
Lecture 2: Instruction Semantics

Spring 2024

Jason Tang

1

Topics

• CPU operations

• Instruction types

• Functional calls

2

Instructions

• Although there are many different CPU designs, they all share similar
instruction sets:

• Fundamental operations that all computers must provide

• Designers have same goal of finding a machine language that maximizes
performance while minimizing cost

• This class is based around the ARMv8-A design

• Designed by Arm holdings, a British semiconductor company

• Used in nearly all modern smartphones, tablets, and smartwatches

3

Instruction Set Architecture (ISA)

• ISA: abstract interface between hardware and lowest level of software,
encompassing all necessary information to write and run a machine language
program

• Includes instructions, registers, memory access, I/O, etc.

• Enables different implementations of ISA to run the same software

• Application Binary Interface (ABI): user portion of instruction set that defines
how software should use the ISA to pass data between themselves and the
underlying operating system

• Defines a standard for binary portability across computers, OS revisions,
and compiler revisions

4

Changes in CPU Popularity

• In the past ten years, the shift has been from high performance computers to
handheld and embedded systems

5https://www.semiconductors.org/wp-content/uploads/2022/11/2022_The-
Growing-Challenge-of-Semiconductor-Design-Leadership_FINAL.pdf

Operations of Computer Hardware

• Assembly language is a symbolic representation of what the processor
actually understands

• Different assembly language syntaxes can exist for the same ISA

• See AT&T vs Intel debate

• In ARMv8-A, each assembly line translates to a single instruction

• Example C code and resulting assembly:

6

add w1, w1, w0
add w0, w2, w3
sub w0, w1, w0

f = (g + h) - (i + j)

Operands of Computer Hardware

• Registers are the bricks of computer construction

• Hardware design primitives visible to programmers

• Size and number of registers differ by architectures

• For ARMv8-A, the 31 general purpose registers are 64 bits wide

• When referring to the lower 32 bits, use notation wn; to refer to all 64 bits
use xn

• For many operations, the destination 
register is listed first

7

add w1, w1, w0
add w0, w2, w3
sub w0, w1, w0

Common Addressing Modes

• Direct (or immediate): value encoded in instruction

• Register: value stored within register

• Register indirect: value stored in memory at the address given by a register

• Register displacement: base (a register) + offset (an immediate value)

• Scaled displacement: base + offset × scale

• PC-relative: Program Counter + offset × scale

8

Complex Data Representation

• Given limited number of registers, remaining data (e.g., structs and arrays) are
kept in memory

• Data transfer instructions to move data in memory to / from a register are
traditionally called load / store

• Accessing a specific memory address is done indirectly, via register displacement

• Example in C: g = h + A[7]

• Let A be an array of ints (32-bits each), and its starting address is in register
w0

• Then resulting assembly is:

9

ldr w0, [x0, #28]
add x2, x0, x1

Compilation and Address Formation

• Compiler keeps frequently used data values in registers

• In many architectures (including ARMv8-A), arithmetic operands must be a
register, not a location in memory

• Thus compiler keeps frequently accessed values in registers

• Stores everything else (including larger data structures and arrays) in main
memory

• Address in memory = starting address + (index × element size)

10

ldr w0, [w0, #28]int A[] = { … };
… A[7];

Byte Addresses

• When operating on data that is not word aligned within memory (e.g., an
individual byte), need to specify which byte within the word to use

• Big-endian (also known as network order): Motorola 68k, SuperH

• Little-endian: x86-64

• Bi-endian: can switch endianness as necessary

• PowerPC starts in big-endian, can switch to little-endian

• ARMv7 and ARMv8-A start in little-endian, can switch to big-endian

11

Endian Example

• Example: to store the hexadecimal value 0x12345678 in memory starting at
address 0x1000:

• Watch out for “mixed-endian” machines that may have other encoding
schemes

• In ARMv8-A, ldr loads an entire word, while ldrb loads a single byte

12

memory cells
0x1000 0x1001 0x1002 0x1003

big-endian 0x12 0x34 0x56 0x78
little-endian 0x78 0x56 0x34 0x12

Stored Program Concept

• Modern computers are built on two key principles:

• Instructions and data are represented as numbers (specifically, binary representation)

• Instructions and data are stored in memory as numbers

• Compiler transforms code into instructions (code generation), and then the assembler
translates instructions (assembles) into underlying numeric representation for that
instruction set architecture

13

add w1, w1, w0
add w0, w2, w3
sub w0, w1, w0

f = (g + h) - (i + j)

add w1, w1, w0
add w0, w2, w3
sub w0, w1, w0

0x0b000021

0x0b030040

0x0b000020

ARMv8-A Instruction Encoding

• In ARMv8-A, [most] instructions are encoded with exactly 32 bits (a fixed instruction
length)

• x86-64 has variable instruction length

• Instruction encoding defines how instructions are numerically represented

• Example: so-called “register-type” instructions are encoded as:

14

R-Type
opcode Rm shamt Rn Rd

11 bits 5 bits 6 bits 5 bits 5 bits

add w1, w1, w0

(0x0b000021)

00001011000 00000 000000 00001 00001

add
second
operand 

= R0

shift
amount 

= 0

first
operand 

= R1

dest
register 

= R1

Architecture Reference Manual ARMv8, §C6.2.5

ARMv8-A Instruction Encoding

• Data transfers (loads and stores) use similar encoding

• Offset must be from −256 to +255 (a range of 29 bits) of base register

• Immediate instructions contain a direct value instead of a register number

• Immediate value limited to 12 bits

15

D-Type
opcode address op2 Rn Rt

11 bits 9 bits 2 bits 5 bits 5 bits

I-Type
opcode immediate Rn Rd

10 bits 12 bits 5 bits 5 bits

Unconditional Branching

• Several ways to unconditionally change program flow, like C’s goto
statement, or invoking a function

• Use b to unconditionally jump to a constant address (usually a label)

• Use blr to invoke a function pointer

16

foo:
 ...
 ret

main:
 ...
 adrp x8, foo
 blr x8

void foo(void) {
 /* ... */
}

int main(void) {
 void (*func_ptr)(void) = foo;
 func_ptr();
 return 0;
}

Conditional Branching

• Programs also need to make decisions, like C’s if and for statements

• Use cbz (compare and branch if zero) and cbnz (compare and branch if not
zero) to conditionally jump to a label

• Other instructions are b.gt (branch if greater than or equal), b.ne (branch if
not equal)

17

 cbnz x0, else
 mov x0, #10
 b end_if
else:
 add x0, x0, #20
end_if:
 /* end of if stmt */

if (x == 0)
 x = 10
else
 x += 20

Condition Codes

• Many instructions can affect condition codes:

• Use a combination of these codes to express full range of comparisons: less
than (lt), greater than (gt), less than or equal (le), greater than or equal (ge),
equal (eq), and not equal (ne)

• Example: b.lt to branch if most recent condition resulted in less than

18

condition bit set when most recent
instruction resulted in:

zero (Z) equal

carry (C) carry out of most significant
bit

negative (N) most significant bit was 1
overflow (V) an overflow

Programmer’s Guide for ARMv8-A, §6.2.5

Setting Condition Codes

• Many ARMv8-A arithmetic instructions can have a s suffix to set condition
code

• Can also directly compare a register to an immediate value via cmp instruction

• Example: calculate 3x using a loop

19

 mov x0, #1
 mov x2, #3
 cbz x1, end
start:
 mul x0, x0, x2
 subs x1, x1, #1
 b.gt start
end:
 /* end of while */

result = 1;
while (x > 0) {
 result *= 3;
 x--;
}

Function Calls

• Calling a function depends upon the calling convention for the language,
compiler, and instruction set

• Need to agree on where store function arguments (register/stack/memory),
where to store resulting value, and which registers are to be preserved by
the caller and which by the callee

• When updating the calling stack, need to decide who updates the stack
pointer (caller or callee) and by how much (prologue and epilogue)

• For many architectures, the stack must be aligned to some boundary
(every 4 bytes or every 8 bytes)

20

ARMv8-A Procedure Call Standard

• First eight arguments to function are stored in registers x0 through x7

• Use stack if more space is needed for incoming parameters

• x0 holds the result of the function

• x19 through x29 are callee-saved

• x30 is the link register

• SP is the stack register (special register 31)

• All other registers are caller-saved

21Procedure Call Standard for the
ARM 64-bit Architecture, §5.1.1

• Callee is responsible to moving stack pointer to hold local variables (prologue)
and then cleaning up after itself (epilogue)

• Prologue and epilogue are added by the 
compiler; they are not hardware enforced

Function Prologue and Epilogue

22

x:
 sub sp, sp, #0x20
 str w0, [sp, #12]
 str w1, [sp, #8]
 str w2, [sp, #4]
 str w3, [sp]
 ldr w1, [sp, #12]
 ldr w0, [sp, #8]
 add w1, w1, w0
 ldr w2, [sp, #4]
 ldr w0, [sp]
 add w0, w2, w0
 sub w0, w1, w0
 str w0, [sp, #28]
 ldr w0, [sp, #28]
 add sp, sp, #0x20
 ret

static int __attribute__((noinline))
 x(int g, int h, int i, int j) {
 int f = (g + h) - (i + j);
 return f;
}

Pr
ol

og
ue

Ep
ilo

gu
e

Calling Functions

• Architectures vary on how to call and return from a function, specifically on
where to store/load the return address

• On x86-64, return address is pushed onto the stack upon call. The ret
instruction pops top-most value from stack and jumps to that address

• On ARMv8-A, return address is stored in x30 as a side-effect of bl. The
ret instruction jumps to the address stored in x30

• Callee is responsible for saving return address if it is not a leaf function

23

mov x0, #0x0a
mov x1, #0x14
mov x2, #0x1e
mov x3, #0x28
bl some_func

some_func(10, 20, 30, 40);

