
Lecture 14: Microprogramming and Exceptions

Spring 2024

Jason Tang

1

Topics

• Microprogramming control

• Processor exceptions

• Exception handling

2

Mostly Complete Multi-Cycle Datapath

• Other than branching, this datapath handles basic ARMv8-A instructions

3

Register File
Data
WEn

A Sel

B Sel

W Sel

ALU

64

ALUSrcB

64

ALUOp

64

Zero Extend

Sign Extend

12

9

RegWrite

MemRead MemWrite

PC

Sign Extend

Sign Extend Shift
Left 2

19

26

4

ExtSel

Memory

addr

read
data

32
Condition

Codes

Branch
Control

Unit

BranchType

ALUSrcA

write
data

Inst
Reg

Mem
Data
Reg

ALU
Out
Reg

Reg
A

Reg
B

Imm12
Reg

Imm9
Reg

Imm19
Reg

Imm26
Reg

MemToReg

MemAddrSrc

PCWrite

Multi-Cycle Finite State Machine

• Note this is a finite state machine (FSM)

4

A ← R[n]
B ← R[m]

Imm* ← Extend(*)
PC ← ALUOut

ALUOut ← A op B

R[d] ← ALUOut

ALUOut ← A +
Imm9

MDR ←
Mem[ALUOut]

R[d] ← MDR PC ← ALUOut

Mem[ALUOut] ←
B

ALUOut ← PrevPC
+ Imm19

ALUOut ← A + 0

IR ← Mem[PC]
ALUOut ← PC + 4

R-Type ldur, stur

stur

cbz

(cond is true)

Fe
tc

h
De

co
de

R
Ex

ec
R

W
rit

e

Lo
ad

/S
to

re
 E

xe
c

ld
ur

 M
em

ld
ur

 W
rit

e

st
ur

 M
em

cb
z

Ex
ec

cb
z

Ex
ec

2
cb

z
W

rit
e

ldur (cond is false)

Microprogramming

• Instead of implementing FSM as a giant truth table, describe controls as a
series of simpler microinstructions:

• Defines set of datapath control signals to assert

• Defines which microinstruction to execute next, based upon current
instruction

• Microinstructions usually stored in a ROM or a PLA

• ROMs are easier to change (and reprogrammable), but PLAs can be faster

• EPROMS can be patched, to fix processor bugs

5

Reverse Engineering x86 Processor Microcode, 
https://www.syssec.rub.de/media/emma/
veroeffentlichungen/2017/08/16/usenix17-microcode.pdf

Example ARMv8-A PLA Control

6

Microprogramming Syntax

• Each line of microprogram describes a state, and which values to send to
control lines

• A blank column is a don’t care, either a zero is written (for control lines) or
any value (for a mux selector)

• Each line also includes a sequence field, to indicate which state to go next

• In this syntax, the keyword seq means to proceed to following line

7

Label ALUSrcA ALUSrcB ALUOp MemRead MemWrite PCWrite Sequencing
Fetch PC 4 add Read PC Seq

Conditional Sequencing

• When Sequencing field is not seq, then lookup next state based upon the
instruction register’s contents

• In this case, search through a subtable named Dispatch 1 to determine
next state

• Decode instruction based upon if it is an R-Type, ldur, stur, etc.

8

Label ALUSrcA ALUSrcB ALUOp MemRead MemWrite PCWrite Sequencing
Decode ALUOut Dispatch 1

Partial ARMv8-A Microprogram

• Similar to normal programming, a microcode assembler ensures that for every
state, conflicting signals are not asserted

9

Label ALUSrcA ALUSrcB ALUOp MemAddrSrc MemToReg PCWrite Sequencing

Fetch PC 4 add PC Seq
ALUOut Dispatch 1

RType RegA RegB func Seq
ALUOut Fetch

Load/
Store RegA imm9 add Dispatch 2

ldur ALUOut Seq
MDR Fetch

stur ALUOut Fetch

Implementing Microcode

• Microcode controller looks and behaves similar to a full-scale processor

10

Adder

1

Address Select
Logic

Microprogram
Counter

Microcode Storage

Instruction
Register

Sequencing
Control

Datapath
Controls

Methods for Control Implementation

• For each row, either column A or B could be chosen

• Traditional hardwired control prefer left column

• Microprogrammed control prefer right column

11

Hardwire Control Microprogramming
Initial Representation Finite state diagram Microprogram

Sequencing Control Explicit next-state
function

Microprogram counter
+ dispatch ROMs

Logic Representation Logic equations Truth tables
Implementation

Technique
Programmable logic

array Read-only memory

Exceptions

• Multiple definitions for “interrupts” and “exceptions”

• As per textbook’s authors,

• Exception: any unexpected change in control flow, regardless of internal or
external cause

• Interrupt: an exception that is caused by an external event

12

Types of Exceptions

• Intel refers to all of the above as “interrupts”

• Regardless of name, hardware implementations are similar

13

Event Source ARMv8-A Terminology
System reset External Exception

I/O device request External Interrupt
Request operating system resource

from user program Internal Exception

Floating-point arithmetic overflow/
underflow Internal Exception

Using an undefined instruction Internal Exception
Hardware malfunction Either Exception or Interrupt

Exceptions Overview

• CPU stores current PC when exception is detected

• On ARMv8-A, hardware writes address to Exception Link Register (ELR)

• CPU transfers control to a interrupt service routine (ISR), through the interrupt
vector table

• Depending upon architecture, other registers may be preserved

• Software then resolves exception

• Software finally returns from ISR, causing CPU to restore registers and
resume processing at the saved PC

14

Vectored Exceptions

• Each exception has a unique numeric code

• Example: on x86-64, undefined instruction is exception number 06h

• For some architectures, that exception number is written to a special register
when the hardware detects the exception

• On ARMv8-A, hardware writes to Exception Syndrome Register (ESR)

• Then, depending upon the type of exception, the CPU jumps to an address
relative to an interrupt base address

15

Exception Handling

• During exception handling, hardware preserves some registers; software is
responsible for saving additional registers it needs

• ISR then handles exception

• Example: if a program divides by zero, then OS terminates that program

• ISR restores any registers it modified

• ISR finally invokes a special instruction that returns from exception handling,
causing hardware to restore PC and resume processing

• On ARMv8-A, the eret instruction jumps to the address stored in ELR

16

ARM Architecture Reference Manual for
A-profile architecture, section C6.2.121

Addressing Exception Handlers

• Traditional Vectored Interrupt (x86-64):

• PC ← MEM[IV_Base + (N × Vector_Size)]

• Interrupt Vector Registers (PowerPC):

• PC ← IVORN

• RISC Style (ARMv7, ARMv8-A):

• PC ← IV_Base + (N × Vector_Size)

• For ARMv7, Vector_Size is 4 bytes, to [usually] hold a branch instruction; for
ARMv8-A, Vector_Size is 64 bytes and can hold entire ISR

17

ARM Cortex-A Series Programmer’s Guide for ARMv8-A, 
section 10.4

ARMv7-A Exception Vector Table

18

Exception Offset
Reset 0000_0000h

Undefined Instruction 0000_0004h
Supervisor Call 0000_0008h
Prefetch Abort 0000_000ch

Data Abort 0000_0010h
Hypervisor Trap 0000_0014h

IRQ interrupt 0000_0018h
Fast IRQ (FIQ) interrupt 0000_001ch

ARM Architecture Reference Manual vJ.a, 
section G.1.12.1

x86-64 Interrupt Table

• Interrupt Descriptor Table (IDT) is a special register that holds the starting
address, within memory, to interrupt vector table

• IDT points to a table of 256 IDT descriptors:

• When interrupt N occurs, the processor goes to IDT entry N, constructs a 64-
bit address, then jumps to that address

19
https://wiki.osdev.org/Interrupt_Descriptor_Table

struct IDTDescr {
 uint16_t offset_1; // offset bits 0..15
 uint16_t selector; // a code segment selector in GDT or LDT
 uint8_t ist; // bits 0..2 holds Interrupt Stack Table
 // offset, rest of bits zero.
 uint8_t type_attr; // type and attributes
 uint16_t offset_2; // offset bits 16..31
 uint32_t offset_3; // offset bits 32..63
 uint32_t zero; // reserved
};

x86-64 Exception Handling

• Hardware saves registers to memory, 
below the current value of the stack 
pointer

• CPU then jumps to address 
constructed by IDT

• When exception handler completes, 
it uses iretq to restore registers 
from the stack and resume 
processing

20
https://os.phil-opp.com/returning-from-exceptions/

Old Stack
Pointer

New Stack
Pointer

x86-64 Red Zone

• As an optimization, a function 
may try to use space below 
the stack pointer as scratch 
space, without modifying the 
stack pointer

• But because x86-64 ISR’s 
stack also uses the same 
memory, it has to avoid 
clobbering that data

• Red Zone: Area below stack pointer that
can safely be used by leaf functions, and
will be untouched by ISR

21
https://os.phil-opp.com/returning-from-exceptions/

Detecting Exception Examples

• Undefined Instruction: detected when no next state is defined as a result of
decoding instruction register

• Shown symbolically as “other” in FSM / microprogram when opcode field
does not match

• Arithmetic Overflow: detected when overflow bit is set in ALU’s condition
code

• Because PC was probably incremented by the time an exception is detected,
need to decrement saved PC (subtract by 4) before writing it to ELR

22

Exception Handling in Multi-Cycle Datapath

23

A ← R[n]
B ← R[m]

Imm* ← Extend(*)
PC ← ALUOut

ALUOut ← A op B

R[d] ← ALUOut

ALUOut ← A +
Imm9

MDR ←
Mem[ALUOut]

R[d] ← MDR PC ← ALUOut

Mem[ALUOut] ←
B

ALUOut ← PrevPC
+ Imm19

ALUOut ← A + 0

IR ← Mem[PC]
ALUOut ← PC + 4

R-Type ldur, stur

stur

cbz

(cond is true)

Fe
tc

h
De

co
de

R
Ex

ec
R

W
rit

e

Lo
ad

/S
to

re
 E

xe
c

ld
ur

 M
em

ld
ur

 W
rit

e

st
ur

 M
em

cb
z

Ex
ec

cb
z

Ex
ec

2
cb

z
W

rit
e

ldur (cond is false)

ELR ← PC - 4
ESR ← 0x04

PC ← Exc_Addr

U
nd

efi
ne

d
In

st
ru

ct
io

n

other

ELR ← PC - 4
FPSCR.OFC ← 1
PC ← Exc_Addr

Fl
oa

tin
g-

Po
in

t
O

ve
rfl

ow

Special Purpose Registers

• ESR and ELR are examples of system registers (a type of special purpose
register)

• Register file holds general purpose registers, not system registers

• Usually, software cannot use system registers as ALU operands

• Special instructions used to interact with system registers

• On ARMv8-A, use mrs to copy a system register’s value to a GPR, msr to
copy a GPR value back to a system register

• Typically, hardware changes behavior immediately as a side effect of writing
to the system register

24

Examples of ARMv8-A Special Purpose Registers

25

Register Name Usage

CurrentEL Holds current exception level

ELR_EL1 Holds return address when exiting EL1

FPCR Floating-point control register

NZCV ALU condition codes register

SP_EL1 Stack pointer for when entering EL1

SPSR_EL1 Saved program status register when entering EL1

ARM Architecture Reference Manual
for A-profile architecture, section C5.2

