L ecture 2: Instruction Semantics

Spring 2024
Jason Tang

Topics

- CPU operations

* Instruction types

 Functional calls

INnstructions

- Although there are many different CPU designs, they all share similar
iInstruction sets:

« Fundamental operations that all computers must provide

+ Designers have same goal of finding a machine language that maximizes
performance while minimizing cost

 This class is based around the ARMv8-A design

* Designed by Arm holdings, a British semiconductor company

« Used in nearly all modern smartphones, tablets, and smartwatches

Instruction Set Architecture (ISA)

- ISA: abstract interface between hardware and lowest level of software,
encompassing all necessary information to write and run a machine language
program

- Includes instructions, registers, memory access, 1/0, etc.

- Enables different implementations of ISA to run the same software

- Application Binary Interface (ABI): user portion of instruction set that defines
how software should use the ISA to pass data between themselves and the
underlying operating system

 Defines a standard for binary portability across computers, OS revisions,
and compiler revisions

Changes in CPU Popularity

Top 10 semiconductor companies by revenue

1990 2010 2020 2030
C e T T N
S e T s | s
; CUN o
: “m
6 Fujitsu) determined
7 Mitsubishi (w)STMicroelectronics STMicroelectronics 7) idi
:
, I
10 Matsushita

Dropped out o Fujitsu « Motorola « Renesas

of top 10: e Mitsubishi « Hitachi » STMicroelectronics
» Matsushita « Infineon e Elpida
o Phibps

* In the past ten years, the shift has been from high performance computers to
handheld and embedded systems

https://www.semiconductors.org/wp-content/uploads/2022/11/2022_The-

5
Growing-Challenge-of-Semiconductor-Design-Leadership_FINAL.pdf

Operations of Computer Hardware

- Assembly language is a symbolic representation of what the processor
actually understands

- Different assembly language syntaxes can exist for the same ISA

« See AT&T vs Intel debate

* In ARMvV8-A, each assembly line translates to a single instruction

- Example C code and resulting assembly:

add wl, wl, wO
f=(g+h)_(i+j)»add w0, w2, w3
sub wO, wl, wO

Operands of Computer Hardware

- Registers are the bricks of computer construction

- Hardware design primitives visible to programmers

« Size and number of registers differ by architectures

- For ARMV8-A, the 31 general purpose registers are 64 bits wide

« When referring to the lower 32 bits, use notation wn; to refer to all 64 bits

use xn
add wl, wl, wO
« For many operations, the destination add w0, w2, w3
register is listed first sub w0, wl, woO

Common Addressing Modes

- Direct (or immediate): value encoded in instruction

* Register: value stored within register

* Register indirect: value stored in memory at the address given by a register

- Register displacement: base (a register) + offset (an immediate value)

- Scaled displacement: base + offset x scale

- PC-relative: Program Counter + offset x scale

Complex Data Representation

- Given limited number of registers, remaining data (e.g., structs and arrays) are
kept in memory

- Data transfer instructions to move data in memory to / from a register are
traditionally called load / store

 Accessing a specific memory address is done indirectly, via register displacement
« ExampleinC:g = h + A[7]

- Let A be an array of 1nts (32-bits each), and its starting address is in register
wO

ldr w0, [x0, #28]
* Then resulting assembly is: add x2, x0, x1

Compilation and Address Formation

- Compiler keeps frequently used data values in registers

 In many architectures (including ARMv8-A), arithmetic operands must be a
register, not a location in memory

« Thus compiler keeps frequently accessed values in registers

« Stores everything else (including larger data structures and arrays) in main
memory

- Address in memory = starting address + (index x element size)

int A[]l = { . }; »
« A[7];

ldr w0, [wO, #28]

Syte Addresses

- When operating on data that is not word aligned within memory (e.g., an
individual byte), need to specify which byte within the word to use

- Big-endian (also known as network order): Motorola 68k, SuperH

 Little-endian: x86-64

- Bi-endian: can switch endianness as necessary

- PowerPC starts in big-endian, can switch to little-endian

- ARMv7 and ARMv8-A start in little-endian, can switch to big-endian

11

—ndian Example

- Example: to store the hexadecimal value 0x12345678 in memory starting at
address 0x1000:

memory cells

0x1000/0x1001 0x1002 0x1003
big-endian 0x12 0x34 O0x56 0Ox78
little-endian| 0x78 0x56 0x34 0x12

- Watch out for “mixed-endian” machines that may have other encoding
schemes

« In ARMv8-A, 1dr loads an entire word, while 1drb loads a single byte

12

Stored Program Concept

« Modern computers are built on two key principles:

- Instructions and data are represented as numbers (specifically, binary representation)

* Instructions and data are stored in memory as numbers

- Compiler transforms code into instructions (code generation), and then the assembler
translates instructions (assembles) into underlying numeric representation for that
iInstruction set architecture

add wl, wl, wO

f=(g+h) - (1+3) » add w0, w2, w3

sub wO, wl, wO
add wl, wl, wO 0Ox0b000021
add w0, w2, w3 » 0Ox0b030040
sub wO, wl, wO 0x0b000020

ARMvS-A Instruction Encoding

- In ARMv8-A, [most] instructions are encoded with exactly 32 bits (a fixed instruction

length)

* X86-64 has variable instruction length

* Instruction encoding defines how instructions are numerically represented

- Example: so-called “register-type” instructions are encoded as:

R-Type

opcode Rm shamt Rn Rd
11 bits 5 bits 6 bits 5 bits 5 bits

add wl, wl, wO »
(0x0b000021)

00001011000 00000 000000 00001 00001

second shift first dest
add operand amount operand register
= RO =0 = R1 = R

Architecture Reference Manual ARMvS8, §C6.2.5 14

ARMvS-A Instruction Encoding

- Data transfers (loads and stores) use similar encoding

- Offset must be from -256 to +255 (a range of 29 bits) of base register

opcode address op2 Rn Rt

D-Type
11 bits 9 bits 2 bits 5 bits 5 bits

- Immediate instructions contain a direct value instead of a register number

« Immediate value limited to 12 bits

opcode immediate Rn Rd

I-Type | . | |
10 bits 12 bits 5 bits 5 bits

Unconditional Branching

- Several ways to unconditionally change program flow, like C’s goto
statement, or invoking a function

- Use b to unconditionally jump to a constant address (usually a label)

« Use blr to invoke a function pointer

void foo(void) { foo-
/* ... *x/ '
}

int main(void) { »
void (*xfunc_ptr)(void) = foo;
func_ptr();

return 0; adrp x8, foo
} blr x8

ret

main:

16

Conditional Branching

- Programs also need to make decisions, like C’s 1T and for statements

- Use cbz (compare and branch if zero) and ebnz (compare and branch if not
zero) to conditionally jump to a label

 Other instructions are b. gt (branch if greater than or equal), b.ne (branch if
not equal)

cbnz x0, else
: - mov x0, #10
1t (x == 0) b end if
X = 10 . -
else else:
add x0, x0, #20
X += 20 .
end if:
/* end of if stmt */

Condition Codes

- Many instructions can affect condition codes:
set when most recent

condition bit

Instruction resulted In:

zero (2) equal
carry (C) carry out of mpst significant
bit
negative (N) most significant bit was 1
overflow (V) an overflow

- Use a combination of these codes to express full range of comparisons: less
than (1t), greater than (gt), less than or equal (1e), greater than or equal (ge),

equal (eq), and not equal (ne)

- Example: b. 1t to branch if most recent condition resulted in less than

Programmer’s Guide for ARMv8-A, §6.2.5 18

Setting Condition Codes

- Many ARMv8-A arithmetic instructions can have a s suffix to set condition
code

- Can also directly compare a register to an immediate value via emp instruction

- Example: calculate 3x using a loop mov x0, #1
mov x2, #3
result = 1; cbz x1, end
while (x > 0) { start:
result x= 3; » mul x0, x0, x2
X==7 subs x1l, x1, #1
} b.gt start
end:

/* end of while */

Function Calls

- Calling a function depends upon the calling convention for the language,
compiler, and instruction set

- Need to agree on where store function arguments (register/stack/memory),
where to store resulting value, and which registers are to be preserved by
the caller and which by the callee

* When updating the calling stack, need to decide who updates the stack
pointer (caller or callee) and by how much (prologue and epilogue)

- For many architectures, the stack must be alignhed to some boundary
(every 4 bytes or every 8 bytes)

20

ARMv8-A Procedure Call Standard

First eight arguments to function are stored in registers x0 through x7

» Use stack if more space is needed for incoming parameters

x0 holds the result of the function

x19 through x29 are callee-saved

x30 is the link register

SP is the stack register (special register 31)

All other registers are caller-saved

Procedure Call Standard for the o1

ARM 64-bit Architecture, §5.1.1

Function Prologue and Epilogue

- Callee is responsible to moving stack pointer to hold local variables (prologue)

and then cleaning up after itself (epilogue)

* Prologue and epilogue are added by the
compiler; they are not hardware enforced

static i1nt _ attribute_ ((noinline))
x(int g, int h, int 1, int j) {
int f = (g + h) - (1 + j); >
return f;

sub
str
str
str
str
ldr
ldr
add
ldr
ldr
add
sub
str
ldr
add
ret

sSp,
w0,

w2,
w3,
wl,
w0,
wl,

w0,
w0,
w0,
w0,
w0,

SpP,

sp, #0x20
[sp, #12]
[sp, #8]
[sp, #4]
[spl

[sp, #12]
[sp, #8]
wl, wO
[sp, #4]
[sp]

w2, w0
wl, wO
[sp, #28]
[sp, #28]
SpP, #OXZO

Prologue

Epilogue

[\
N

Calling Functions

» Architectures vary on how to call and return from a function, specifically on
where to store/load the return address

- On x86-64, return address is pushed onto the stack upon call. The ret
instruction pops top-most value from stack and jumps to that address

- On ARMVS8-A, return address is stored in x30 as a side-effect of bl. The
ret instruction jumps to the address stored in x30

- Callee is responsible for saving return address if it is not a leaf function

some func(10, 20, 30, 40);

=

mov
mov
mov
mov
bl

x0, #0x0a
x1l, #0x14
x2, #0xle
x3, #0x28
some func

23

