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Topics

• Overview of pipelining


• Pipeline performance


• Pipeline hazards
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Sequential Laundry

• A clothes washer takes 30 minutes, dryer takes 40 minutes, and folding takes 
20 minutes


• Sequential laundry would thus take 6 hours for 4 loads
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Pipelined Laundry

• Pipelining means start work as soon as possible


• Pipelined laundry would thus take 3.5 hours for 4 loads
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Pipelining

• Does not improve latency of a single task, but improves throughput of entire 
workload


• Pipeline rate limited by slowest pipeline stage


• Multiple tasks operating simultaneously using different resources


• Speedup correlates to the number of pipe stages


• Actual speedup reduced by: unbalanced lengths of pipe stages, time to fill 
pipeline, time to drain pipeline, and stalling due to dependencies
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Multi-Cycle Instruction Execution
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Stages of Instruction Execution

• As mentioned earlier, load instructions take the longest to process


• All instructions follow at most these five stages:


• Fetch: fetch instruction from Instruction Memory at PC


• Decode: fetch registers and decode instruction


• Execute: calculate results


• Memory: read/write data from/to Data Memory


• Write Back: write data back to register file
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Instruction Pipelining

• Start handling next instruction while current instruction is in progress


• Pipelining is feasible when different parts of CPU are used at different stages 
of instruction execution


• Pipelined instruction throughput =
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Datapath Comparisons

• Example program flow: a load instruction followed by a store instruction
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Example Pipeline Performance

• Given the instruction sequence {load, store, R-type}, what is the clock 
frequency and how long to finish executing all three instructions, for a single-
cycle datapath? For a multi-cycle datapath? For a pipelined datapath 
(ignoring all hazards)?


• How long would it take to execute 1000 consecutive loads for: single-cycle, 
multi-cycle, and pipeline datapaths?
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Designing Instruction Sets for Pipelining

• How bits are represented within an instruction affects pipeline performance


• Simplifying instruction fetch:


• RISC architectures [generally] have same sized instructions


• CISC architectures have varying length instructions


• Simplifying memory access:


• ARMv8-A has limited load and store instructions


• x86-64 allows memory to be used as operands to ALU
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Pipeline Hazards

• Situation that prevents next instruction from executing on next clock cycle


• Structural hazard: attempt to use a resource two different ways at same time


• Example: all-in-one washer/dryer


• Data hazard: attempt to use item before it is ready


• Example: ready to fold socks, but one sock is still in washer


• Control hazard: attempt to make a decision before condition is evaluated


• Example: choosing laundry detergent based upon previous load
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ldur X1, [X9, #100]

ldur X2, [X9, #100]

ldur X3, [X9, #100]

ldur X4, [X9, #100]

ldur X5, [X9, #100]

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

Time

Program Flow

Structural Hazard

• Combined instruction/data memory can cause conflicting accesses


• Can be resolved by adding an idle cycle before fetching fourth ldur
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Memory Architectures

• von Neumann (also known an Princeton) Architecture: single combined 
memory bus for both data and instructions


• Simpler to build, allows for self-modifying code, but leads to the von 
Neumann bottleneck


• Harvard Architecture: separate memory buses for data and instructions


• Allows parallel access to data and instructions, allows different memory 
technologies used, but much more complicated to build, prevents self-
modifying code


• Modified Harvard Architecture: has split caches, but unified main memory

14http://ithare.com/modified-harvard-architecture-clarifying-confusion/



Data Hazard

• Later instruction is dependent upon previous instruction’s execution


• Can be resolved by code reordering, forwarding, or stalling
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ldur X1, [X2, #0]
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Code Reordering

• Clever compilers (specifically, code generators) can reorder generated 
assembly instructions to avoid data hazards


• Example:
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a = b + e; 
c = b + f;

ldur X1, [X0, #0]  // load b 
ldur X2, [X0, #8]  // load e 
add X3, X1, X2     // b + e 
ldur X4, [X0, #12] // load f 
add X5, X1, X4     // b + f

ldur X1, [X0, #0]  // load b 
ldur X2, [X0, #8]  // load e 
ldur X4, [X0, #12] // load f 
add X3, X1, X2     // b + e 
add X5, X1, X4     // b + f

reordered, optimizedliteral, unoptimized



Forwarding

• Add hardware to retrieve missing data from an internal buffer instead of from 
programmer-visible registers or memory


• Only works for forward paths, later in time


• Does not work for a load immediately followed by an instruction that uses 
that result (a load-use data hazard)
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Stalling

• When code reordering and forwarding is insufficient, then intentionally stall 
pipeline by adding bubbles


• Many ways to detect when stalling is needed and how many bubbles to 
induce
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Control Hazard

• Upon branching, the PC for the next instructor is unknown until after decode (for unconditional 
branches) or after execution (for conditional branches)


• One solution is to always induce stall(s) when a branch instruction is detected, until after 
branch is resolved
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add X1, X2, X3

cbz X1, 3
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Branch Prediction

• In simple case, assume that branch will never be taken


• If branch is taken, then flush pipeline, restarting with correct instruction
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add X1, X2, X3

cbz X1, 3

orr X7, X8, X9
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