
Lecture 11: Datapaths

Spring 2024

Jason Tang

 1

Topics

• Datapaths

• Storage Elements

• Datapath Assemblies

 2

Computer Organization

• So far, discussion has mostly focused on performance (instruction count, CPI,
and clock cycle time)

• Design of processor itself (its datapath and control) determines clock cycle
time and CPI

 3

Computer
Processor Memory Devices

Control

Datapath

Input

Output

Processor Overview

• Analyze instruction set to derive datapath requirements

• Meaning of instruction is given by register transfers, written in register
transfer notation (RTN) syntax

• Need storage to hold data (temporary registers) as instruction is executed

• Design datapath to move data around processor

• Analyze instruction implementation to determine control points that affect
register transfers

• Assemble control logic

 4

ARMv8-A Instruction Formats

• Most instructions involve one or more 
internal registers, not just those visible 
to software

• Examples:

• add (R-type): take two registers, add 
them, store the sum in a third register, 
then update condition code register

• ldr (I-type): add an immediate value to a register, then use the result as the
address from which to load a word from memory into a register

• Even a relative unconditional jump (b) affects the program counter (PC)

 5

R-Type
opcode Rm shamt Rn Rd

11 bits 5 bits 6 bits 5 bits 5 bits

D-Type
opcode address op2 Rn Rt

11 bits 9 bits 2 bits 5 bits 5 bits

I-Type
opcode immediate Rn Rd

10 bits 12 bits 5 bits 5 bits

B-Type
opcode immediate
6 bits 26 bits

CB-Type
opcode immediate Rt

8 bits 19 bits 5 bits

Register Transfers

• Many instructions can be described by how it affects registers

 6
† Referenced section numbers are from the ARM
Architecture Reference Manual for A-profile architecture

Instruction Register Transfer Notation (RTN) Section†

add (shifted
register)

(result, -) ← AddWithCarry(X[n], X[m], 0); 
X[d] ← result; PC ← PC + 4 C6.2.5

ldur
offset ← LSL(ZeroExtend(imm9, 64)); 

address ← X[n] + offset; 
X[t] ← Mem[address]; PC ← PC + 4

C6.2.202

mov
(register) X[d] ← X[m]; PC ← PC + 4 C6.2.224

b offset ← SignExtend(imm26, 64);

PC ← PC + (offset × 4) C6.2.25

bl offset ← SignExtend(imm26, 64); 
X[30] ← PC + 4; PC ← PC + (offset × 4) C6.2.34

Stereotypical Datapath

• Fetch next instruction from memory, at the address stored within PC

• (Optionally) Store that instruction in an Instruction Register

• Decode instruction to determine which registers are affected

• Execute instruction, using the correct registers as operands

• (Usually) Write result back to a memory location

• (Usually) Increment PC afterwards

 7

Register Design

• Registers store data in a computer

• Built from individual flip-flop circuits

• Uses a clock signal to determine when to update stored value

• Edge-triggered: update value when clock line (Clk) changes

• Usually leading edge-triggered (when clock changes from 0 to 1)

• Alternative is falling edge-triggered (when clock changes from 1 to 0)

 8

SR Latch

• Simplest memory design is the Set-Reset (SR) Latch

• Holds a single bit

• No clock line, so any input change affects output immediately

• Slight propagation delay from when S is set until Q changes, then Q̅
changes

 9http://www.learnabout-electronics.org/Digital/dig52.php

R S new Q new Q̅
0 0 previous Q previous Q̅
0 1 1 0
1 0 0 1
1 1 disallowed disallowed

Clocked SR Flip-Flop

• Add a clock signal, that enables Set (S) and 
Reset (R) inputs

• S and R cannot change flip-flop state until clock 
is high

• S and R should settle into stable states while 
clock is low

• When clock transitions from 0 to 1, 
stable S and R values will be used to 
determine flip-flop’s new state

 10http://www.learnabout-electronics.org/Digital/dig52.php

Clock Delay Latch (D Flip-Flop)

• SR flip-flops have two inputs, S and R

• Use Delay (D) Flip-Flop to delay progress 
of data through a circuit

• If D changes while clock is high, then 
output will also change (ripple through)

 11http://www.learnabout-electronics.org/Digital/dig53.php

CK D new Q new Q̅
0 X previous Q previous Q̅
1 0 0 1
1 1 1 0

Using D Flip-Flops

• Typically have a write-enable input that only updates when it is 1

• If output is used for some calculation, cannot write back to D flip-flop on the
same clock cycle (else output will be unstable)

• Using a master/slave D flip-flop, the combined circuit will change at most
once per rising clock edge

 12http://www.learnabout-electronics.org/Digital/dig53.php

Register

• Composed by a set of flip-flips to store multiple bits

• Categorized by number of stored bits

• Common clock and enable lines, to latch bits simultaneously

• Often have an asynchronous reset line, that forces all stored bits to 0

 13

Register File

• Multiple registers combined into a single component

• In simplest case, a single data bus for both reading and writing

• Also need a clock, write-enable, and register select inputs

• Clock only matters when write-enable is true

• Example register file with 4 registers, 16-bits each:

 14

RSel

Data bus
Write Enable

Clock

16
4x 16-bit
registers

2

Multi-Bus Register File

• Fancier register files have two independent output buses (“A” and “B” buses)
and a separate input bus (called either “C” or “W”) (a so-called 3-bus design)

 15

Clocking Methodology

• Data are changed during clock cycles, between clock edges

• Input from state elements goes through combinatorial logic to create new
output, which is then stored in some output state element

• If same element is read and updated on same clock edge, then
processing could involve old, new, or a mix of values

• Can achieve a read and 
write on the same clock 
cycle if the read occurs 
on a leading-edge and 
the write on a falling-edge, 
or via master/slave D flip-flops

 16

RSel

Data bus
Write Enable

Clock

16
4x 16-bit
registers

2

Clocking Methodology

• Longest propagation delay determines clock period

• Cycle Time = Hold + Longest Delay Path + Setup + Clock Skew

• Hold and Setup times are needed to ensure voltages are stable

 17

clock

don’t caredon’t care don’t caresetup hold setup hold

.

.

.

.

.

.

.

.

.

.

.

.

Simplified 3-Bus Datapath Assembly

• Datapath needs to support fetching, decoding, execution, and writing

 18

Register File
Data

WEn

A Sel

B Sel

W Sel

ALU

A Bus

B Bus

Data
Memory

addr read
data

write
data

Data (or C) Bus

PC

Instruction
Memory

addr read
data

addr

addr

inst

Instruction Fetch

• Program counter (PC) is a register like any other register

• Can be directly set by software on x86-64, but not on ARMv8-A

• IR ← InstrMem[PC]

• If branching, PC ← computed address else PC ← PC + 4 (for ARMv8-A)

 19

adder

PC

4

PCSel

Instruction
Memory

addr read
dataaddr inst computed address

Register File
Data

WEn

A Sel

B Sel

W Sel

ALU

64

A Bus

B Bus

64

ALUOp

64

RegWrite

result

C Bus

Condition
Codes

decoded
instruction

5

5

5

Executing Register-Register Instructions

• Many instructions are of the form X[d] ← X[m] op X[n], where m, n, and d
come from decoding the instruction

• ALUOp and WEn are control logic that also come from instruction decoding

 20

R-Type
opcode Rm shamt Rn Rd

11 bits 5 bits 6 bits 5 bits 5 bits
add (shifted register):

X[d] ← X[m] + X[n]

m
n
d

Register-Register Timing

 21

Register File
Data

WEn

A Sel

B Sel

W Sel

ALU

64

A Bus

B Bus

64

ALUOp

64

RegWrite

result

C Bus

Condition
Codes

decoded
instruction

5

5

5

clock

PC Old Value New Value

Old ValueASel, BSel, WSel
ALUOp … New Value

instruction memory access time

C Bus

A Bus, B Bus Old Value

register file read access time

New Value

Old Value

ALU propagation delay

New Value

Old Valueregisters R[w] and
condition codes New Value

hold time

register writes occur here

setup time

register file write access time

12

Register File
Data

WEn

A Sel

B Sel

W Sel

ALU

64

A Bus

B Bus

64

ALUOp

64

RegWrite

result

C Bus

Condition
Codes

decoded
instruction

5

5

5

ALUSrc
Zero Extend

64

64

Executing Immediate Instructions

• For immediate instructions, the B Bus has an extended immediate value
instead of a register value

 22

I-Type
opcode immediate Rn Rd

10 bits 12 bits 5 bits 5 bits
add (immediate):

X[d] ← X[n] + ZeroExtend(imm12)

n

d

Executing Load Instructions

• Output of ALU is used as the address from which to read memory

 23

D-Type
opcode address op2 Rn Rt

11 bits 9 bits 2 bits 5 bits 5 bits
ldur:

X[t] ← Mem[X[n] + SignExtend(imm9)]

12

Register File
Data

WEn

A Sel

B Sel

W Sel

ALU

64

A Bus

B Bus

64

ALUOp

64

RegWrite

C Bus

Condition
Codes

decoded
instruction

5

5

5

ALUSrc

Zero Extend
64

9 64
Sign Extend

64

Data
Memory

addr read
data

MemRead

MemToReg

64C Bus

Data
Memory

n

t

Executing Store Instructions

• Similar to a load, but also sets data memory via MemWrite

 24

D-Type
opcode address op2 Rn Rt

11 bits 9 bits 2 bits 5 bits 5 bits
stur:

Mem[X[n] + SignExtend(imm9)] ← X[t]

12

Register File
Data

WEn

A Sel

B Sel

W Sel

ALU

64

A Bus

B Bus

64

ALUOp

64

Condition
Codes

decoded
instruction

5

5

5

ALUSrc

Zero Extend
64

9 64
Sign Extend

64

Data
Memory

addr read
data

MemWrite

write
data

n
t

Executing Branch Instructions

• Unconditional and conditional branching are similar, in that they set PCSel

 25

B-Type
opcode immediate
6 bits 26 bits

CB-Type
opcode immediate Rt

8 bits 19 bits 5 bits

b:

PC ← PC + (SignExtend(imm26)) × 4
b.cond:

if (cond) PC ← PC + (SignExtend(imm19)) × 4

ALU

adder

PC

Sign Extend

Sign Extend Shift
Left 2

19

26

adder
64

4

ExtSel

PCSel

Condition
Codes

Branch
Control

Unit

BranchType

decoded
instruction

64

64

