Lecture 7: Arithmetic Logic Unit

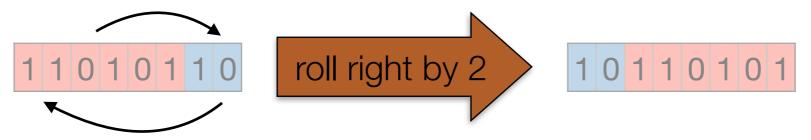
Spring 2024 Jason Tang

Topics

- Logical operations
- 1-bit adder (mostly review)
- Lookahead adder

Rolling and Shifting

• A roll (or rotate) pushes bits off of one end and reinserts them at the other end

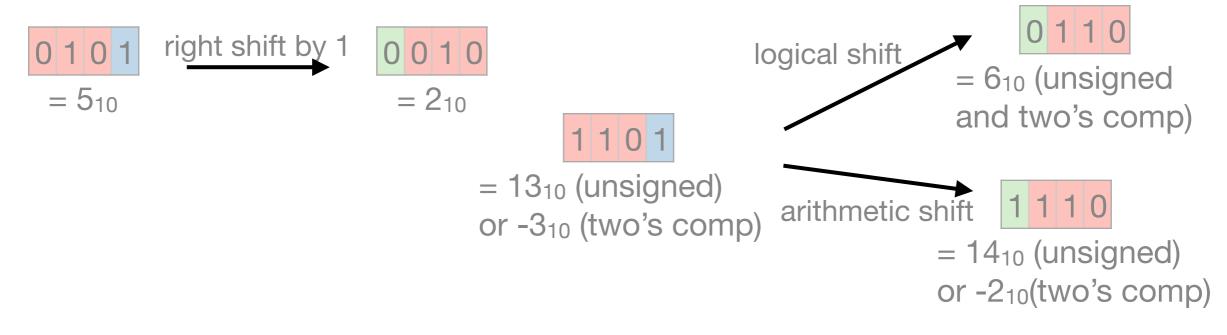


• A left shift pushes bits towards MSB, inserting zeroes in vacated bit positions

- Two different types of right shift, both pushing towards LSB:
 - Logical right shift: vacated bits are set to zero
 - Arithmetic right shift: vacated bits are signed extended

Shifting Dangers

- Left shifting can be used as a cheap way to multiply by a power of 2 (but beware of overflow)
 - Left shifting a two's complement number could result in flipping the sign bit
- Right-shifting **sometimes** results in dividing by a power of two, but only when original value was non-negative, or correct shift operation was used



C and Java Shift Operators

- In both C and Java, << is logical left shift
- In Java. >> is arithmetic right shift, >>> is logical right shift
- In C, usually, >> is arithmetic for signed values and logical for unsigned

```
#include <stdio.h>
int main(void) {
    signed char a = -42;
    printf("a is %02x, shifted: %02x\n",
        a, (a >> 4));
    unsigned char b = (unsigned char) a;
    printf("b is %02x, shifted: %02x\n",
        b, (b >> 4));
    return 0;
}
```

Bitwise Operations

- Even though memory is (somewhat) cheap, one optimization is to pack different values into a single word
 - Example: store 8 separate boolean variables in a 8-bit bitfield
- Use logical AND, OR, and NOT (or NEGATE) instructions to isolate individual bits
 - AND often used to create a **bitmask**
- Other operators are NAND, NOR, XOR, and NXOR

C Bitwise Operations

- Combination of AND and shift are used to extract individual bits from an integer
- Combination of OR and shift are used to set individual bits in an integer

```
#include <stdio.h>
int main(void) {
    unsigned char a = 0b11000101;
    printf("orig a: %02x\n", a);
    printf("middle 4: %02x\n", ((a >> 2) & 0xf));
    a = (0x03 << 4) | (a & 0x0f);
    printf("new a: %02x\n", a);
    unsigned char b = ~a;
    printf("b: %02x\n", b);
    return 0;
}</pre>
```

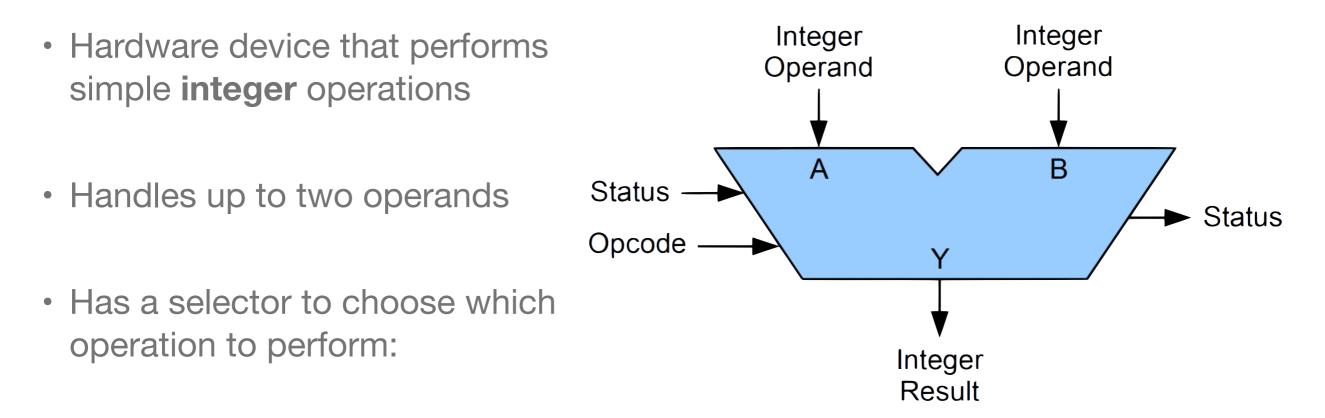
C Bitfields

- Combination of unions and bitfield structs can be used to manipulate individual bits
 - Almost always involves unsigned fixed-width integers
- Is compiler dependent as to packing and endianness order of bitfield
 - Bitfields are convenient if the code will only be compiled with a particular compiler and run on a particular architecture
 - Otherwise use bitwise operations to remain portable

C Bitfield Example

```
#include <stdio.h>
#include <stdint.h>
union u {
    uint8_t val;
    struct {
                                                     On macOS, with
        unsigned upper: 4;
                                                     clang 900.0.39.2
        unsigned next: 2;
        unsigned flag1: 1;
        unsigned flag2: 1;
                                                       orig a: c5
    } bits;
                                                       upper 4: 05
};
                                                       new a: 85
int main(void) {
    union u a;
    a.val = 0b11000101;
    printf("orig a: %02x\n", a.val);
    printf("upper 4: %02x\n", a.bits.upper);
    a.bits.flag1 = 0;
    printf("new a: %02x\n", a.val);
    return 0;
```

Arithmetic Logic Unit

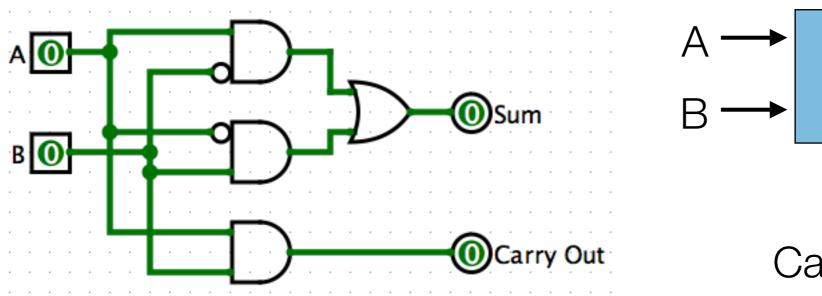


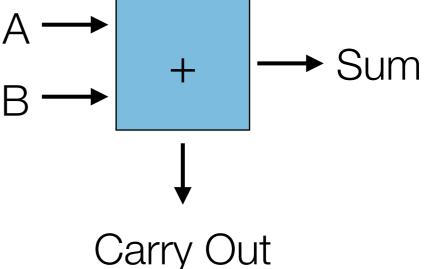
- Add or subtract; usually logical operations like rotate, shift, and bitwise
- Sometimes more complex operations like square root
- Typically, set condition code (also known as status) based upon operation

1-Bit Half Addition

- In simplest case, a half-adder (also known as a (2, 2) adder) adds two bits together, and calculates a sum and a carry-out
 - $\begin{array}{ll} Sum = A \oplus B & CarryOut = A \cdot B \\ = A \cdot \overline{B} + \overline{A} \cdot B \end{array}$

Input		Outputs	
Α	В	Sum	Carry Out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1





1-Bit Full Adder

Carryin 🕕

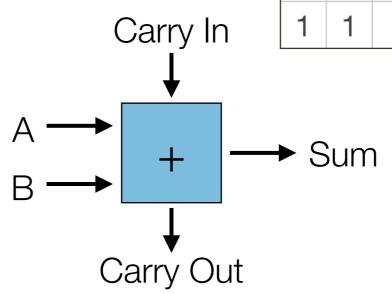
A O

в 🚺

• A full-adder (also known as (3, 2) adder) includes a carry-in bit as well

$$Sum = (A \cdot \overline{B} \cdot \overline{C_{in}}) + (\overline{A} \cdot B \cdot \overline{C_{in}}) + (\overline{A} \cdot \overline{B} \cdot \overline{C_{in}}) + (\overline{A} \cdot B \cdot \overline{C_{in}}) + (\overline{A} \cdot B \cdot C_{in}) + (A \cdot B \cdot C_{in}) + (A \cdot B) + (A \cdot B \cdot C_{in}) + (A \cdot B) + (A \cdot B \cdot C_{in}) + (B \cdot C_{in}) + (A \cdot C_{in}) + (A \cdot B)$$

(O)CarryOut



r i i i i i i i i i i i i i i i i i i i
Sum calculation is
left as an exercise to
the reader

3	Carry In	Sum	Carry Out
C	0	0	0
С	1	1	0
1	0	1	0
1	1	0	1
C	0	1	0
C	1	0	1
1	0	0	1
1	1	1	1

Outputs

Inputs

A

0

0

0

0

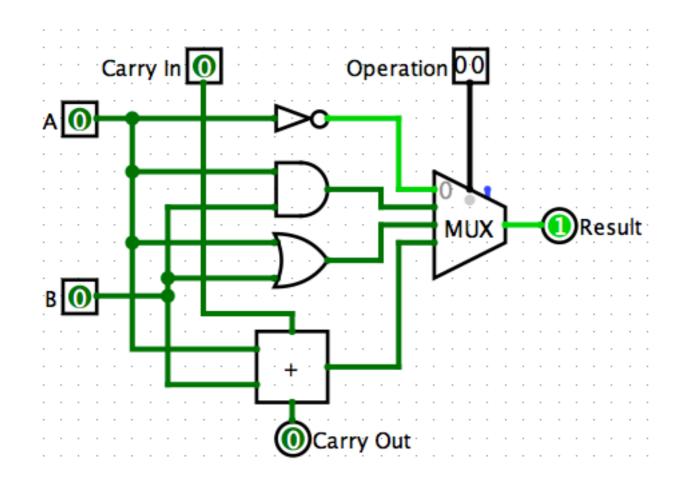
1

1

1

ALU Selector

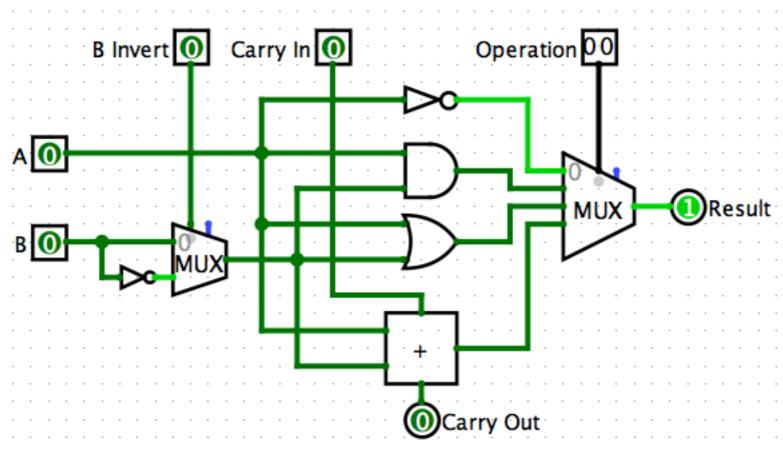
- · ALU has a selector to choose which operation to perform
- Example ALU that supports 4 operations:



Oper	ation	Usage
0	0	¬Α
0	1	$A \wedge B$
1	0	$A \lor B$
1	1	A + B

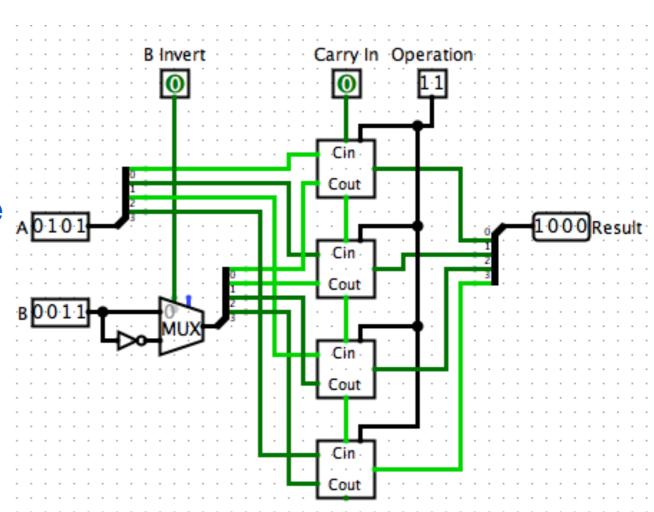
Supporting Subtraction

- Subtraction means adding the negative, and the negative in two's complement is a bit inversion, plus one: $A B = A + \overline{B} + 1$
 - By adding a selector to B operand, the same adder is used for addition and subtraction

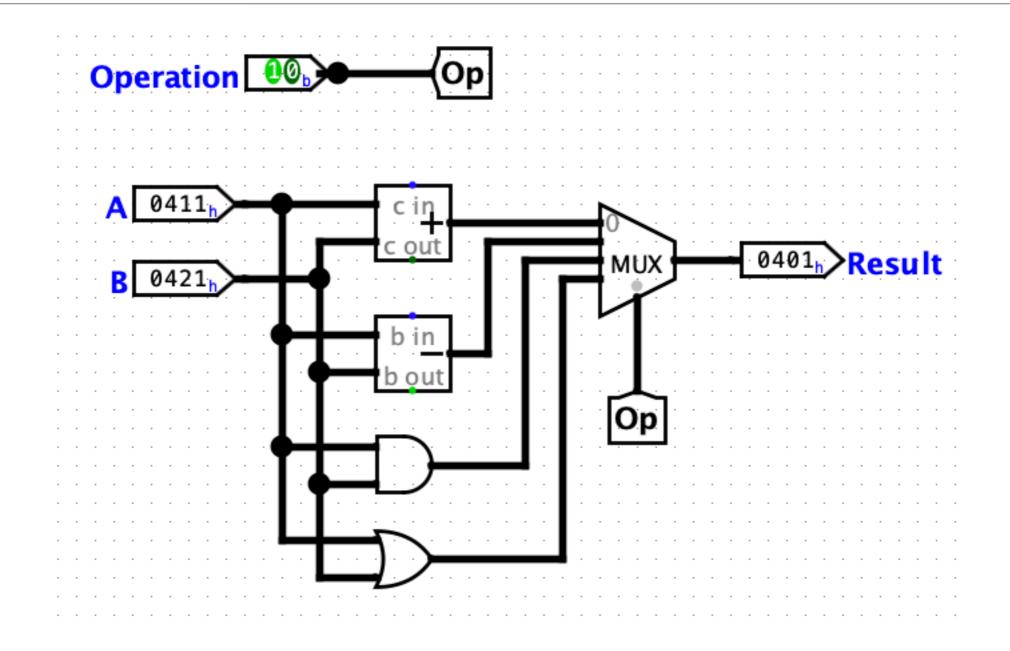


Multibit ALU Design

- A full ALU (16-bit, 32-bit, etc) can be created by connecting adjacent 1-bit ALUs, using Carry In and Carry Out lines
 - Chain Carry Out from one adder to Carry In of next adder (a ripple carry adder)
 - Slow due to gate propagation delay
- Perform subtraction by inverting B and set first Carry In to 1



Alternative Multibit ALU Design

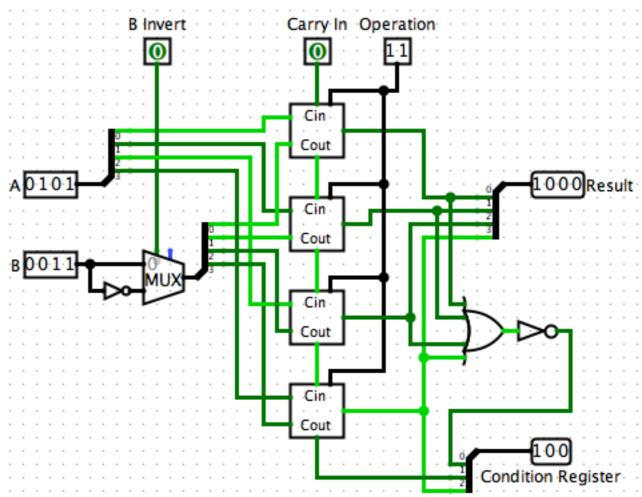


Setting Condition Codes

 Recall that condition code register bits are set automatically as a result of some operations

condition	set by	
zero (Z)	result is zero	
carry (C)	carry out of MSB	
negative (N)	MSB was 1	
overflow (V)	an overflow	

 By examining the Carry Out bit of MSB adder and resulting value, ALU sets condition bits



Overflow calculation is left as an exercise to the reader

Propagation Delays in Ripple ALUs

- Carry In of a 1-bit adder depends upon result of previous 1-bit adder
- Result of adding most significant bits is only available after all bits (i.e., after n-1 single bit additions)
 - Too slow in time-critical hardware
- Carry Lookahead ALU anticipates value of Carry Out
 - Takes many more gates to anticipate carry
 - Worst case scenario is log₂(**n**), where **n** is number bits in the adder

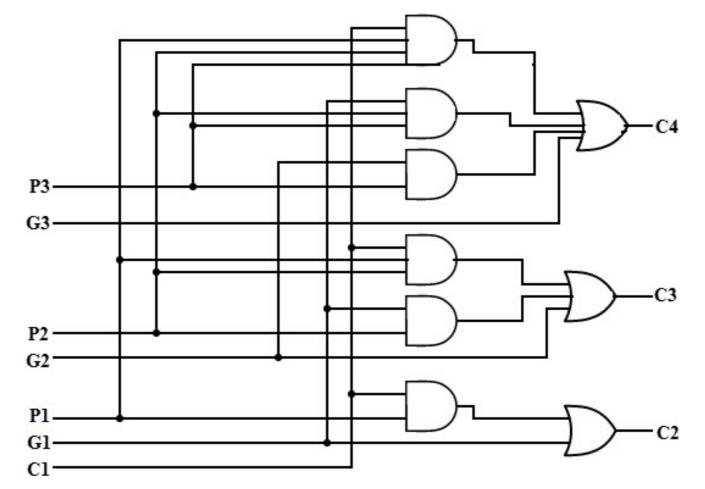
Carry Lookahead Theory

- Let the generate function G(A, B) be 1 if A plus B will generate a Carry Out
 - In binary arithmetic, $G(A, B) = A \cdot B$, regardless of Carry In (C_{in})
- Let the propagate function P(A, B) be 1 if A plus B will generate a Carry Out, but only when C_{in} is 1
 - P(A, B) = A + B; or P(A, B) = A

 B because of G(A,B) will be 1
- Then the Carry Out for bit **i** is $C_i = G_i + (P_i \cdot C_{i-1})$
- For a carry lookahead group with size 2, $C_i = G_i + (P_i \cdot (G_{i-1} + (P_{i-1} \cdot C_{i-2})))$
 - By the Distributive Law, $C_i = G_i + (P_i \cdot G_{i-1}) + (P_i \cdot P_{i-1} \cdot C_{i-2})$

Using Carry Lookahead Groups

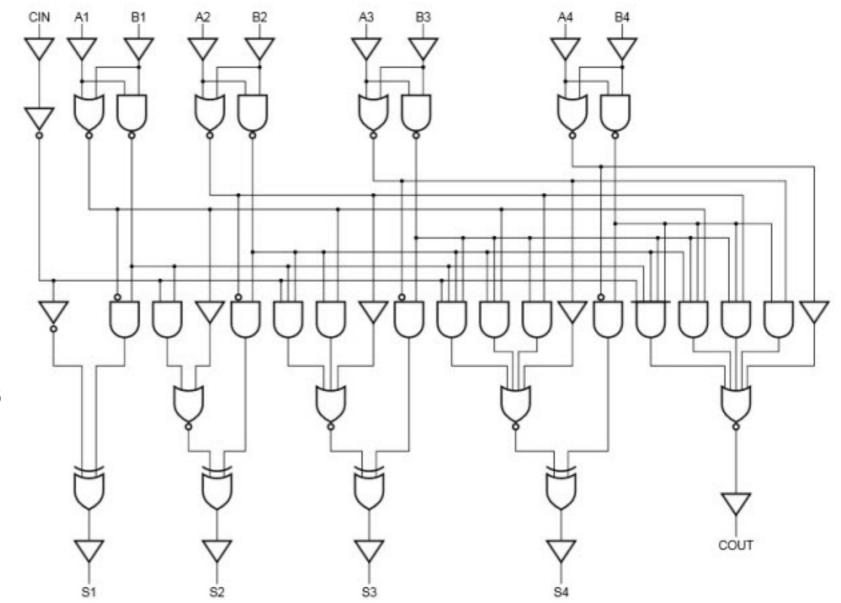
- For a carry lookahead group size 4, $C_4 = G_3 + (P_3 \cdot G_2) + (P_3 \cdot P_2 \cdot G_1) + (P_3 \cdot P_2 \cdot P_1 \cdot G_0) + (P_3 \cdot P_2 \cdot P_1 \cdot P_0 \cdot C_{in})$
- Therefore, all Carry Outs for the group can be calculated in parallel:



https://www.electronicshub.org/ carry-look-ahead-adder/

Cascading Carry Lookahead

- For this circuit, S2 and S4 have equal gate delays
- Carry Out of one group is propagated to next carry lookahead group
 - 16-bit adder can be implemented as 4 groups of 4-bit adders
 - Can create supergroups of carry lookahead groups



Speed of Carry Generation

- For *this* 1-bit adder, the gate delays are 2 for the Carry Out and 3 for the Sum
- If this 1-bit adder were chained together into a 16-bit ripple adder, the gate delays are (16×2) = 32 for the last Carry Out, (15×2+3) = 33 for last Sum bit
- If instead the adder had 4 sets of 4-bit groups, the delays are (4×2) = 8 for last Carry Out, (3×2+3) = 9 for last sum bit
 - Larger groups would be faster, but use more gates

