
Lecture 7: Arithmetic Logic Unit

Spring 2024

Jason Tang

1

Topics

• Logical operations

• 1-bit adder (mostly review)

• Lookahead adder

2

Rolling and Shifting

• A roll (or rotate) pushes bits off of one end and reinserts them at the other end

• A left shift pushes bits towards MSB, inserting zeroes in vacated bit positions

• Two different types of right shift, both pushing towards LSB:

• Logical right shift: vacated bits are set to zero

• Arithmetic right shift: vacated bits are signed extended

3

1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1roll right by 2

1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0left shift by 2

Shifting Dangers

• Left shifting can be used as a cheap way to multiply by a power of 2 (but
beware of overflow)

• Left shifting a two’s complement number could result in flipping the sign
bit

• Right-shifting sometimes results in dividing by a power of two, but only when
original value was non-negative, or correct shift operation was used

4

0 1 0 1 0 0 1 0

1 1 0 1

0 1 1 0

= 510 = 210

= 1310 (unsigned)

or -310 (two’s comp)

logical shift
= 610 (unsigned 
and two’s comp)

1 1 1 0arithmetic shift
= 1410 (unsigned) 
or -210(two’s comp)

right shift by 1

C and Java Shift Operators

• In both C and Java, << is logical left shift

• In Java. >> is arithmetic right shift, >>> is logical right shift

• In C, usually, >> is arithmetic for signed values and logical for unsigned

5

#include <stdio.h>

int main(void) {
 signed char a = -42;
 printf("a is %02x, shifted: %02x\n”,
 a, (a >> 4));
 unsigned char b = (unsigned char) a;
 printf("b is %02x, shifted: %02x\n”,
 b, (b >> 4));
 return 0;
}

a is ffffffd6, shifted: fffffffd
b is d6, shifted: 0d

Bitwise Operations

• Even though memory is (somewhat) cheap, one optimization is to pack
different values into a single word

• Example: store 8 separate boolean variables in a 8-bit bitfield

• Use logical AND, OR, and NOT (or NEGATE) instructions to isolate individual
bits

• AND often used to create a bitmask

• Other operators are NAND, NOR, XOR, and NXOR

6

C Bitwise Operations

• Combination of AND and shift are used to extract individual bits from an
integer

• Combination of OR and shift are used to set individual bits in an integer

7

#include <stdio.h>

int main(void) {
 unsigned char a = 0b11000101;
 printf("orig a: %02x\n", a);
 printf("middle 4: %02x\n", ((a >> 2) & 0xf));
 a = (0x03 << 4) | (a & 0x0f);
 printf("new a: %02x\n", a);
 unsigned char b = ~a;
 printf("b: %02x\n", b);
 return 0;
}

orig a: c5
middle 4: 01
new a: 35
b: ca

C Bitfields

• Combination of unions and bitfield structs can be used to manipulate
individual bits

• Almost always involves unsigned fixed-width integers

• Is compiler dependent as to packing and endianness order of bitfield

• Bitfields are convenient if the code will only be compiled with a particular
compiler and run on a particular architecture

• Otherwise use bitwise operations to remain portable

8http://c-faq.com/struct/bitfields.html

C Bitfield Example

9

#include <stdio.h>
#include <stdint.h>

union u {
 uint8_t val;
 struct {
 unsigned upper: 4;
 unsigned next: 2;
 unsigned flag1: 1;
 unsigned flag2: 1;
 } bits;
};

int main(void) {
 union u a;
 a.val = 0b11000101;
 printf("orig a: %02x\n", a.val);
 printf("upper 4: %02x\n", a.bits.upper);
 a.bits.flag1 = 0;
 printf("new a: %02x\n", a.val);
 return 0;
}

orig a: c5
upper 4: 05
new a: 85

On macOS, with
clang 900.0.39.2

Arithmetic Logic Unit

• Hardware device that performs 
simple integer operations

• Handles up to two operands

• Has a selector to choose which 
operation to perform:

• Add or subtract; usually logical operations like rotate, shift, and bitwise

• Sometimes more complex operations like square root

• Typically, set condition code (also known as status) based upon operation

10https://en.wikipedia.org/wiki/Arithmetic_logic_unit

1-Bit Half Addition

• In simplest case, a half-adder (also known as a (2, 2) 
adder) adds two bits together, and calculates a sum 
and a carry-out

11

Input
s

Outputs
A B Sum Carry Out
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

+
A
B

Sum

Carry Out

1-Bit Full Adder

• A full-adder (also known as (3, 2) adder) 
includes a carry-in bit as well

12

Inputs Outputs
A B Carry In Sum Carry Out
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

+A
B

Sum

Carry Out

Carry In

Sum calculation is
left as an exercise to

the reader

ALU Selector

• ALU has a selector to choose which operation to perform

• Example ALU that supports 4 operations:

13

Operation Usage

0 0 ¬ A

0 1 A ⋀ B

1 0 A ⋁ B

1 1 A + B

Supporting Subtraction

• Subtraction means adding the negative, and the negative in two’s
complement is a bit inversion, plus one:

• By adding a selector to B operand, the same adder is used for addition
and subtraction

14

Multibit ALU Design

• A full ALU (16-bit, 32-bit, etc) can
be created by connecting adjacent
1-bit ALUs, using Carry In and
Carry Out lines

• Chain Carry Out from one adder
to Carry In of next adder (a ripple
carry adder)

• Slow due to gate propagation
delay

• Perform subtraction by inverting B
and set first Carry In to 1

15

Alternative Multibit ALU Design

16

Setting Condition Codes

• Recall that condition code register
bits are set automatically as a result
of some operations

• By examining the Carry Out bit of
MSB adder and resulting value,
ALU sets condition bits

17

condition set by
zero (Z) result is zero
carry (C) carry out of MSB

negative (N) MSB was 1
overflow (V) an overflow

Overflow calculation is left
as an exercise to the reader

Propagation Delays in Ripple ALUs

• Carry In of a 1-bit adder depends upon result of previous 1-bit adder

• Result of adding most significant bits is only available after all bits (i.e., after
n-1 single bit additions)

• Too slow in time-critical hardware

• Carry Lookahead ALU anticipates value of Carry Out

• Takes many more gates to anticipate carry

• Worst case scenario is log2(n), where n is number bits in the adder

18

Carry Lookahead Theory

• Let the generate function G(A, B) be 1 if A plus B will generate a Carry Out

• In binary arithmetic, G(A, B) = A · B, regardless of Carry In (Cin)

• Let the propagate function P(A, B) be 1 if A plus B will generate a Carry Out, but
only when Cin is 1

• P(A, B) = A + B; or P(A, B) = A ⊕ B because of G(A,B) will be 1

• Then the Carry Out for bit i is Ci = Gi + (Pi · Ci-1)

• For a carry lookahead group with size 2, Ci = Gi + (Pi · (Gi-1 + (Pi-1 · Ci-2))

• By the Distributive Law, Ci = Gi + (Pi · Gi-1) + (Pi · Pi-1 · Ci-2)

19

Using Carry Lookahead Groups

• For a carry lookahead group size 4, C4 = G3 + (P3 · G2) + (P3 · P2 · G1) + (P3 ·
P2 · P1 · G0) + (P3 · P2 · P1 · P0 · Cin)

• Therefore, all Carry Outs for the group can be calculated in parallel:

20https://www.electronicshub.org/
carry-look-ahead-adder/

Cascading Carry Lookahead

• For this circuit, S2 and S4
have equal gate delays

• Carry Out of one group is
propagated to next carry
lookahead group

• 16-bit adder can be
implemented as 4
groups of 4-bit adders

• Can create
supergroups of carry
lookahead groups

21

Speed of Carry Generation

• For this 1-bit adder, the gate delays are 2 for 
the Carry Out and 3 for the Sum

• If this 1-bit adder were chained together into 
a 16-bit ripple adder, the gate delays are 
(16×2) = 32 for the last Carry Out, 
(15×2+3) = 33 for last Sum bit

• If instead the adder had 4 sets of 4-bit 
groups, the delays are (4×2) = 8 for last 
Carry Out, (3×2+3) = 9 for last sum bit

• Larger groups would be faster, but use 
more gates

22

