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Topics

• Different performance metrics


• Performance comparisons


• Effects of software on hardware benchmarks
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Hardware Performance

• Key to effectiveness of entire system


• Different performance metrics need to be measured and compared to 
evaluate system design


• Depending upon system requirements, different metrics may be appropriate


• Factors that may affect performance: instructions use, instruction 
implementation, memory hierarchy, I/O handling
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Which is Better?
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Samsung 
Galaxy Z Fold5

Apple 
iPhone 14 Plus

Google 
Pixel 7 Pro

Criteria of performance evaluation 
differs among users and designers



Common Performance Metrics

• Response time: time between the start of a task and its first output


• Measures user perception of system speed


• Common in time-critical (real-time) systems


• Throughput: total amount of completed “work” done per unit time


• Depends upon what a unit of “work” is: credit card processing, mining a 
Bitcoin, etc.
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Response-Time Metric

• Maximizing “performance” often means minimizing response time


•  


• Thus P1 > P2 when E(P1, L) < E(P2, L) for some time period L


• Thus relative performance of
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Measuring Performance

• Different definitions of execution time:


• Elapsed (wall-clock) time: total time spent on task, including I/O activities, 
OS overhead, memory access


• CPU time: time consumed by CPU


• User CPU time: time spent processing the task itself


• System CPU time: time consumed by operating system overhead


• Unix time utility can report the above values
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Machine Clock Rate

• Clock rate is inverse of clock cycle time (clock period)


• CPU execution time = CPU clock cycles for program × clock cycle time

•  

• To decrease CPU execution time, either decrease number of CPU clock cycles and/
or decrease clock cycle time

• Often, these are conflicting goals
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one clock period

10 ns 100 MHz
1 ns 1 GHz

500 ps 2 GHz
250 ps 4 GHz



CPU Time Example

• A program P runs in 10 seconds on computer A that has a 400 MHz clock. 
That same program needs to run in 6 seconds on computer B. However, 
running P on B would require 1.2 times more clock cycles than A. What is the 
minimum clock rate for B?


• CPU time = number of instructions × cycles per instruction (CPI) × clock cycle 
time
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Component of Performance Units of Measure
CPU execution time for a 

program Seconds for the program

Instruction count Instructions executed
Clock cycles per instruction 

(CPI)
Average number of clock cycles / 

instruction
Clock cycle time Seconds per clock cycle



CPI Example

• Let there be two implementations for the same instruction set architecture. 
Machine A has a clock cycle time of 1 ns and a CPI of 2.0 for some program 
P. Machine B has a clock cycle time of 2 ns and a CPI of 1.2 for that same P. 
Which machine is faster for P and by how much?


• CPU time(A) = CPU clock cycles(A) × clock cycle time(A) 
CPU time(B) = CPU clock cycles(B) × clock cycle time(B)

• CPU time(A) = I × 2.0 × 1 ns = I × 2 ns 
CPU time(B) = I × 1.2 × 2 ns = I × 2.4 ns

• Therefore, A is 16.66% faster than B
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Measuring CPI

• While clock cycle time is easily obtainable by CPU manufacturer, CPI and 
instruction counts are not trivial


• Instruction count can be measured by software profiling, architecture 
simulator, or using hardware counters on some architectures


• CPI depends upon processor structure, memory system, implementation of 
instructions, and which instructions are executed


• Average CPI = Σ CPIi × Ci, for each different instruction classes
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CPI Example

• A compiler designer is trying to decide which instruction sequence to use for 
a particular machine. The hardware designer provides a table of CPI for each 
instruction class. For a particular high-level language statement, the compiler 
could generate either of the following instruction sequence. Which is faster? 
What is the CPI for each sequence?
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Instruction Class CPI for This Instruction Class
A 1
B 2
C 3

Code 
Sequence

Instruction Count for Instruction Class
A B C

1 2 1 2
2 4 1 1



Factors Affecting Performance
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Instruction Count CPI Clock Cycles

Algorithm Yes Somewhat

Programming 
Language Yes Somewhat

Compiler Yes Yes

Instruction Set 
Architecture Yes Yes

Processor 
Organization Yes Yes

Technology / 
Manufacturing Yes



Instruction Selection Example

• How much faster would system be if a better 
data cache reduced load time to 2 cycles?


• How does this compare when an improved 
branch implementation takes only 1 cycle?


• What if two ALU instructions could be executed 
simultaneously?
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Op Freq CPI

ALU 50% 1
Load 20% 5
Store 10% 3

Branch 20% 2



Compiler Choices

• Difficult to compare performance across different architectures


• Differences in compilers


• Differences in optimization strategies
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ARMv8-A / gcc Optimization Example
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extern unsigned int label1, label2; 

int main(int argc, char *argv[]) { 
    asm("label1:"); 
    ptrdiff_t len = &label2 - &label1; 
    printf("This function is %td bytes long\n", len); 
    asm("label2:"); 
    return 0; 
}

label1: 
    adrp    x0, 400000 <_init-0x3f0> 
    add     x1, x0, #0x5fc 
    adrp    x0, 400000 <_init-0x3f0> 
    add     x0, x0, #0x5d0 
    sub     x0, x1, x0 
    asr     x0, x0, #2 
    str     x0, [x29,#40] 
    adrp    x0, 400000 <_init-0x3f0> 
    add     x0, x0, #0x6a0 
    ldr     x1, [x29,#40] 
    bl      400460 <printf@plt> 
label2: 
    mov     w0, #0x0   

label1: 
    adrp    x2, 400000 <_init-0x3f8> 
    adrp    x0, 400000 <_init-0x3f8> 
    add     x0, x0, #0x478 
    add     x2, x2, #0x4a0 
    sub     x2, x2, x0 
    adrp    x1, 400000 <_init-0x3f8> 
    add     x1, x1, #0x698 
    mov     w0, #0x1 
    asr     x2, x2, #2 
    bl      400440 <__printf_chk@plt> 
label2: 
    mov     w0, #0x0  

-O0 -O2



Performance Benchmarks

• Many widely-used benchmarks are small programs that have significant 
locality of instruction and data references (caching effects)


• Universal benchmarks can be misleading because hardware and compiler 
vendors may optimize their design for only those programs


• Architectures might perform well for some software and poorly for other 
software


• Compilers can boost performance by taking advantage of architecture-
specific features
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Real applications are often the best 
benchmarks since they reflect end-user interest



SPEC Benchmarks

• SPEC (System Performance Evaluation Cooperative) is a suite of benchmarks 
created by several companies to simplify reporting of performance


• SPEC CPU2006 consists of 12 integer and 17 floating-point benchmarks: 
running gcc, running a chess game, video compression, etc.


• Tests are unweighted


• As that tests are complex, test measures memory and other system 
components in addition to CPU

18https://www.spec.org/cpu2006/results/



Performance Per Watt Comparison

19https://www.techspot.com/review/2419-amd-ryzen-9-6900hs/



Performance Per Watt Comparison

20https://www.guru3d.com/articles_pages/
geforce_rtx_4090_founder_edition_review,30.html



Other Metrics

• FLOPS: floating point operations per second


• Used when measuring scientific computations


• MIPS: million instructions per second


• Useful when comparing CPUs with same instruction set


• Not comparable between instruction sets as that the same high-level code 
will result in different instruction counts


• BogoMIPS: Linux’s unscientific measurement based upon how long a busy-
loop takes to complete
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Amdahl’s Law

• Performance enhancement possible with a given improvement is limited by 
amount that the improved feature is used


• Therefore, make the common case fast


•  


• Example: Floating point instructions are improved to run twice as fast, but only 
10% of actual instructions are floating point

• Tnew = 0.1 / 2 + 0.9 = 0.95

• Speedup = Told / Tnew = 1 / 0.95 = 1.053
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