
Lecture 4: Performance Metrics

Spring 2024

Jason Tang

1

Topics

• Different performance metrics

• Performance comparisons

• Effects of software on hardware benchmarks

2

Hardware Performance

• Key to effectiveness of entire system

• Different performance metrics need to be measured and compared to
evaluate system design

• Depending upon system requirements, different metrics may be appropriate

• Factors that may affect performance: instructions use, instruction
implementation, memory hierarchy, I/O handling

3

Which is Better?

4

Samsung
Galaxy Z Fold5

Apple 
iPhone 14 Plus

Google 
Pixel 7 Pro

Criteria of performance evaluation
differs among users and designers

Common Performance Metrics

• Response time: time between the start of a task and its first output

• Measures user perception of system speed

• Common in time-critical (real-time) systems

• Throughput: total amount of completed “work” done per unit time

• Depends upon what a unit of “work” is: credit card processing, mining a
Bitcoin, etc.

5

Response-Time Metric

• Maximizing “performance” often means minimizing response time

•

• Thus P1 > P2 when E(P1, L) < E(P2, L) for some time period L

• Thus relative performance of

6

Measuring Performance

• Different definitions of execution time:

• Elapsed (wall-clock) time: total time spent on task, including I/O activities,
OS overhead, memory access

• CPU time: time consumed by CPU

• User CPU time: time spent processing the task itself

• System CPU time: time consumed by operating system overhead

• Unix time utility can report the above values

7

Machine Clock Rate

• Clock rate is inverse of clock cycle time (clock period)

• CPU execution time = CPU clock cycles for program × clock cycle time

•

• To decrease CPU execution time, either decrease number of CPU clock cycles and/
or decrease clock cycle time

• Often, these are conflicting goals

8

one clock period

10 ns 100 MHz
1 ns 1 GHz

500 ps 2 GHz
250 ps 4 GHz

CPU Time Example

• A program P runs in 10 seconds on computer A that has a 400 MHz clock.
That same program needs to run in 6 seconds on computer B. However,
running P on B would require 1.2 times more clock cycles than A. What is the
minimum clock rate for B?

• CPU time = number of instructions × cycles per instruction (CPI) × clock cycle
time

9

Component of Performance Units of Measure
CPU execution time for a

program Seconds for the program

Instruction count Instructions executed
Clock cycles per instruction

(CPI)
Average number of clock cycles /

instruction
Clock cycle time Seconds per clock cycle

CPI Example

• Let there be two implementations for the same instruction set architecture.
Machine A has a clock cycle time of 1 ns and a CPI of 2.0 for some program
P. Machine B has a clock cycle time of 2 ns and a CPI of 1.2 for that same P.
Which machine is faster for P and by how much?

• CPU time(A) = CPU clock cycles(A) × clock cycle time(A) 
CPU time(B) = CPU clock cycles(B) × clock cycle time(B)

• CPU time(A) = I × 2.0 × 1 ns = I × 2 ns 
CPU time(B) = I × 1.2 × 2 ns = I × 2.4 ns

• Therefore, A is 16.66% faster than B

10

Measuring CPI

• While clock cycle time is easily obtainable by CPU manufacturer, CPI and
instruction counts are not trivial

• Instruction count can be measured by software profiling, architecture
simulator, or using hardware counters on some architectures

• CPI depends upon processor structure, memory system, implementation of
instructions, and which instructions are executed

• Average CPI = Σ CPIi × Ci, for each different instruction classes

11

CPI Example

• A compiler designer is trying to decide which instruction sequence to use for
a particular machine. The hardware designer provides a table of CPI for each
instruction class. For a particular high-level language statement, the compiler
could generate either of the following instruction sequence. Which is faster?
What is the CPI for each sequence?

12

Instruction Class CPI for This Instruction Class
A 1
B 2
C 3

Code
Sequence

Instruction Count for Instruction Class
A B C

1 2 1 2
2 4 1 1

Factors Affecting Performance

13

Instruction Count CPI Clock Cycles

Algorithm Yes Somewhat

Programming
Language Yes Somewhat

Compiler Yes Yes

Instruction Set
Architecture Yes Yes

Processor
Organization Yes Yes

Technology /
Manufacturing Yes

Instruction Selection Example

• How much faster would system be if a better 
data cache reduced load time to 2 cycles?

• How does this compare when an improved 
branch implementation takes only 1 cycle?

• What if two ALU instructions could be executed 
simultaneously?

14

Op Freq CPI

ALU 50% 1
Load 20% 5
Store 10% 3

Branch 20% 2

Compiler Choices

• Difficult to compare performance across different architectures

• Differences in compilers

• Differences in optimization strategies

15

ARMv8-A / gcc Optimization Example

16

extern unsigned int label1, label2;

int main(int argc, char *argv[]) {
 asm("label1:");
 ptrdiff_t len = &label2 - &label1;
 printf("This function is %td bytes long\n", len);
 asm("label2:");
 return 0;
}

label1:
 adrp x0, 400000 <_init-0x3f0>
 add x1, x0, #0x5fc
 adrp x0, 400000 <_init-0x3f0>
 add x0, x0, #0x5d0
 sub x0, x1, x0
 asr x0, x0, #2
 str x0, [x29,#40]
 adrp x0, 400000 <_init-0x3f0>
 add x0, x0, #0x6a0
 ldr x1, [x29,#40]
 bl 400460 <printf@plt>
label2:
 mov w0, #0x0

label1:
 adrp x2, 400000 <_init-0x3f8>
 adrp x0, 400000 <_init-0x3f8>
 add x0, x0, #0x478
 add x2, x2, #0x4a0
 sub x2, x2, x0
 adrp x1, 400000 <_init-0x3f8>
 add x1, x1, #0x698
 mov w0, #0x1
 asr x2, x2, #2
 bl 400440 <__printf_chk@plt>
label2:
 mov w0, #0x0

-O0 -O2

Performance Benchmarks

• Many widely-used benchmarks are small programs that have significant
locality of instruction and data references (caching effects)

• Universal benchmarks can be misleading because hardware and compiler
vendors may optimize their design for only those programs

• Architectures might perform well for some software and poorly for other
software

• Compilers can boost performance by taking advantage of architecture-
specific features

17

Real applications are often the best
benchmarks since they reflect end-user interest

SPEC Benchmarks

• SPEC (System Performance Evaluation Cooperative) is a suite of benchmarks
created by several companies to simplify reporting of performance

• SPEC CPU2006 consists of 12 integer and 17 floating-point benchmarks:
running gcc, running a chess game, video compression, etc.

• Tests are unweighted

• As that tests are complex, test measures memory and other system
components in addition to CPU

18https://www.spec.org/cpu2006/results/

Performance Per Watt Comparison

19https://www.techspot.com/review/2419-amd-ryzen-9-6900hs/

Performance Per Watt Comparison

20https://www.guru3d.com/articles_pages/
geforce_rtx_4090_founder_edition_review,30.html

Other Metrics

• FLOPS: floating point operations per second

• Used when measuring scientific computations

• MIPS: million instructions per second

• Useful when comparing CPUs with same instruction set

• Not comparable between instruction sets as that the same high-level code
will result in different instruction counts

• BogoMIPS: Linux’s unscientific measurement based upon how long a busy-
loop takes to complete

21

Amdahl’s Law

• Performance enhancement possible with a given improvement is limited by
amount that the improved feature is used

• Therefore, make the common case fast

•

• Example: Floating point instructions are improved to run twice as fast, but only
10% of actual instructions are floating point

• Tnew = 0.1 / 2 + 0.9 = 0.95

• Speedup = Told / Tnew = 1 / 0.95 = 1.053

22

