Lecture 7: Arithmetic Logic Unit

Spring 2024
Jason Tang

Topics

 Logical operations

- 1-bit adder (mostly review)

* Lookahead adder

Rolling and Shifting

A roll (or rotate) pushes bits off of one end and reinserts them at the other end

/_\
11010110
\/

- A left shift pushes bits towards MSB, inserting zeroes in vacated bit positions

<
11010110

- Two different types of right shift, both pushing towards LSB:

10110101

01011000

* Logical right shift: vacated bits are set to zero

- Arithmetic right shift: vacated bits are signed extended

Shifting

Dangers

- Left shifting can be used as a cheap way to multiply by a power of 2 (but
beware of overflow)

- Left shifting a two’s complement number could result in flipping the sign

bit

 Right-shifting sometimes results in dividing by a power of two, but only when
value was non-negative, or correct shift operation was used

origina

0101

= 910

right shift b¥1

0010

= 210

1101

= 1310 (unsigned)
or -310 (two’s comp

logical shift ,
= 610 (Unsigned
and two’s comp

[—

0110

) arithmetic shift (1110

—

= 1440 (unsigned)
or -21o(two’s com

)

P)

C and Java Shift Operators

 In both C and Java, << is logical left shift
- In Java. >> is arithmetic right shift, >>> is logical right shift

- In C, usually, >> is arithmetic for signed values and logical for unsigned

#include <stdio.h>

int main(void) {

signed char a = -42;

prln:f((: iz ;??x shitted: %02x\n", a is ffffffde, shifted: fffffffd
igr ' - »b' d6, shifted: od

unsigned char b = (unsigned char) a; Lo SfiTLe

printf("b is %02x, shifted: %02x\n”,
b, (b >> 4));
return 0;

Bitwise Operations

- Even though memory is (somewhat) cheap, one optimization is to pack
different values into a single word

- Example: store 8 separate boolean variables in a 8-bit bitfield

« Use logical AND, OR, and NOT (or NEGATE) instructions to isolate individual
bits

« AND often used to create a bitmask

- Other operators are NAND, NOR, XOR, and NXOR

C Bitwise Operations

« Combination of AND and shift are used to extract individual bits from an

integer

- Combination of OR and shift are used to set individual bits in an integer

#include <stdio.h>

int main(void) {
unsigned char a = 0b11000101;
printf("orig a: %02x\n", a);

a = (0x03 << 4) | (a & 0x0f);
printf("new a: %02x\n", a);
unsigned char b = ~a;
printf("b: %02x\n", b);
return 0;

printf("middle 4: %02x\n", ((a >> 2) & 0xf));

=

orig a: c¢5
middle 4: 01
new a: 35

b: ca

C Bitfields

- Combination of unions and bitfield structs can be used to manipulate
individual bits

- Almost always involves unsigned fixed-width integers

- |Is compiler dependent as to packing and endianness order of bitfield

- Bitfields are convenient if the code will only be compiled with a particular
compiler and run on a particular architecture

« Otherwise use bitwise operations to remain portable

http://c-fag.com/struct/bitfields.html| 8

C Bitfield Example

#include <stdio.h>
#include <stdint.h>

union u {
uint8_t val;

struct {
unsigned upper: 4;
unsigned next: 2;

unsigned flagl: 1;

unsigned flag2: 1; orig a: c5
} bits; upper 4: 05
}; new a: 85

int main(void) {
union u a;
a.val = 0b11000101;
printf("orig a: %02x\n", a.val);
printf("upper 4: %02x\n", a.bits.upper);
a.bits.flagl = 0;
printf("new a: %02x\n", a.val);
return 0;

Arithmetic Logic Unit

+ Hardware device that performs Integer Integer
: i . Operand Operand
simple integer operations * *
Handl tot d Stat A b °
o alus
andles up to two operands Status
Opcode v
- Has a selector to choose which ¢
operation to perform: Integer
Result

- Add or subtract; usually logical operations like rotate, shift, and bitwise
- Sometimes more complex operations like square root

- Typically, set condition code (also known as status) based upon operation

https://en.wikipedia.org/wiki/Arithmetic_logic_unit 10

1-Bit Half Addition

- In simplest case, a half-adder (also known as a (2, 2)

adder) adds two bits together, and calculates a sum
and a carry-out

Input Outputs

A | B | Sum |Carry Out

00 0 O
Sum=A®B CarryOut = A- B ‘1) (1) 1 8
11 0 1

A —>
+ |/ Sum

8 —

!

Carry Out

11

1-Bit Full Adder

- A full-adder (also known as (3, 2) adder)

Inputs Outputs
Carry In| Sum | Carry Out

iIncludes a carry-in bit as well =
. O O 0 0 0
Sum = (A-B-Cin)+ (A- B - Cin)+ 00 1 1 0
(A-B-Cin)+(A-B-Ciy) 01 0 1 0
Cout — (B . Czn) =+ (A . Czn)+ 01 1 0 1
(4-B)% (4-B-Cin) 11O N
n) T (A-Cin) +(4- B) 11 0 0 1
Carry In 11 1 1 1

+ [/ Sum

ALU Selector

- ALU has a selector to choose which operation to perform

+ Example ALU that supports 4 operations:

0 0 - A
0 1 AAB
1 0 AV B

1 1 A+B

Supporting Subtraction

« Subtraction means adding the negative, and the negative in two’s
complement is a bit inversion, plusone: A — B = A -+ E +1

- By adding a selector to B operand, the same adder is used for addition
and subtraction

8 nvert[© i

14

Multibit ALU Design

- A full ALU (16-bit, 32-bit, etc) can
be created by connecting adjacent
1-bit ALUs, using Carry In and
Carry Out lines

+ Chain Carry Out from one adder
to Carry In of next adder (a ripple
carry adder)

+ Slow due to gate propagation
delay

» Perform subtraction by inverting B
and set first Carry In to 1

15

Alternative Multibit ALU

16

Setting Condition Codes

- Recall that condition code register
bits are set automatically as a result

of some operations e ke e e DONEGRIL DS LA Operation T .
.......... (.) @ 1‘1
condition set by

zero (£) result is zero

carry (C) carry out of MSB
negative (N) MSB was 1
overflow (V) an overflow

- By examining the Carry Out bit of
MSB adder and resulting value,
ALU sets condition bits

Propagation Delays in Ripple ALUs

- Carry In of a 1-bit adder depends upon result of previous 1-bit adder

 Result of adding most significant bits is only available after all bits (i.e., after
n-1 single bit additions)

 Too slow In time-critical hardware

- Carry Lookahead ALU anticipates value of Carry Out

- Takes many more gates to anticipate carry

- Worst case scenario is logz(n), where n is number bits in the adder

18

Carry Lookahead Theory

- Let the generate function G(A, B) be 1 if A plus B will generate a Carry Out
- In binary arithmetic, G(A, B) = A - B, regardless of Carry In (Cin)

- Let the propagate function P(A, B) be 1 if A plus B will generate a Carry Out, but
only when Cin is 1

- P(A,B) =A + B; or P(A, B) = A ® B because of G(A,B) will be 1
- Then the Carry Out for bit i is Ci = Gi + (Pi - Ci-1)
- For a carry lookahead group with size 2, Gi = Gi + (Pi - (Gi-1 + (Pi-1 - Ci-2))

- By the Distributive Law, Ci = Gi + (Pi - Gi-1) + (Pi - Pi-1 - Ci-2)

19

Using Carry Lookahead Groups

« For a carry lookahead group size 4, C4=G3z + (P3- G2) + (P3 - P2 - G1) + (P3 -
P2 P1-Go) + (P3s- P2 P1-Po- Cin)

- Therefore, all Carry Outs for the group can be calculated in parallel:

f

L/

P3 &
G3

C3

P2 -

Pl ¢
Gl)| C2

Cl1

el

https://www.electronicshub.org/

20
carry-look-ahead-adder/

Cascading Carry Lookahead

« For this circuit, S2 and S4

CIN A1 B1 A2 B2 A3

have equal gate delays v v v -

v
 Carry Out of one group is b D D

4_
L G-

propagated to next carry

lookahead group

Implemented as 4

groups of 4-bit adders

- Can create » ” . Y
supergroups of carry cour
lookahead groups

S1 S2 S3 S4

- 16-bit addercanbe Y Q YU H) k[J VULﬁ YU JUOUON
Y

Speed of Carry Generation

 For this 1-bit adder, the gate delays are 2 for
the Carry Out and 3 for the Sum

- If this 1-bit adder were chained together into
a 16-bit ripple adder, the gate delays are
(16x2) = 32 for the last Carry Out,

(15x2+3) = 33 for last Sum bit

 If instead the adder had 4 sets of 4-bit

groups, the delays are (4x2) = 8 for last B ol Ao -
Carry Out, (3x2+3) = 9 for last sum bit Co 74LS283 —
» Larger groups would be faster, but use Slsslz LL}

more gates

