
Lecture 3: Runtime Environment

Spring 2024

Jason Tang

1

Topics

• Program startup

• Stack pointer

• Instruction density

2

Compilation Process

• A “compiler” is a collection of tools that transform program code into
executable binaries

3

f = (g + h) - (i + j)

add w1, w1, w0

0x0b000021

Code Generator

Assembler

Linker

ELF Executable

Other Object Files

• Each object file contains:

• File header

• Index of sections (file offsets)

• Linker Tool:

• Merges together all object files

• Resolves all internal symbols

• Writes resulting executable

Program Segments

• ELF executable contains several segments:

• code segment: machine code, set as read-only and executable

• data segment: global variables

• rodata segment: read-only data

• BSS (block started by symbol): initialized to zero at startup

4

Program Loader

• Part of the operating system that loads the executable file from storage and
allocates space in memory for code and data segments

• Lays out memory regions

• Explicitly zeroizes BSS region

• Initializes registers, especially the 
stack pointer

• ARMv8’s stack pointer is sp

• Jumps to entry point

5

stack

dynamic
memory

(including heap)

static data

text

sp

Typical Memory Layout

ELF File Header

6

$ readelf -h ./test_executable
ELF Header:
 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF64
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: AArch64
 Version: 0x1
 Entry point address: 0x400540
 Start of program headers: 64 (bytes into file)
 Start of section headers: 9064 (bytes into file)
 Flags: 0x0
 Size of this header: 64 (bytes)
 Size of program headers: 56 (bytes)
 Number of program headers: 8
 Size of section headers: 64 (bytes)
 Number of section headers: 35
 Section header string table index: 32

ELF Program Header

7

$ readelf -l ./test_executable

Elf file type is EXEC (Executable file)
Entry point 0x400540
There are 8 program headers, starting at offset 64

Program Headers:
 Type Offset VirtAddr PhysAddr
 FileSiz MemSiz Flags Align
 PHDR 0x0000000000000040 0x0000000000400040 0x0000000000400040
 0x00000000000001c0 0x00000000000001c0 R E 8
 INTERP 0x0000000000000200 0x0000000000400200 0x0000000000400200
 0x000000000000001b 0x000000000000001b R 1
 [Requesting program interpreter: /lib/ld-linux-aarch64.so.1]
 LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
 0x0000000000000894 0x0000000000000894 R E 10000
 LOAD 0x0000000000000de0 0x0000000000410de0 0x0000000000410de0
 0x0000000000000258 0x0000000000000268 RW 10000
 DYNAMIC 0x0000000000000df8 0x0000000000410df8 0x0000000000410df8
 0x00000000000001e0 0x00000000000001e0 RW 8
 NOTE 0x000000000000021c 0x000000000040021c 0x000000000040021c
 0x0000000000000044 0x0000000000000044 R 4
 GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
 0x0000000000000000 0x0000000000000000 RW 10
 GNU_RELRO 0x0000000000000de0 0x0000000000410de0 0x0000000000410de0
 0x0000000000000220 0x0000000000000220 R 1

System Memory

Example Memory Layout

8

 Type VirtAddr PhysAddr
 MemSiz Flags Align
 PHDR 0x0000000000400040 0x0000000000400040
 0x00000000000001c0 R E 8
 INTERP 0x0000000000400200 0x0000000000400200
 0x000000000000001b R 1
 LOAD 0x0000000000400000 0x0000000000400000
 0x0000000000000894 R E 10000
 LOAD 0x0000000000410de0 0x0000000000410de0
 0x0000000000000268 RW 10000
 DYNAMIC 0x0000000000410df8 0x0000000000410df8
 0x00000000000001e0 RW 8

program code 
(“text” segment)

0040 0000h

0040 0894h

global variables 
(“data” segment)

0041 0de0h

0041 1048h

…

ARMv8-A C Runtime Environment (CRT)

• Allocates space for text and data segments, then copies from executable file
into those spaces

• Clears BSS

• Copies runtime arguments into registers (x0, x1, etc.)

• Allocates space for stack and sets sp to the topmost address

• Sets link register (x30) to return address

• Unconditional branch to entrypoint (e.g., main())

9https://git.pengutronix.de/cgit/
barebox/tree/arch/arm/cpu/setupc.S

AArch64 Stack Pointer

• Stack always grows downwards

• sp holds address of lowest valid value on the stack

• sp must be aligned on a 16 byte boundary

• If the size of the item to store is not evenly 
divisible by 16 bytes, then sp must be further 
decreased to stay on a 16 byte boundary

• By convention, x29 is the frame pointer

• Holds previous value of sp when entering a function

10Diagram from https://community.arm.com/processors/
b/blog/posts/using-the-stack-in-aarch32-and-aarch64

Nested Functions

• When a function is about to be called,
the caller must preserve registers it will
use after function has completed

• Typically, need to push the link
register (x30) and frame pointer
(x29) on to stack

• Called function (the callee) must restore
registers prior to leaving function

• Restore caller’s link register and
frame pointer

11Diagram based upon Procedure Call Standard
for the ARM 64-bit Architecture, §B.3

Nested Functions

12

func:
 stp x29, x30, [sp,#-32]!
 mov x29, sp
 str w0, [x29,#28]
 adrp x0, 400000 <_init-0x3f0>
 add x0, x0, #0x6a0
 ldr w1, [x29,#28]
 bl 400460 <printf@plt>
 ldp x29, x30, [sp],#32
 ret
main:
 stp x29, x30, [sp,#-32]!
 mov x29, sp
 str w0, [x29,#28]
 str x1, [x29,#16]
 ldr w0, [x29,#28]
 bl 4005c0 <func>

#include <stdio.h>
static int __attribute__((noinline))
 func(int x) {
 return printf("%d\n", x);
}

int main(int argc, char *argv[]) {
 func(argc);
 return 0;
}

ARMv8-A Procedure Call Standard

13Table based upon Procedure Call Standard
for the ARM 64-bit Architecture, §5.1.1

Register Special Role
X31 SP Stack Pointer
X30 LR Link Register
X29 FP Frame Pointer

X19 - X28 Callee-saved registers
X18 “Platform Register”
X17 IP1 “Intra-Procedure Call” Register
X16 IP0 “Intra-Procedure Call” Register

X9 - X15 Temporary Registers
X8 Indirect Result Location Register

X0 - X7 Parameter / Result Registers

Instruction Constraints

• Every instruction performs one operation

• On ARMv8-A, [most] instructions fit in 32 bits

• Top 10 or 11 bits specify which opcode to perform

• Remaining bits give operands to instructions

• Because there are 31 usable general purpose registers, need 5 bits to
encode a register number

• Insufficient space in a single instruction to specify a constant consisting of
more than 16-ish bits

14

Immediate Operands

• Use of constants is common in programs (e.g., incrementing an index in an
array, number of loop iterations, etc.)

• 52% of arithmetic operands in the gcc program involve constants*

• Two approaches:

• Store constant in memory, then load it into a register (slower)

• Use two instructions, one to write lower bits and another to write upper bits
(faster)

• Because most operations involve small constant values, the second
instruction is often omitted by the compiler

15* According to Textbook

ARMv8-A Immediate Values

• In ARMv8-A, mov is used to write a 16-bit immediate value and zeroes out
remaining bits in target register

• movk instruction shifts the 16-bit immediate value when writing, keeping
other bits unchanged

• Can use multiple movk instructions to write each 16 bits of a 64-bit register

16

mov w0, #0x5678
movk w0, #0x1234, lsl #16int x = 0x12345678;

ARMv8-A Branching

• Unconditional branching (b, bl) sets PC to value relative to current address

• Because all instructions must be word-aligned, the immediate value is multiplied by 4,
and then added to the current program counter*

• Conditional branching (cbz, cbnz, and b.cond) also sets PC to a relative value
(multiplied by 4), but its immediate field is smaller

• Most conditionals involve nearby jumps, while function calls can be far away

• If need to jump very far away, then store target address in a register and use blr

17

B-Type
opcode immediate
6 bits 26 bits

CB-Type
opcode immediate Rt

8 bits 19 bits 5 bits

* Technically not true. See https://stackoverflow.com/questions/24091566/why-
does-the-arm-pc-register-point-to-the-instruction-after-the-next-one-to-be-e

https://stackoverflow.com/questions/24091566/why-does-the-arm-pc-register-point-to-the-instruction-after-the-next-one-to-be-e
https://stackoverflow.com/questions/24091566/why-does-the-arm-pc-register-point-to-the-instruction-after-the-next-one-to-be-e
https://stackoverflow.com/questions/24091566/why-does-the-arm-pc-register-point-to-the-instruction-after-the-next-one-to-be-e

Classifying Instruction Set Architectures

• Accumulator Architecture: common in early stored program computers when
hardware was expensive

• Only one register for all arithmetic and logical operations

• All operations use accumulator as a source operand and as destination; all
other operands stored in memory

• Extended Accumulator Architecture: dedicated registers for specific operations

18

Traditional x86 Register Uses (Simplified)
AX accumulator used for arithmetic
BX base base pointer for memory access
CX counter loop counter
DX data register used for arithmetic

Classifying Instruction Set Architectures

• General-Purpose Register Architecture: (nearly any) register can be used for
any purpose

• Register-memory: allows one operand to be a memory address

• Register-register (load-store): all operands must be registers

19

Machine Number of GPRs Architecture Style Year
Motorola 6800 2 Accumulator 1974

DEC VAX 16 Register-memory,
memory-memory 1977

Intel 8086 1 Extended
accumulator 1978

Motorola 68000 16 Register-memory 1980
PowerPC 32 Load-store 1992

Instruction Density

• Variable-length architectures (such as x86) is good when memory is scarce

• Minimizes code size, leading to higher instruction density per byte

• Stack machines abandoned registers altogether

• Operands pushed on to a memory stack, then popped to perform
operation, then results pushed back to stack

• Extremely small instructions, though more instructions needed per
operation

• Simplifies compiler construction, when compilers were non-optimizing

20

Instruction Set Architecture Designs

21

CISC vs. RISC

• Complex Instruction Set Computer (CISC):

• In 1960s, software was usually written in assembly, not in a high-level language

• Instructions were added to mimic high-level constructs

• Higher code density, but made hardware more complex

• Reduced Instruction Set Computer (RISC):

• Reduced number of instructions that hardware must implement

• Relied on compiler to effectively use hardware

22

CISC vs. RISC Debate

• Modern architectures are based on both principles

• x86 was originally pure CISC, x86-64 is RISC-like internally

• ARMv8-A is mostly RISC, but its math extensions are CISC-like

23

CISC RISC
Emphasis on hardware Emphasis on software
Multiple operations per

instruction
Single operation per

instruction
High code density, variable

length instructions
Low code density, fixed

width instructions
Transistors used to store
instructions, not registers

Transistors used on
memory registers

https://www.eetimes.com/author.asp?doc_id=1327016

Principles of Hardware Design

• Make common case fast

• Example: immediate field widths are sized for most common cases

• Smaller is faster

• A CPU with more registers is harder to build, physically

• Good design demands good compromises

• RISC simplifies instruction decoding at the expense of more instructions to
decode

24

