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Topics

• Logical operations


• 1-bit adder (mostly review)


• Lookahead adder
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Rolling and Shifting

• A roll (or rotate) pushes bits off of one end and reinserts them at the other end


• A left shift pushes bits towards MSB, inserting zeroes in vacated bit positions


• Two different types of right shift, both pushing towards LSB:


• Logical right shift: vacated bits are set to zero


• Arithmetic right shift: vacated bits are signed extended
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1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1roll right by 2

1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0left shift by 2



Shifting Dangers

• Left shifting can be used as a cheap way to multiply by a power of 2 (but 
beware of overflow)


• Left shifting a two’s complement number could result in flipping the sign 
bit


• Right-shifting sometimes results in dividing by a power of two, but only when 
original value was non-negative, or correct shift operation was used
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0 1 0 1 0 0 1 0

1 1 0 1

0 1 1 0

= 510 = 210

= 1310 (unsigned)

or -310 (two’s comp)

logical shift
= 610 (unsigned 
and two’s comp)

1 1 1 0arithmetic shift
= 1410 (unsigned) 
or -210(two’s comp)

right shift by 1



C and Java Shift Operators

• In both C and Java, << is logical left shift


• In Java. >> is arithmetic right shift, >>> is logical right shift


• In C, usually, >> is arithmetic for signed values and logical for unsigned
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#include <stdio.h> 

int main(void) { 
    signed char a = -42; 
    printf("a is %02x, shifted: %02x\n”, 
        a, (a >> 4)); 
    unsigned char b = (unsigned char) a; 
    printf("b is %02x, shifted: %02x\n”, 
        b, (b >> 4)); 
    return 0; 
}

a is ffffffd6, shifted: fffffffd 
b is d6, shifted: 0d



Bitwise Operations

• Even though memory is (somewhat) cheap, one optimization is to pack 
different values into a single word


• Example: store 8 separate boolean variables in a 8-bit bitfield


• Use logical AND, OR, and NOT (or NEGATE) instructions to isolate individual 
bits


• AND often used to create a bitmask


• Other operators are NAND, NOR, XOR, and NXOR
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C Bitwise Operations

• Combination of AND and shift are used to extract individual bits from an 
integer


• Combination of OR and shift are used to set individual bits in an integer
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#include <stdio.h> 

int main(void) { 
    unsigned char a = 0b11000101; 
    printf("orig a: %02x\n", a); 
    printf("middle 4: %02x\n", ((a >> 2) & 0xf)); 
    a = (0x03 << 4) | (a & 0x0f); 
    printf("new a: %02x\n", a); 
    unsigned char b = ~a; 
    printf("b: %02x\n", b); 
    return 0; 
}

orig a: c5 
middle 4: 01 
new a: 35 
b: ca



C Bitfields

• Combination of unions and bitfield structs can be used to manipulate 
individual bits


• Almost always involves unsigned fixed-width integers


• Is compiler dependent as to packing and endianness order of bitfield


• Bitfields are convenient if the code will only be compiled with a particular 
compiler and run on a particular architecture


• Otherwise use bitwise operations to remain portable

8http://c-faq.com/struct/bitfields.html



C Bitfield Example

9

#include <stdio.h> 
#include <stdint.h> 

union u { 
    uint8_t val; 
    struct { 
        unsigned upper: 4; 
        unsigned next: 2; 
        unsigned flag1: 1; 
        unsigned flag2: 1; 
    } bits; 
}; 

int main(void) { 
    union u a; 
    a.val = 0b11000101; 
    printf("orig a: %02x\n", a.val); 
    printf("upper 4: %02x\n", a.bits.upper); 
    a.bits.flag1 = 0; 
    printf("new a: %02x\n", a.val); 
    return 0; 
}

orig a: c5 
upper 4: 05 
new a: 85

On macOS, with 
clang 900.0.39.2



Arithmetic Logic Unit

• Hardware device that performs 
simple integer operations


• Handles up to two operands


• Has a selector to choose which 
operation to perform:


• Add or subtract; usually logical operations like rotate, shift, and bitwise


• Sometimes more complex operations like square root


• Typically, set condition code (also known as status) based upon operation

10https://en.wikipedia.org/wiki/Arithmetic_logic_unit



1-Bit Half Addition

• In simplest case, a half-adder (also known as a (2, 2) 
adder) adds two bits together, and calculates a sum 
and a carry-out
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Input
s

Outputs
A B Sum Carry Out
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

+
A
B

Sum

Carry Out



1-Bit Full Adder

• A full-adder (also known as (3, 2) adder) 
includes a carry-in bit as well
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Inputs Outputs
A B Carry In Sum Carry Out
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

+A
B

Sum

Carry Out

Carry In

Sum calculation is 
left as an exercise to 

the reader



ALU Selector

• ALU has a selector to choose which operation to perform


• Example ALU that supports 4 operations:
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Operation Usage

0 0 ¬ A

0 1 A ⋀ B

1 0 A ⋁ B

1 1 A + B



Supporting Subtraction

• Subtraction means adding the negative, and the negative in two’s 
complement is a bit inversion, plus one:


• By adding a selector to B operand, the same adder is used for addition 
and subtraction
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Multibit ALU Design

• A full ALU (16-bit, 32-bit, etc) can 
be created by connecting adjacent 
1-bit ALUs, using Carry In and 
Carry Out lines


• Chain Carry Out from one adder 
to Carry In of next adder (a ripple 
carry adder)


• Slow due to gate propagation 
delay


• Perform subtraction by inverting B 
and set first Carry In to 1

15



Alternative Multibit ALU Design
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Setting Condition Codes

• Recall that condition code register 
bits are set automatically as a result 
of some operations


• By examining the Carry Out bit of 
MSB adder and resulting value, 
ALU sets condition bits
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condition set by
zero (Z) result is zero
carry (C) carry out of MSB

negative (N) MSB was 1
overflow (V) an overflow

Overflow calculation is left 
as an exercise to the reader



Propagation Delays in Ripple ALUs

• Carry In of a 1-bit adder depends upon result of previous 1-bit adder


• Result of adding most significant bits is only available after all bits (i.e., after 
n-1 single bit additions)


• Too slow in time-critical hardware


• Carry Lookahead ALU anticipates value of Carry Out


• Takes many more gates to anticipate carry


• Worst case scenario is log2(n), where n is number bits in the adder
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Carry Lookahead Theory

• Let the generate function G(A, B) be 1 if A plus B will generate a Carry Out


• In binary arithmetic, G(A, B) = A · B, regardless of Carry In (Cin)


• Let the propagate function P(A, B) be 1 if A plus B will generate a Carry Out, but 
only when Cin is 1


• P(A, B) = A + B; or P(A, B) = A ⊕ B because of G(A,B) will be 1


• Then the Carry Out for bit i is Ci = Gi + (Pi · Ci-1)


• For a carry lookahead group with size 2, Ci = Gi + (Pi · (Gi-1 + (Pi-1 · Ci-2))


• By the Distributive Law, Ci = Gi + (Pi · Gi-1) + (Pi · Pi-1 · Ci-2)
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Using Carry Lookahead Groups

• For a carry lookahead group size 4, C4 = G3 + (P3 · G2) + (P3 · P2 · G1) + (P3 · 
P2 · P1 · G0) + (P3 · P2 · P1 · P0 · Cin)


• Therefore, all Carry Outs for the group can be calculated in parallel:

20https://www.electronicshub.org/
carry-look-ahead-adder/



Cascading Carry Lookahead

• For this circuit, S2 and S4 
have equal gate delays


• Carry Out of one group is 
propagated to next carry 
lookahead group


• 16-bit adder can be 
implemented as 4 
groups of 4-bit adders


• Can create 
supergroups of carry 
lookahead groups
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Speed of Carry Generation

• For this 1-bit adder, the gate delays are 2 for 
the Carry Out and 3 for the Sum


• If this 1-bit adder were chained together into 
a 16-bit ripple adder, the gate delays are 
(16×2) = 32 for the last Carry Out, 
(15×2+3) = 33 for last Sum bit


• If instead the adder had 4 sets of 4-bit 
groups, the delays are (4×2) = 8 for last 
Carry Out, (3×2+3) = 9 for last sum bit


• Larger groups would be faster, but use 
more gates

22


