Lecture 15: Pipelining

Spring 2024
Jason Tang

Topics

+ Overview of pipelining

* Pipeline performance

 Pipeline hazards

Sequential Laundry

6PM 7 8 9 10 11 Midnight

|
I Time

30 40 20 30| 40 |20| 30| 40 |20|30| 40 |20|

. | B (iphy

: Ttbr

0 | & Jsphr
@ TS

A clothes washer takes 30 minutes, dryer takes 40 minutes, and folding takes
20 minutes

- Sequential laundry would thus take 6 hours for 4 loads

Pipelined Laundry

6PM 7 8 9 10 11 Midnight

Time

30 40 40 40 40 20

. | & (o

k =/ e

0 Hﬁﬁ?
e P47
(D) o147

* Pipelining means start work as soon as possible

* Pipelined laundry would thus take 3.5 hours for 4 loads

Pipelining

- Does not improve latency of a single task, but improves throughput of entire
workload

 Pipeline rate limited by slowest pipeline stage

- Multiple tasks operating simultaneously using different resources

« Speedup correlates to the number of pipe stages

 Actual speedup reduced by: unbalanced lengths of pipe stages, time to fill
pipeline, time to drain pipeline, and stalling due to dependencies

Multi-Cycle Instruction Execution

| I | |
IF: Instruction Fetch | ID: Instruction | EX: Execute/ | MEM: Memory | WB: Write
| Decode / Register | Address | Access Il back
: File Read : Calculation : :
| I | |
A i | |
\ | I | |
= : : :
C - | |
| RegisterFile | | | | | |
I L »!Data | | |
adgr read| | »{ A Sel | | ddr read |
data| | | 2 T O data 1
Instruction | T—|BSel - »\ | write |
Memory | +—>» W Sel I N | ™ data |
| | / L | Data |
'L] Extend | | Memory |
I I |

Stages of Instruction Execution
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
Load: Fetch Decode Execute _

« As mentioned earlier, load instructions take the longest to process

- All instructions follow at most these five stages:

 Fetch: fetch instruction from Instruction Memory at PC

- Decode: fetch registers and decode instruction

 Execute: calculate results

- Memory: read/write data from/to Data Memory

- Write Back: write data back to reqister file

Instruction Pipelining

v

Fetch Decode Execute Write Back

Fetch Decode

Execute Write Back

Fetch

Time

Decode Execute Write Back

Program Flow

Fetch Decode

Execute Write Back

Fetch

Decode

Execute Write Back

- Start handling next instruction while current instruction is in progress

* Pipelining is feasible when different parts of CPU are used at different stages

of instruction execution

* Pipelined instruction throughput =

non — pipelined time

number of stages

Datapath Comparisons

- Example program flow: a load instruction followed by a store instruction

: Cycle 1 I Cycle 2 :
Clk —
load store waste
- Cycle1 Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cycle10
load store
Write
Fetch Decode | Execute Fetch Decode | Execute - Fetch
load Fetch Decode | Execute
store| Fetch Decode | Execute

—xample Pipeline Performance

Fetch Decode Execute = Memory |Write Back

200 ps 100 ps 200 ps 200 ps 100 ps

- Given the instruction sequence {load, store, R-type}, what is the clock
frequency and how long to finish executing all three instructions, for a single-
cycle datapath? For a multi-cycle datapath? For a pipelined datapath
(ignoring all hazards)?

- How long would it take to execute 1000 consecutive loads for: single-cycle,
multi-cycle, and pipeline datapaths?

10

Designing Instruction Sets for Pipelining

* How bits are represented within an instruction affects pipeline performance

- Simplifying instruction fetch:

« RISC architectures [generally] have same sized instructions

« CISC architectures have varying length instructions

- Simplifying memory access:

« ARMV8-A has limited load and store instructions

+ Xx86-64 allows memory to be used as operands to ALU

11

Plpeline Hazards

Situation that prevents next instruction from executing on next clock cycle

Structural hazard: attempt to use a resource two different ways at same time

- Example: all-in-one washer/dryer

Data hazard: attempt to use item before it is ready

- Example: ready to fold socks, but one sock is still in washer

Control hazard: attempt to make a decision before condition is evaluated

- Example: choosing laundry detergent based upon previous load

12

Structural Hazard

ldur X1,

Program Flow

v

[X9, #100]| IF

ldur X2, [X9, #100]

}

ldur X3, [X9, #100]

ldur X4, [X9, #100]

| | | |
X ' MEM WB ' ' '
| | | | |
| | | | |
] | | | |
0 1D >EX MEM WB
| >T | | |
| | | | |
lr i | | |
F 1 D |>EX MEM [WB | |
| | | | |
! | i | |
IF ir ID |>EX MEM —— WB
| | I | |
l l | |
ldur X5, [x9, #1001 | IF 4 ID || MEM
|]

ﬁ%

Time

- Combined instruction/data memory can cause conflicting accesses

- Can be resolved by adding an idle cycle before fetching fourth 1dur

WB

13

Memory Architectures

- von Neumann (also known an Princeton) Architecture: single combined
memory bus for both data and instructions

- Simpler to build, allows for self-modifying code, but leads to the von
Neumann bottleneck

- Harvard Architecture: separate memory buses for data and instructions

 Allows parallel access to data and instructions, allows different memory

technologies used, but much more complicated to build, prevents self-
modifying code

- Modified Harvard Architecture: has split caches, but unified main memory

http://ithare.com/modified-harvard-architecture-clarifying-confusion/ 14

Data Hazard

add X1, X2, X3

Program Flow

v

- Later instruction is dependent upon previous instruction’s execution

sub X4, X1, X3

- Can be resolved by code reordering, forwarding, or stalling

I I I I I I
P o | >EX | vem L ﬁ/l ' '
I I I L I I I
I I I I I I I
' | I I I I
3| F 7 D || OB MEM = WB | | |
I I I I I I I
ldur x1' [X2 #o'] IF | o |, %—FMEM | WB |
S | | =71
I I I I I /|
I l l I I I
| orr X8, X1, X9 | IF L ID || >EX /dEM — WB
I I I I [I
I I I I I : I
| | eor X10, X1, x11| IF (84 D EX MEM
I

Time

WB

15

Code Reordering

- Clever compilers (specifically, code generators) can reorder generated
assembly instructions to avoid data hazards

- Example: a=>b + e;

c=b + f;

literal, unoptimized reordered, optimized

ldur X1, [XO0, #0] // load b ldur X1, [X0, #0] // load b
ldur X2, [X0, #8] // load e ldur X2, [X0, #8] // load e
add X3, X1, X2 // b + e ldur X4, [X0, #12] // load £
ldur X4, [X0, #12] // load £ add X3, X1, X2 // b + e
add X5, X1, X4 // b + £ add X5, X1, X4 // b + £

16

Forwarding

add X1, X2, X3| |F 0 D >EX MEM WB
XY

sub X4, X1, X3| |F 0 1D %—MEM WB

- Add hardware to retrieve missing data from an internal buffer instead of from
programmer-visible registers or memory

- Only works for forward paths, later in time

« Does not work for a load immediately followed by an instruction that uses
that result (a load-use data hazard)

Stalling

Time

ldur X1, [X2, #0] IF :r ID

X1 X1

|
|

|

|

| |

|

|

|

|

|

I

I

I

I

I

I

I I
| .
I

I

l

1

I I
>EX MEM (- ws |

I I

I

I

(stall)\pubbley, Sbubble

|
orr X8, X1, X9 IF

|
| |
| I |
| eor X10, X1, X1 IF ir ID EX MEM
Program Flow |
| | | | |

- When code reordering and forwarding is insufficient, then intentionally stall
pipeline by adding bubbles

TTp) EX MEM WB

|
|
|
|
|
|
|
|
|
|
|
iWB
|

- Many ways to detect when stalling is needed and how many bubbles to
induce

Control Hazard

I I I I I I I | Time
add x1, x2, x3| F 4 p |! >EX U vem - we | ! ' ' '
I I I I I I I I
I I I I I I I
' I I I I I I I
cbz X1, 3| |F 0 1D MEM WB
: I I I I I I I
I I I I I I I
I I I I I I I I
| (stall) Sbubble | bubble|| bubble | Sbubble | Sbubble | |
I I I I I
I I I I I
| | (stall) bubble?) ||>bubble) | bubble? | tbubble) | Sbubble’) |
I I I I I
P Fi ' ' | | '
rogram Flow I I orr X7 X8, X9 ir ID | MEM - WB
I

\/ I I I I ‘ I I
- Upon branching, the PC for the next instructor is unknown until after decode (for unconditional
branches) or after execution (for conditional branches)

- One solution is to always induce stall(s) when a branch instruction is detected, until after
branch is resolved

Program Flow

v

sub X4, X1, X3

|
| orr X7, X8, X9
|

* In simple case, assume that branch will never be taken

- If branch is taken, then flush pipeline, restarting with correct instruction

WB

Sranch Prediction

| | | | | | | Time

add X1, X2, X3| IF :r ID :g‘\i MEM : WB : : :

| | | | | |

v 3w L8] S8 {e] L

| | | | | | |

I l I | | ' | |

ldur X1, [X2, #01]| IF ir | sble | |

| ll |

[| |

| |

| |

20

