
Lecture 12: Single-Cycle Control Unit

Spring 2024

Jason Tang

1



Topics

• Control unit design


• Single cycle processor


• Control unit circuit implementation

2



Computer Organization

1. Analyze instruction set


2. Select datapath components and 
clocking methodology


3. Assemble datapath


4. Analyze implementation of each 
instruction to determine control 
points


5. Assemble control logic

3

Computer
Processor Memory Devices

Control

Datapath

Input

Output



Single-Cycle Datapath

• Whereas last lecture described the components of the datapath, this lecture 
discusses how to generate the control signals (underlined in blue)

4

Register File
Data

WEn

A Sel

B Sel

W Sel

ALU

64

A Bus

ALUSrc

B Bus

64

5

5

5

ALUOp

64

Zero Extend

Sign Extend

64

64

12

9

RegWrite

RA

RB

RC

Imm12

Imm9

Data 
Memory

addr read
data

64

MemToReg

MemRead MemWrite

write 
data

C Bus

Clock

Clock



Control Unit

• Portion of the CPU that takes an instruction and determines which operation 
to perform (instruction decoding)


• Given an instruction, determines which values to write to each control line


• Determines count and type of operands (i.e., R-Type, D-Type, etc.)


• Determines all dependencies along datapath


• Can be built via combinatorial logic or microcode

5



Example ARMv8-A Instructions

• First 11 bits of instruction largely determines instruction


• Subset of those bits give the instruction type

6

Instruction A64 Instruction Set Encoding Inst Type Section†
31 30 29 28 27 26 25 24 23 22 21

add 
(shifted reg) 1 0 0 0 1 0 1 1 x x 0 R C6.2.5

sub 
(shifted reg) 1 1 0 0 1 0 1 1 x x 0 R C6.2.358

add 
(immediate) 1 0 0 1 0 0 0 1 x x x I C6.2.4

and 
(immediate) 1 0 0 1 0 0 1 0 0 x x I C6.2.12

ldur 1 x 1 1 1 0 0 0 0 1 0 D C6.2.202

stur 1 x 1 1 1 0 0 0 0 0 0 D C6.2.346

† Referenced section numbers are from the ARM 
Architecture Reference Manual for A-profile architecture



Setting ALUOp

• Depending upon instruction 
type, the ALU operation is 
encoded as two bits


• For R-Types, when bit 24 is 
1 and bit 21 is 0, then bits 
30-29 specifies whether to 
add (00) or subtract (10)


• For I-Types, when bits 25-23 give the type of processing (add/subtract, logical, etc) 
and then bits 30-29 give specific ALU operation


• For processing type 01x, bits 30-29 specifies add (00) or subtract (10)


• For processing type 100, bits 30-29 specifies bitwise ADD or OR

7

Instruction
A64 Instruction Set Encoding

Inst Type
31 30 29 28 27 26 25 24 23 22 21

add 
(shifted reg) 1 0 0 0 1 0 1 1 x x 0 R

sub 
(shifted reg) 1 1 0 0 1 0 1 1 x x 0 R

add 
(immediate) 1 0 0 1 0 0 0 1 x x x I

and 
(immediate) 1 0 0 1 0 0 1 0 0 x x I

ARM Architecture Reference Manual for A-profile 
architecture, sections C4.1.86 and C4.1.89



ARMv8-A Register Selects

• Control unit first determines instruction 
type to determine number and location 
of operands


• Based upon operand type, it sets 
register select and ALUSrc controls


• Opcode is 6 to 11 bits wide and is in 
upper portion of each instruction


• Destination register, if there is one, is encoded as bits [4:0]


• First operand, if exists, precedes destination at bits [9:5]

8

R-Type
opcode Rm shamt Rn Rd

11 bits 5 bits 6 bits 5 bits 5 bits

D-Type
opcode address op2 Rn Rt

11 bits 9 bits 2 bits 5 bits 5 bits

I-Type
opcode immediate Rn Rd

10 bits 12 bits 5 bits 5 bits

B-Type
opcode immediate
6 bits 26 bits

CB-Type
opcode immediate Rt

8 bits 19 bits 5 bits



Setting Register Selects and ALUSrc

• Hypothetical implementation


• Note use of splitter to extract only some bits

9



Single Cycle Datapath During add (shifted reg)

• Given RTN of X[d] ← X[m] + X[n], then RegWrite = 1, ALUSrc = 0, 
ALUOp = add, MemRead = 0, MemWrite = 0, and MemToReg = 0


• RA = m, RB = n, RC = d

10

Register File
Data

WEn

A Sel

B Sel

W Sel

ALU

64

A Bus

ALUSrc

B Bus

64

5

5

5

ALUOp

64

Zero Extend

Sign Extend

64

64

12

9

RegWrite

RA

RB

RC

Imm12

Imm9

Data 
Memory

addr read
data

64

MemToReg

MemRead MemWrite

write 
data

C Bus

Clock

Clock



Single Cycle Datapath During add (immediate)

• Given RTN of X[d] ← X[n] + ZeroExtend(imm12), then RegWrite = 1, 
ALUSrc = 1, ALUOp = add, MemRead = 0, MemWrite = 0, and MemToReg = 
0


• RB will be set to a don’t care value; instead imm12 will be set

11

Register File
Data

WEn

A Sel

B Sel

W Sel

ALU

64

A Bus

ALUSrc

B Bus

64

5

5

5

ALUOp

64

Zero Extend

Sign Extend

64

64

12

9

RegWrite

RA

RB

RC

Imm12

Imm9

Data 
Memory

addr read
data

64

MemToReg

MemRead MemWrite

write 
data

C Bus

Clock

Clock



Single Cycle Datapath During ldur

• Given RTN of X[t] ← Mem[X[n] + SignExtend(imm9)], then RegWrite 
= 1, ALUSrc = 2, ALUOp = add, MemRead = 1, MemWrite = 0, and 
MemToReg = 1


• Note how long this datapath is

12

Register File
Data

WEn

A Sel

B Sel

W Sel

ALU

64

A Bus

ALUSrc

B Bus

64

5

5

5

ALUOp

64

Zero Extend

Sign Extend

64

64

12

9

RegWrite

RA

RB

RC

Imm12

Imm9

Data 
Memory

addr read
data

64

MemToReg

MemRead MemWrite

write 
data

C Bus

Clock

Clock



Instruction Fetch Unit

• Instruction at PC is read into the instruction register and/or into decoder


• PC is then normally increased by 4, and PCSel control line is set to 0


• Instead for a branch, a different address for PC is computed and PCSel = 1

13

adder
PC

Sign Extend

Sign Extend Shift 
Left 2

19

26
Imm19

Imm26

adder
64

4

ExtSel

PCSel

64

Instruction 
Memory

addr read
data

32
IR



Selecting PC Value

• Normally, PCSel is set to 0 so that a mux selects PC ← PC + 4


• To jump to a different address, PCSel is set to 1:


• For an unconditional jump (such as b), ExtSel = 1; imm26 is extracted from 
instruction


• For a conditional jump if a register is / is not zero (cbz or cbnz), ExtSel = 
0; imm19 is extracted (and imm26 is set to don’t care)


• For a conditional jump based upon ALU’s condition codes (b.cond), 
ExtSel = 0, but PCSel is 1 only if condition is true

14



Single Cycle Datapath During b

• Given RTN of PC ← PC + (SignExtend(imm26)) × 4, then ExtSel = 1 
and PCSel = 1


• Shift left by 2 is equivalent to multiplying by 4, for unsigned integers


• Read PC on leading edge, write updated value on falling edge 

15

adder
PC

Sign Extend

Sign Extend Shift 
Left 2

19

26
Imm19

Imm26

adder
64

4

ExtSel

PCSel

64

Instruction 
Memory

addr read
data

32
IR



Conditional Branching

• Some instructions set condition flags (Z, C, N, and V) as a side-effect of 
execution


• For b.cond, branch control unit sets PCSel = 1 if the following is true:

16

cond Mnemonic Meaning (Integer) Condition Flags
0000 eq Equal Z == 1
0001 ne Not equal Z == 0

1010 ge Signed greater 
than or equal N == V

1011 lt Signed less than N != V

1100 gt Signed greater 
than Z == 0 && N == V

1101 le Signed less than 
or equal !(Z == 0 && N == V)

ARM Architecture Reference Manual for 
A-profile architecture, Section C1.2.4



Summary of Control Signals

• Could implement entire instruction set as a giant Karnaugh map

17

Control
Instruction

R-Type ldur b.cond
RegWrite 1 1 0
ALUSrc 00 10 XX
ALUOp based upon opcode add X

MemRead 0 1 X
MemWrite 0 0 0
MemToReg 0 1 X

ExtSel X X 1

PCSel 0 0 based upon branch 
control unit



Worst Case Timing (Load)

• Clock cycle must be greater than longest path (which is often a memory load)

18

PC Old Value New Value

Old ValueASel, Imm9, WSel
ALUSrc, ALUOp …

instruction memory access time

Memory Address

A Bus Old Value

register file read access time

Old Value

ALU propagation delay

New Value

Old Valueregisters R[w] and
condition codes New Value

register file write access time

B Bus Old Value

delay through extender and mux

C Bus Old Value

data memory access time

New Value

New Value

New Value

New Value

clock
hold time

register writes occur here

setup time


