100 cycles to access main
memory. What is the AMAT?

• Suppose the hit rate increases to 98%. What is the new AMAT?

• = 1 + (0.02 × 100) = 3 clock cycles

• Thus a 3% increase in hit rate halved average memory access times

6

AMAT = Hit Time + (Miss Rate × Miss Penality)
= 1 + (0.05 × 100)
= 6 clock cycles

Decreasing AMAT

• Increase hit rate (or reduce miss rate)

• Make memory reads more likely to be serviced by cache

• Decrease unused items from being stored in cache

• Decrease miss penalty

• Decrease time to find an available cache block

• Decrease time to flush a used cached block

7

Multi-Word Direct Mapped Cache

• Diminishing return when increasing internal cache, increasing manufacturing cost
and increasing cache access time

• Given finite bits dedicated to cache, could increase the cache block size to increase
hit rate, thus exploiting spatial locality

8

Cache Tag Block
Offset

63 5 4 3

.. ..

Valid Bit Cache Data (4 blocks of 64 bits each)Cache Tag

Memory Address

Cache Block
Number

21h

22h

23h

77h

Cache Block
Number

12

Byte 31 Byte 1 Byte 0..

Byte 31 Byte 1 Byte 0..

Byte 31 Byte 1 Byte 0..

Byte 31 Byte 1 Byte 0..

..

13

=
Hit 64-bit data51-bit tag

Byte
Offset

2 0

m
ux

4 inputs

Multi-Word Direct Mapped Cache

• BlockAddress = ByteAddress / BytesPerBlock

• CacheBlockAddress = BlockAddress modulo NumberOfCacheBlocks

• Larger block increases read miss penalty, as that more memory needs to be
transferred to fill up block

• Larger block also increases read miss rate, because too few cache blocks

9

miss penalty

block size

miss rate

block size

smaller blocks =
more cache misses

larger blocks = too
few cache lines

smaller blocks =
less data to read
from main memory larger blocks =

more data to read
from main memory

Fully Associative Cache

• A given memory address is comprised of a block number and an offset within
the block

• Example: a 64-bit address with a block size of 64 bytes has 58 bits for the
tag and 6 bits for offset, and there are 258 total blocks

• In a directly mapped cache each block corresponds to exactly one possible
location within the cache, leading to higher conflict

• In a fully associative cache, any block can be stored in any location within the
cache

10

Tag Byte within a Block
58 6

Fully Associative Cache

• More flexible than direct mapped cache, stores blocks where it needs to be,
higher cache hit rate

• Searching for a block takes longer (though done in parallel) and requires more
hardware

11

Cache Tag Byte
Offset

63 6 5 0

Byte 63 Byte 1 Byte 0..

Byte 63 Byte 1 Byte 0..

Byte 63 Byte 1 Byte 0..

Byte 63 Byte 1 Byte 0..

..

Valid Bit Cache DataCache Tag

Memory Address

=

=

=

=Se
ar

ch
 in

 P
ar

all
el

Set Associative Cache

• Compromise between direct mapped and fully associative cache

• Map a block number to a set (direct mapped)

• Then search within that set for an available block (associative mapped)

• Example: ARM Cortex-A53’s data cache has a cache line of 64 bytes and is
4-way set associative. Supposing its total cache size is 8 KiB, then:

• Total number of blocks = Cache Size / Cache Line Size = 8 KiB / 64 = 128

• Total number of sets = Total Blocks / Set Associativity = 128 / 4 = 32

12ARM Cortex-A53 Processor Technical Manual, §6.1

Cortex-A53 with 8 KiB Data Cache

13

Cache Tag Byte
Offset

63 6 5 0

Cache Data
(64 bytes)V Cache Tag

(53 bits)

Cortex-A53 Memory Address

= = ==

Search in Parallel

Set

1011

Set Number

0

1

31

..

Cache Data
(64 bytes)V Cache Tag

(53 bits)
Cache Data
(64 bytes)V Cache Tag

(53 bits)
Cache Data
(64 bytes)V Cache Tag

(53 bits)

Cache Data
(64 bytes)V Cache Tag

(53 bits)
Cache Data
(64 bytes)V Cache Tag

(53 bits)
Cache Data
(64 bytes)V Cache Tag

(53 bits)
Cache Data
(64 bytes)V Cache Tag

(53 bits)

Cache Data
(64 bytes)V Cache Tag

(53 bits)
Cache Data
(64 bytes)V Cache Tag

(53 bits)
Cache Data
(64 bytes)V Cache Tag

(53 bits)
Cache Data
(64 bytes)V Cache Tag

(53 bits)

..

Cache Alignment

• If a variable (int, struct, etc) spans across two cache lines, then there are
two potential cache misses when using that variable

• Be aware of wasted memory when ordering structures

• C compiler will by default pad structure elements to be word aligned

• When working with large structures within a loop, reorganize data by splitting
the large structure into smaller structures stored in separate arrays

• Looping over a Row Major Ordered array optimally uses cache

• In C, dynamically allocate a piece of aligned memory via memalign() function

14

Alignment Example

15

#include <stddef.h>
#include <stdio.h>

struct s1 {
 char c1; int i; long l; char c2;
};

struct s2 {
 long l; int i; char c1; char c2;
};

int main(void) {
 printf("Sizes: s1 = %zu, s2 = %zu\n",
	 sizeof(struct s1), sizeof(struct s2));
 printf("Alignment of fields:\n");
 printf(" c1: %zu %zu\n",
	 offsetof(struct s1, c1), offsetof(struct s2, c1));
 printf(" c2: %zu %zu\n",
	 offsetof(struct s1, c2), offsetof(struct s2, c2));
 printf(" i: %zu %zu\n",
	 offsetof(struct s1, i), offsetof(struct s2, i));
 printf(" l: %zu %zu\n",
	 offsetof(struct s1, l), offsetof(struct s2, l));
 return 0;
}

Sizes: s1 = 24, s2 = 16
Alignment of fields:
 c1: 0 12
 c2: 16 13
 i: 4 8
 l: 8 0

Prefetching

• Another technique to increase hit rate is to prefetch memory

• Whenever cache is fetching a block from memory, initiate reads in anticipation
of using the next block

• Exploits spatial locality

• Example: PowerPC has a 32 byte cache line. When fetching instructions into
cache, by default it also prefetches the next 96 bytes (3 cache lines), as that it
assumes that program flow is linear.

16PPC440 Processor User’s Manual, §3.2.2

Write Policies

• In many software, a variable that is written will be read again soon (and thus
the new value should be stored in cache)

• When writing to cache, should main memory also be updated?

• For some software, values are written into memory, but will not be read back
for a long time

• Storing it in cache prevents more useful things from being cached

17

Write Through Policy

• Writes data to both cache and main memory

• Processor writes data to cache and a write buffer

• Memory controller commits write buffer to memory, asynchronously

• Good if a block is rarely written, bad if block is constantly updated

• Write buffer will fill, causing CPU to stall

18

Processor Cache

DRAM
Write
Buffer

Write
Buffer

Write
Buffer

Write
Buffer

Write Back Policy

• Writes data only to cache

• When cache needs to free up a block and if the dirty bit is set, then flush the
cache line to memory (if not already invalidated)

• More complex to implement, but reduces time spent writing to DRAM

• Reduces redundant writes to memory for repeated changes

• Can lead to cache coherency

19

Processor DRAM
V D Tag Data
V D Tag Data
V D Tag Data

Cache

Write Combining

• Like a write-through system, but instead of writing to a write buffer instead
store changed bits in a write combine buffer

• Wait for write combine buffer to be filled before writing (a burst write)

• Better than immediately writing many small chunks to memory

• Significantly decreases write times when processor is producing a lot of
streaming data (like for a video card)

• Caution: Reads from that cache line may return original cached data or
from write combine buffer

20

Uncached Writes

• In uncached memory, read and write accesses bypass cache entirely

• Write combining is a special type of uncached memory access

• Uncached accesses are necessary when accessing hardware

• A read should force retrieving latest value from peripheral

• A write should immediately effect hardware, instead of waiting upon a
write buffer to be committed

• Using cache both wastes cache blocks and also leads to incorrect behavior

21https://lwn.net/Articles/282250/

