
Lecture 6: Integer Representations

Spring 2024

Jason Tang

1



Topics

• Number representations (somewhat review)


• Integer arithmetic


• Integer overflow

2



Number Representation

• Computer words consist of groups of bits, which can be used to represent 
binary numbers


• Whereas natural numbers can be represented in binary, what about:


• How to represent negative numbers?


• What is the largest number representable in a computer word?


• What happens if an operation results in a value larger than that largest 
number?

3



Binary-Coded Decimal

• Early computers used 4 bits to represent a digit from 0 to 9; the other bit 
patterns were either don’t care or special codes


• Allowed precise human-readable representation of decimal values


• Increased complexity in hardware


• Example BCD bit pattern: (0100 0001 0001)BCD = 41110

4



Unsigned Integer Numbers

• Traditional binary values are written right to left, such that the least significant 
bit (LSB) is on the far right and the most significant bit (MSB) is on the far left


• In any base B, the value of the ith digit d is d × Bi, where i is 0 for the right-
most position


• Example: representing 41110 as a 32-bit unsigned binary value 
= (1 × 28) + (1 × 27) + (1 × 24) + (1 × 23) + (1 × 21) + (1 × 20) 
= 256 + 128 + 16 + 8 + 2 + 1

5

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1

MSB LSB



Character Encodings

• Hardware operates at the binary level, but displays values as human-readable 
representation


• Two historical standard exist to represent characters: American Standard 
Code for Information Interchange (ASCII) and Extended Binary Coded 
Decimal Interchange Code (EBCDIC)


• Modern ASCII defines a 7-bit encoding of 95 printable characters and 33 
control characters


• Major difference between a digit (as used within hardware) and an ASCII 
digit (as seen by a human operator)

6



ASCII Table

7http://www.asciichars.com/



EBCDIC Table

8https://www.eetimes.com/ 
author.asp?section_id=216&doc_id=1285465



Number Notations

• As that this class involves lots of binary numbers, values are often written in 
hexadecimal


• 41110 = 0x19b = 19Bh


• This class requires proper terminology when referring to larger amounts

9https://www.ramicomer.com/en/blog/conversion-and-
difference-kilobyte-to-kibibyte-megabyte-to-mebibyte/



Signed Magnitude Integer

• Hardware needs to represent both positive and negative integers


• In signed magnitude, reserve one bit to indicate the sign (positive or negative)


• Often, MSB is set to 0 for a positive value, 1 for a negative value


• Rest of bits are the magnitude


• Thus there can be a “positive zero” and a “negative zero”


• Examples of 8-bit signed magnitude integers:

10

(+41)10 = (0010 1001)2-signed-mag (-41)10 = (1010 1001)2-signed-mag



One’s Complement

• With signed magnitude, subtraction requires different hardware than addition


• Complement-based representation allows for easier hardware implementation


• In one’s complement, negative numbers are represented by inverting all bits


• Still can have positive and negative zero


• Examples of 8-bit one’s complement integers:

11

(+41)10 = (0010 1001)2-one’s-comp (-41)10 = (1101 0110)2-one’s-comp



One’s Complement Arithmetic

• Digits are added bit-by-bit, from right to left, with carries passed to next digit 
to the left


• Subtract by adding the value’s complement


• If need to carry past left-most bit, then carry “wraps” around to right-most bit


• Examples: 42 + 54, 42 − 54, and -42 − 54

12

0 1 1 1 1 1 0
0 0 1 0 1 0 1 0 = 4210

+ 0 0 1 1 0 1 1 0 = 5410

0 1 1 0 0 0 0 0 = 9610

Carry Bits 0 0 0 1 0 0 0
0 0 1 0 1 0 1 0 = 4210

+ 1 1 0 0 1 0 0 1 =-5410

1 1 1 1 0 0 1 1 =-1210

Sign Bit

1 1 0 0 0 0 0 1
1 1 0 1 0 1 0 1 =-4210

+ 1 1 0 0 1 0 0 1 =-5410

1 0 0 1 1 1 1 0  -9710

+ 1 1
1 0 0 1 1 1 1 1 =-9610



Two’s Complement

• Improvement over one’s complement


• No wrap-around carry


• Exactly one representation of zero


• To find a negative, invert all bits (like one’s complement) and then add 1


• Examples of 8-bit two’s complement integers

13

(+41)10 = (0010 1001)2 (-41)10 = (1101 0111)2

Unless otherwise specified, all binary integer values 
in this class are either unsigned or two’s complement



Two’s Complement Arithmetic

• Addition and subtraction same as one’s complement


• If need to carry past left-most bit, that carry-out bit is ignored


• Examples: 42 + 54, 42 − 54 and -42 − 54

14

Carry Bits 0 0 0 1 0 1 0
0 0 1 0 1 0 1 0 = 4210

+ 1 1 0 0 1 0 1 0 =-5410

1 1 1 1 0 1 0 0 =-1210

Sign Bit

1 1 0 1 1 1 1 0
1 1 0 1 0 1 1 0 =-4210

+ 1 1 0 0 1 0 1 0 =-5410

1 0 1 0 0 0 0 0 =-9610

0 1 1 1 1 1 0
0 0 1 0 1 0 1 0 = 4210

+ 0 0 1 1 0 1 1 0 = 5410

0 1 1 0 0 0 0 0 = 9610

This carry bit is dropped



Consequences of Two’s Complement

• “Negative zero” has same representation as positive zero


• Most positive number is 2n-1 - 1, while least negative number is -2n-1


• Thus, the most negative number has no corresponding positive number

15

0 1 1 1 1 1 1 1 = 12710 1 0 0 0 0 0 0 1 =-12710
Hint: Moving from right-to-left, 

skip leading 0s until reaching first 
1, then flip all bits to left of that 1

1 0 0 0 0 0 0 0 =-12810 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
Invert all bits Add 1



Bias

• Two’s complement is an example of having a bias


• For a n-bit value, the MSB (sign bit) really indicates -2n, not +2n


• Example: 42 and -42

16

0 0 1 0 1 0 1 0
hex 2 A

= 25 + 23 + 21

= 32 + 8 + 2

= 4210

1 1 0 1 0 1 1 0
hex D 6

= -27 + 26 + 24 + 22 + 21

= -128 + 64 + 16 + 4 + 2

= -128 + 86

= -4210



Sign Extension

• When storing a n-bit integer in something larger than n bits, then need to decide 
what to do with the extra bits


• Example: store the 8-bit binary value 11010110 (“D6h” or “0xD6”) in 16 bits


• Depends upon underlying interpretation of those bits 

• Unsigned: store original bits in least significant portion; set upper bits to zero


• Signed magnitude: store magnitude in least significant portion; store sign bit 
in new sign bit position (probably MSB); set remaining bits to zero


• Complemented: store original bits in least significant portion; set remaining 
bits to the sign bit (sign extension)

17



Sign Extension Examples

18

1 1 0 1 0 1 1 0

0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0
zeroed original bits

1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0
s zeroed magnitude

1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0
sign extension original bits

unsigned

original
signed


magnitude

one’s or two’s 
complement

(D6h)

(00D6h)

(8056h)

(FFD6h)



Overflow

• Occurs when the result of an operation cannot be represented with available 
hardware


• Example: multiply two positive numbers, but resulting sign bit is negative


• For addition, detection depends upon integer representation:


• For unsigned operands, if carry-out bit is 1


• For two’s complement, if sign bit does not match operands (two positive 
addends yield a negative, or two negative addends yield a positive)


• Hardware can have overflow detection to set the overflow condition bit

19



8-bit Overflow Examples

20

1 1 1 1 1 1 1 0
1 1 1 0 1 0 1 0 =-2210

+ 0 0 1 1 0 1 1 0 = 5410

0 0 1 0 0 0 0 0 = 3210

1 1 1 1 1 1 1 0
1 1 1 0 1 0 1 0 = 23410

+ 0 0 1 1 0 1 1 0 = 5410

0 0 1 0 0 0 0 0 = 3210

0 1 1 1 1 1 1 0
0 1 1 0 1 0 1 0 = 10610

+ 0 0 1 1 0 1 1 0 = 5410

1 0 1 0 0 0 0 0 = -9610

Unsigned Integer

Because carry-out bit is 
1, overflow is detected

Two’s Complement

Both operands are 
positive, but resulting 

sign is negative

Unlike unsigned 
arithmetic, no overflow 
here even though carry-

out bit is 1. Because 
operands’ signs differ, no 

overflow is possible 



C Basic Data Types

• An int (synonymous with signed int or just signed) is defined as a signed 
integer value of at least 16 bits


• Technically does not require two’s complement implementation


• An unsigned int (or unsigned) is an unsigned integer value of at least 16 bits


• A signed char is defined as a signed integer value of at least 8 bits


• Again, technically does not require a two’s complement implementation


• An unsigned char is an unsigned integer value of at least 8 bits


• A char is implementation defined, and may be either signed or unsigned

21



C Integer Conversions

• Operands are automatically promoted to an int type when possible, 
unsigned int if not


• A cast means to reinterpret underlying bits differently (such as treat bits as 
unsigned versus two’s complement)

22http://www.idryman.org/blog/2012/11/21/integer-promotion/

#include <stdio.h> 

int main(void) { 
    signed char a = -1; 
    unsigned int b = a; 
    unsigned char c = 0xff; 
    signed char d = 0xff; 
    printf("a = %d, b = %u\n", a, b); 
    printf("c = %08x, d = %08x\n", c, d); 
    return 0; 
}

a = -1, b = 4294967295 
c = 000000ff, d = ffffffff



Pointer Casts

• In most cases, casting a C pointer leads to very subtle errors


• Pointer casts should be looked upon with suspicion

23

#include <stdio.h> 

void print_vals(int *val1, int *val2) { 
    printf("val1=%08x, val2=%08x\n", *val1, *val2); 
} 

int main(void) { 
    char vals[] = {0x10, 0x20, 0x30, 0x40}; 
    print_vals(&vals[0], &vals[2]); 
    return 0; 
}

val1=40302010, val2=00004030


