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Topics

+ Overview of pipelining

* Pipeline performance

 Pipeline hazards
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A clothes washer takes 30 minutes, dryer takes 40 minutes, and folding takes
20 minutes

- Sequential laundry would thus take 6 hours for 4 loads



Pipelined Laundry
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* Pipelining means start work as soon as possible

* Pipelined laundry would thus take 3.5 hours for 4 loads



Pipelining

- Does not improve latency of a single task, but improves throughput of entire
workload

 Pipeline rate limited by slowest pipeline stage

- Multiple tasks operating simultaneously using different resources

« Speedup correlates to the number of pipe stages

 Actual speedup reduced by: unbalanced lengths of pipe stages, time to fill
pipeline, time to drain pipeline, and stalling due to dependencies



Multi-Cycle Instruction Execution
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Stages of Instruction Execution
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
Load: Fetch Decode Execute _

« As mentioned earlier, load instructions take the longest to process

- All instructions follow at most these five stages:

 Fetch: fetch instruction from Instruction Memory at PC

- Decode: fetch registers and decode instruction

 Execute: calculate results

- Memory: read/write data from/to Data Memory

- Write Back: write data back to reqister file



Instruction Pipelining
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- Start handling next instruction while current instruction is in progress

* Pipelining is feasible when different parts of CPU are used at different stages

of instruction execution

* Pipelined instruction throughput =

non — pipelined time

number of stages



Datapath Comparisons

- Example program flow: a load instruction followed by a store instruction

: Cycle 1 I Cycle 2 :
Clk —
load store waste
- Cycle1 Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cycle10
load store
Write
Fetch Decode | Execute Fetch Decode | Execute - Fetch
load Fetch Decode | Execute
store| Fetch Decode | Execute




—xample Pipeline Performance

Fetch Decode Execute = Memory |Write Back

200 ps 100 ps 200 ps 200 ps 100 ps

- Given the instruction sequence {load, store, R-type}, what is the clock
frequency and how long to finish executing all three instructions, for a single-
cycle datapath? For a multi-cycle datapath? For a pipelined datapath
(ignoring all hazards)?

- How long would it take to execute 1000 consecutive loads for: single-cycle,
multi-cycle, and pipeline datapaths?
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Designing Instruction Sets for Pipelining

* How bits are represented within an instruction affects pipeline performance

- Simplifying instruction fetch:

« RISC architectures [generally] have same sized instructions

« CISC architectures have varying length instructions

- Simplifying memory access:

« ARMV8-A has limited load and store instructions

+ Xx86-64 allows memory to be used as operands to ALU
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Plpeline Hazards

Situation that prevents next instruction from executing on next clock cycle

Structural hazard: attempt to use a resource two different ways at same time

- Example: all-in-one washer/dryer

Data hazard: attempt to use item before it is ready

- Example: ready to fold socks, but one sock is still in washer

Control hazard: attempt to make a decision before condition is evaluated

- Example: choosing laundry detergent based upon previous load

12



Structural Hazard

ldur X1,

Program Flow
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- Combined instruction/data memory can cause conflicting accesses

- Can be resolved by adding an idle cycle before fetching fourth 1dur

WB
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Memory Architectures

- von Neumann (also known an Princeton) Architecture: single combined
memory bus for both data and instructions

- Simpler to build, allows for self-modifying code, but leads to the von
Neumann bottleneck

- Harvard Architecture: separate memory buses for data and instructions

 Allows parallel access to data and instructions, allows different memory

technologies used, but much more complicated to build, prevents self-
modifying code

- Modified Harvard Architecture: has split caches, but unified main memory

http://ithare.com/modified-harvard-architecture-clarifying-confusion/ 14



Data Hazard

add X1, X2, X3

Program Flow

v

- Later instruction is dependent upon previous instruction’s execution

sub X4, X1, X3

- Can be resolved by code reordering, forwarding, or stalling
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Code Reordering

- Clever compilers (specifically, code generators) can reorder generated
assembly instructions to avoid data hazards

- Example: a=>b + e;

c=b + f;

literal, unoptimized reordered, optimized

ldur X1, [XO0, #0] // load b ldur X1, [X0, #0] // load b
ldur X2, [X0, #8] // load e ldur X2, [X0, #8] // load e
add X3, X1, X2 // b + e ldur X4, [X0, #12] // load £
ldur X4, [X0, #12] // load £ add X3, X1, X2 // b + e
add X5, X1, X4 // b + £ add X5, X1, X4 // b + £
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Forwarding

add X1, X2, X3| |F 0 D >EX MEM WB
XY

sub X4, X1, X3| |F 0 1D %—MEM WB

- Add hardware to retrieve missing data from an internal buffer instead of from
programmer-visible registers or memory

- Only works for forward paths, later in time

« Does not work for a load immediately followed by an instruction that uses
that result (a load-use data hazard)



Stalling
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- When code reordering and forwarding is insufficient, then intentionally stall
pipeline by adding bubbles
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- Many ways to detect when stalling is needed and how many bubbles to
induce



Control Hazard
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- Upon branching, the PC for the next instructor is unknown until after decode (for unconditional
branches) or after execution (for conditional branches)

- One solution is to always induce stall(s) when a branch instruction is detected, until after
branch is resolved



Program Flow

v

sub X4, X1, X3

|
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* In simple case, assume that branch will never be taken

- If branch is taken, then flush pipeline, restarting with correct instruction

WB

Sranch Prediction
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