
Lecture 15: Pipelining

Spring 2024

Jason Tang

1

Topics

• Overview of pipelining

• Pipeline performance

• Pipeline hazards

2

Sequential Laundry

• A clothes washer takes 30 minutes, dryer takes 40 minutes, and folding takes
20 minutes

• Sequential laundry would thus take 6 hours for 4 loads

3

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

Pipelined Laundry

• Pipelining means start work as soon as possible

• Pipelined laundry would thus take 3.5 hours for 4 loads

4

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Pipelining

• Does not improve latency of a single task, but improves throughput of entire
workload

• Pipeline rate limited by slowest pipeline stage

• Multiple tasks operating simultaneously using different resources

• Speedup correlates to the number of pipe stages

• Actual speedup reduced by: unbalanced lengths of pipe stages, time to fill
pipeline, time to drain pipeline, and stalling due to dependencies

5

Multi-Cycle Instruction Execution

6

IF: Instruction Fetch ID: Instruction
Decode / Register

File Read

EX: Execute /
Address

Calculation

MEM: Memory
Access

WB: Write
back

Register File
Data
A Sel

B Sel

W Sel

ALU

Extend
Data

Memory

addr read
data

write
data

adder

PC

4

Instruction
Memory

addr read
data

Stages of Instruction Execution

• As mentioned earlier, load instructions take the longest to process

• All instructions follow at most these five stages:

• Fetch: fetch instruction from Instruction Memory at PC

• Decode: fetch registers and decode instruction

• Execute: calculate results

• Memory: read/write data from/to Data Memory

• Write Back: write data back to register file

7

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Load: Fetch Decode Execute Memory Write Back

Instruction Pipelining

• Start handling next instruction while current instruction is in progress

• Pipelining is feasible when different parts of CPU are used at different stages
of instruction execution

• Pipelined instruction throughput =

8

Fetch Decode Execute Memory Write Back

Fetch Decode Execute Memory Write Back

Fetch Decode Execute Memory Write Back

Fetch Decode Execute Memory Write Back

Fetch Decode Execute Memory Write Back

Time

Program Flow

non − pipelined time
number of stages

Datapath Comparisons

• Example program flow: a load instruction followed by a store instruction

9

Fetch Decode Execute Memory Write
Backload

store

load store

Fetch Decode Execute Memory Write
Back

waste

Cycle 1 Cycle 2
Clk

Clk
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Fetch Decode Execute Memory Write
Back Fetch Decode Execute Memory

load store
Fetch

…

Example Pipeline Performance

• Given the instruction sequence {load, store, R-type}, what is the clock
frequency and how long to finish executing all three instructions, for a single-
cycle datapath? For a multi-cycle datapath? For a pipelined datapath
(ignoring all hazards)?

• How long would it take to execute 1000 consecutive loads for: single-cycle,
multi-cycle, and pipeline datapaths?

10

Fetch Decode Execute Memory Write Back
200 ps 100 ps 200 ps 200 ps 100 ps

Designing Instruction Sets for Pipelining

• How bits are represented within an instruction affects pipeline performance

• Simplifying instruction fetch:

• RISC architectures [generally] have same sized instructions

• CISC architectures have varying length instructions

• Simplifying memory access:

• ARMv8-A has limited load and store instructions

• x86-64 allows memory to be used as operands to ALU

11

Pipeline Hazards

• Situation that prevents next instruction from executing on next clock cycle

• Structural hazard: attempt to use a resource two different ways at same time

• Example: all-in-one washer/dryer

• Data hazard: attempt to use item before it is ready

• Example: ready to fold socks, but one sock is still in washer

• Control hazard: attempt to make a decision before condition is evaluated

• Example: choosing laundry detergent based upon previous load

12

ldur X1, [X9, #100]

ldur X2, [X9, #100]

ldur X3, [X9, #100]

ldur X4, [X9, #100]

ldur X5, [X9, #100]

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

Time

Program Flow

Structural Hazard

• Combined instruction/data memory can cause conflicting accesses

• Can be resolved by adding an idle cycle before fetching fourth ldur

13

Memory Architectures

• von Neumann (also known an Princeton) Architecture: single combined
memory bus for both data and instructions

• Simpler to build, allows for self-modifying code, but leads to the von
Neumann bottleneck

• Harvard Architecture: separate memory buses for data and instructions

• Allows parallel access to data and instructions, allows different memory
technologies used, but much more complicated to build, prevents self-
modifying code

• Modified Harvard Architecture: has split caches, but unified main memory

14http://ithare.com/modified-harvard-architecture-clarifying-confusion/

Data Hazard

• Later instruction is dependent upon previous instruction’s execution

• Can be resolved by code reordering, forwarding, or stalling

15

add X1, X2, X3

sub X4, X1, X3

ldur X1, [X2, #0]

orr X8, X1, X9

eor X10, X1, X11

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

Time

Program Flow

Code Reordering

• Clever compilers (specifically, code generators) can reorder generated
assembly instructions to avoid data hazards

• Example:

16

a = b + e;
c = b + f;

ldur X1, [X0, #0] // load b
ldur X2, [X0, #8] // load e
add X3, X1, X2 // b + e
ldur X4, [X0, #12] // load f
add X5, X1, X4 // b + f

ldur X1, [X0, #0] // load b
ldur X2, [X0, #8] // load e
ldur X4, [X0, #12] // load f
add X3, X1, X2 // b + e
add X5, X1, X4 // b + f

reordered, optimizedliteral, unoptimized

Forwarding

• Add hardware to retrieve missing data from an internal buffer instead of from
programmer-visible registers or memory

• Only works for forward paths, later in time

• Does not work for a load immediately followed by an instruction that uses
that result (a load-use data hazard)

17

add X1, X2, X3

sub X4, X1, X3

X1
IF ID MEM WBEX

IF ID MEM WBEX

Stalling

• When code reordering and forwarding is insufficient, then intentionally stall
pipeline by adding bubbles

• Many ways to detect when stalling is needed and how many bubbles to
induce

18

ldur X1, [X2, #0]

(stall)

orr X8, X1, X9

eor X10, X1, X11

X1 X1

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

Time

Program Flow

bubble bubble bubble bubble bubble

Control Hazard

• Upon branching, the PC for the next instructor is unknown until after decode (for unconditional
branches) or after execution (for conditional branches)

• One solution is to always induce stall(s) when a branch instruction is detected, until after
branch is resolved

19

add X1, X2, X3

cbz X1, 3

orr X7, X8, X9

(stall)

(stall)

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

Time

Program Flow

bubble bubble bubble bubble bubble

bubble bubble bubble bubble bubble

Branch Prediction

• In simple case, assume that branch will never be taken

• If branch is taken, then flush pipeline, restarting with correct instruction

20

add X1, X2, X3

cbz X1, 3

orr X7, X8, X9

ldur X1, [X2, #0]

sub X4, X1, X3

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

Time

Program Flow

bubble bubble bubble

bubble bubble bubble

IF ID

IF bubble

