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Topics

• CPU operations


• Instruction types


• Functional calls
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Instructions

• Although there are many different CPU designs, they all share similar 
instruction sets:


• Fundamental operations that all computers must provide


• Designers have same goal of finding a machine language that maximizes 
performance while minimizing cost


• This class is based around the ARMv8-A design


• Designed by Arm holdings, a British semiconductor company 


• Used in nearly all modern smartphones, tablets, and smartwatches
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Instruction Set Architecture (ISA)

• ISA: abstract interface between hardware and lowest level of software, 
encompassing all necessary information to write and run a machine language 
program


• Includes instructions, registers, memory access, I/O, etc.


• Enables different implementations of ISA to run the same software


• Application Binary Interface (ABI): user portion of instruction set that defines 
how software should use the ISA to pass data between themselves and the 
underlying operating system


• Defines a standard for binary portability across computers, OS revisions, 
and compiler revisions
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Changes in CPU Popularity

• In the past ten years, the shift has been from high performance computers to 
handheld and embedded systems

5https://www.semiconductors.org/wp-content/uploads/2022/11/2022_The-
Growing-Challenge-of-Semiconductor-Design-Leadership_FINAL.pdf



Operations of Computer Hardware

• Assembly language is a symbolic representation of what the processor 
actually understands


• Different assembly language syntaxes can exist for the same ISA


• See AT&T vs Intel debate


• In ARMv8-A, each assembly line translates to a single instruction


• Example C code and resulting assembly:
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add     w1, w1, w0 
add     w0, w2, w3 
sub     w0, w1, w0

f = (g + h) - (i + j)



Operands of Computer Hardware

• Registers are the bricks of computer construction


• Hardware design primitives visible to programmers


• Size and number of registers differ by architectures


• For ARMv8-A, the 31 general purpose registers are 64 bits wide


• When referring to the lower 32 bits, use notation wn; to refer to all 64 bits 
use xn 

• For many operations, the destination 
register is listed first
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add     w1, w1, w0 
add     w0, w2, w3 
sub     w0, w1, w0



Common Addressing Modes

• Direct (or immediate): value encoded in instruction


• Register: value stored within register


• Register indirect: value stored in memory at the address given by a register


• Register displacement: base (a register) + offset (an immediate value)


• Scaled displacement: base + offset × scale


• PC-relative: Program Counter + offset × scale
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Complex Data Representation

• Given limited number of registers, remaining data (e.g., structs and arrays) are 
kept in memory


• Data transfer instructions to move data in memory to / from a register are 
traditionally called load / store


• Accessing a specific memory address is done indirectly, via register displacement


• Example in C: g = h + A[7] 

• Let A be an array of ints (32-bits each), and its starting address is in register 
w0


• Then resulting assembly is:
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ldr     w0, [x0, #28] 
add     x2, x0, x1



Compilation and Address Formation

• Compiler keeps frequently used data values in registers


• In many architectures (including ARMv8-A), arithmetic operands must be a 
register, not a location in memory


• Thus compiler keeps frequently accessed values in registers


• Stores everything else (including larger data structures and arrays) in main 
memory


• Address in memory = starting address + (index × element size)
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ldr     w0, [w0, #28]int A[] = { … }; 
… A[7];



Byte Addresses

• When operating on data that is not word aligned within memory (e.g., an 
individual byte), need to specify which byte within the word to use


• Big-endian (also known as network order): Motorola 68k, SuperH


• Little-endian: x86-64


• Bi-endian: can switch endianness as necessary


• PowerPC starts in big-endian, can switch to little-endian


• ARMv7 and ARMv8-A start in little-endian, can switch to big-endian
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Endian Example

• Example: to store the hexadecimal value 0x12345678 in memory starting at 
address 0x1000:


• Watch out for “mixed-endian” machines that may have other encoding 
schemes


• In ARMv8-A, ldr loads an entire word, while ldrb loads a single byte
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memory cells
0x1000 0x1001 0x1002 0x1003

big-endian 0x12 0x34 0x56 0x78
little-endian 0x78 0x56 0x34 0x12



Stored Program Concept

• Modern computers are built on two key principles:


• Instructions and data are represented as numbers (specifically, binary representation)


• Instructions and data are stored in memory as numbers


• Compiler transforms code into instructions (code generation), and then the assembler 
translates instructions (assembles) into underlying numeric representation for that 
instruction set architecture
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add     w1, w1, w0 
add     w0, w2, w3 
sub     w0, w1, w0

f = (g + h) - (i + j)

add     w1, w1, w0 
add     w0, w2, w3 
sub     w0, w1, w0

0x0b000021

0x0b030040

0x0b000020



ARMv8-A Instruction Encoding

• In ARMv8-A, [most] instructions are encoded with exactly 32 bits (a fixed instruction 
length)


• x86-64 has variable instruction length


• Instruction encoding defines how instructions are numerically represented


• Example: so-called “register-type” instructions are encoded as:
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R-Type
opcode Rm shamt Rn Rd

11 bits 5 bits 6 bits 5 bits 5 bits

add w1, w1, w0

(0x0b000021)

00001011000 00000 000000 00001 00001

add
second 
operand 

= R0

shift 
amount 

= 0

first 
operand 

= R1

dest 
register 

= R1

Architecture Reference Manual ARMv8, §C6.2.5



ARMv8-A Instruction Encoding

• Data transfers (loads and stores) use similar encoding


• Offset must be from −256 to +255 (a range of 29 bits) of base register

• Immediate instructions contain a direct value instead of a register number

• Immediate value limited to 12 bits
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D-Type
opcode address op2 Rn Rt

11 bits 9 bits 2 bits 5 bits 5 bits

I-Type
opcode immediate Rn Rd

10 bits 12 bits 5 bits 5 bits



Unconditional Branching

• Several ways to unconditionally change program flow, like C’s goto 
statement, or invoking a function


• Use b to unconditionally jump to a constant address (usually a label)


• Use blr to invoke a function pointer
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foo: 
    ... 
    ret 

main: 
    ... 
    adrp x8, foo 
    blr x8 

void foo(void) { 
  /* ... */     
} 

int main(void) { 
  void (*func_ptr)(void) = foo; 
  func_ptr(); 
  return 0; 
}



Conditional Branching

• Programs also need to make decisions, like C’s if and for statements


• Use cbz (compare and branch if zero) and cbnz (compare and branch if not 
zero) to conditionally jump to a label


• Other instructions are b.gt (branch if greater than or equal), b.ne (branch if 
not equal)
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        cbnz    x0, else 
        mov     x0, #10 
        b       end_if 
else: 
        add     x0, x0, #20 
end_if: 
        /* end of if stmt */

if (x == 0) 
  x = 10 
else 
  x += 20



Condition Codes

• Many instructions can affect condition codes:


• Use a combination of these codes to express full range of comparisons: less 
than (lt), greater than (gt), less than or equal (le), greater than or equal (ge), 
equal (eq), and not equal (ne) 


• Example: b.lt to branch if most recent condition resulted in less than
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condition bit set when most recent 
instruction resulted in:

zero (Z) equal

carry (C) carry out of most significant 
bit

negative (N) most significant bit was 1
overflow (V) an overflow

Programmer’s Guide for ARMv8-A, §6.2.5



Setting Condition Codes

• Many ARMv8-A arithmetic instructions can have a s suffix to set condition 
code


• Can also directly compare a register to an immediate value via cmp instruction


• Example: calculate 3x using a loop
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        mov     x0, #1 
        mov     x2, #3 
        cbz     x1, end 
start: 
        mul     x0, x0, x2 
        subs    x1, x1, #1 
        b.gt    start 
end: 
        /* end of while */

result = 1; 
while (x > 0) { 
    result *= 3; 
    x--; 
}



Function Calls

• Calling a function depends upon the calling convention for the language, 
compiler, and instruction set


• Need to agree on where store function arguments (register/stack/memory), 
where to store resulting value, and which registers are to be preserved by 
the caller and which by the callee


• When updating the calling stack, need to decide who updates the stack 
pointer (caller or callee) and by how much (prologue and epilogue)


• For many architectures, the stack must be aligned to some boundary 
(every 4 bytes or every 8 bytes)
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ARMv8-A Procedure Call Standard

• First eight arguments to function are stored in registers x0 through x7


• Use stack if more space is needed for incoming parameters


• x0 holds the result of the function


• x19 through x29 are callee-saved


• x30 is the link register


• SP is the stack register (special register 31)


• All other registers are caller-saved

21Procedure Call Standard for the 
ARM 64-bit Architecture, §5.1.1



• Callee is responsible to moving stack pointer to hold local variables (prologue) 
and then cleaning up after itself (epilogue)


• Prologue and epilogue are added by the 
compiler; they are not hardware enforced

Function Prologue and Epilogue
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x: 
  sub   sp, sp, #0x20 
  str   w0, [sp, #12] 
  str   w1, [sp, #8] 
  str   w2, [sp, #4] 
  str   w3, [sp] 
  ldr   w1, [sp, #12] 
  ldr   w0, [sp, #8] 
  add   w1, w1, w0 
  ldr   w2, [sp, #4] 
  ldr   w0, [sp] 
  add   w0, w2, w0 
  sub   w0, w1, w0 
  str   w0, [sp, #28] 
  ldr   w0, [sp, #28] 
  add   sp, sp, #0x20 
  ret

static int __attribute__((noinline)) 
 x(int g, int h, int i, int j) { 
    int f = (g + h) - (i + j); 
    return f; 
}
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Calling Functions

• Architectures vary on how to call and return from a function, specifically on 
where to store/load the return address


• On x86-64, return address is pushed onto the stack upon call. The ret 
instruction pops top-most value from stack and jumps to that address


• On ARMv8-A, return address is stored in x30 as a side-effect of bl. The 
ret instruction jumps to the address stored in x30


• Callee is responsible for saving return address if it is not a leaf function
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mov     x0, #0x0a 
mov     x1, #0x14 
mov     x2, #0x1e 
mov     x3, #0x28 
bl      some_func

some_func(10, 20, 30, 40);


