
Lecture 21: Interrupt Handling

Fall 2019

Jason Tang

�1

Slides based upon Linux Device Drivers, 3rd Edition
http://lwn.net/Kernel/LDD3/

http://lwn.net/Kernel/LDD3/

Topics

• Hardware Interrupts

• Linux Interrupt Handling

• Writing Interrupt Handlers

• Top-Half / Bottom-Half Design

�2

Hardware Interrupts

• Real device drivers have to deal with real hardware

• Device drivers usually written using event-based design:

• Driver installs callbacks, and then enables hardware

• Hardware generates interrupts asynchronously

• Callbacks invoked to handle (or service) that interrupt

�3

IRQ Handling

• A hardware device sends an electrical signal on a physical interrupt line

• Processor detects that signal and translates it into an interrupt request (IRQ)
number

• Processor then jumps to kernel’s interrupt handling code

• Kernel searches through its interrupt request table (stored in RAM) for entry or
entries that match the IRQ

• If found, kernel jumps to the interrupt service routine (ISR) that was registered

• If not found, kernel ignores IRQ

�4

IRQ Handling

�5

Hardware PIC

On x86, see /arch/
x86/kernel/irq.c

On x86, IRQ table stored in
vector_irq[] array

https://notes.shichao.io/lkd/ch7/

Interrupt Handling Overview

�6

• Register interrupt handler

• Enable interrupts

Module Init / Probe

• Disable interrupts

• Retrieve data from hardware

• Reenable interrupts

Interrupt Handler

• Disable interrupts

• Remove interrupt handler

Module Remove / Exit

Acknowledge
Handling

User unloads driver

Interrupt
Generated

KernelRegister IRQ

Linux Interrupt Handling

• Declared in include/linux/interrupt.h

• First parameter is which IRQ number to register

• Second parameter is a function pointer to invoke upon interrupt reception

• Third parameter is flag(s) when registering IRQ (often set to 0)

• Fourth parameter is a free-form name for ISR

• Fifth parameter is the ISR cookie

• Returns 0 on success, negative on error

�7

int request_irq(unsigned int irq, irq_handler_t handler,
 unsigned long flags, const char *name, void *dev);

Example Interrupt Registration

• String given as fourth parameter is the one shown in /proc/interrupts:

�8

if (request_irq(HP680_TS_IRQ, hp680_ts_interrupt,
 0, MODNAME, NULL) < 0) {
 printk(KERN_ERR "hp680_touchscreen.c: Can't allocate irq %d\n",
 HP680_TS_IRQ);
 err = -EBUSY;
 goto fail1;
}

From drivers/input/
touchscreen/hp680_ts_input.c

$ cat /proc/interrupts
 CPU0 CPU1 CPU2 CPU3
 0: 47 0 0 0 IO-APIC-edge timer
 1: 1818 0 0 0 IO-APIC-edge i8042
 6: 38 27 27 18 IO-APIC-edge
 8: 0 0 0 0 IO-APIC-edge rtc0
 9: 0 0 0 0 IO-APIC-fasteoi acpi
 12: 733 0 0 0 IO-APIC-edge i8042

IRQ number Number of times ISR was invoked Name of ISR

Example ISR

• First parameter to ISR is IRQ number that raised interrupt

• Second parameter is the cookie (and was the last parameter to request_irq())

• Return value is of type irqreturn_t (declared in include/linux/irqreturn.h)

• IRQ_NONE: interrupt was not from this device (used when sharing IRQs)

• IRQ_HANDLED: interrupt was handled by this device

�9

static irqreturn_t hp680_ts_interrupt(int irq, void *dev)
{
 disable_irq_nosync(irq);
 schedule_delayed_work(&work, HZ / 20);

 return IRQ_HANDLED;
}

Example Interrupt Freeing

• First parameter to free_irq() is IRQ number (first parameter to
request_irq())

• Second parameter is the cookie (last parameter to request_irq())

• If module does not unregister ISR, kernel will panic when interrupt is raised

• Make sure ISRs are removed in module init/probe error paths

�10

static void __exit hp680_ts_exit(void)
{
 free_irq(HP680_TS_IRQ, NULL);
 cancel_delayed_work_sync(&work);
 input_unregister_device(hp680_ts_dev);
}

ISR Cookies

• Use cookies to identify which hardware instance corresponds to which IRQ
handler, in case the driver is handling multiple instances of that hardware

• Cookie is usually the return value from kmalloc() (the device private data)

�11

static int ili210x_i2c_probe(struct i2c_client *client,
 const struct i2c_device_id *id)
{
 /* ... */
 struct ili210x *priv;
 /* ... */
 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 /* ... */
 error = request_irq(client->irq, ili210x_irq, pdata->irq_flags,
 client->name, priv);
} From drivers/input/

touchscreen/ili210x.c

Writing Interrupt Handlers

• While kernel is servicing interrupt, no other useful work is occurring

• Also while within ISR, that CPU is unable to handle additional incoming
interrupts

• May miss interrupts, especially when running a real-time system

• ISRs must finish quickly

• CPU disables preemption just before it jumps into interrupt handling code

• ISRs run in interrupt context, as compared to process context

�12

Interrupt Context

• While running in interrupt context, ISR cannot be preempted (on that CPU)

• ISR may not call functions that can sleep:

• kmalloc() with GFP_KERNEL (must instead use GFP_ATOMIC)

• mutex_lock()

• schedule_timeout()

• Calling any sleeping function will usually cause a kernel deadlock

�13

Top-Half / Bottom-Half

• As that ISR must run fast and runs in interrupt context, common pattern is to
divide interrupt handling into two parts

• Top-Half: routine that responds to interrupt, running in interrupt context

• Acknowledges interrupt

• Wakes up a kthread to finish servicing interrupt

• Bottom-Half: routine that does actual work (delayed work)

• As that it is a kthread, it runs in process context

�14

Threaded Interrupt Handling

• Like request_irq(), but with additional parameter thread_fn

• If the handler function (top-half) returns IRQ_WAKE_THREAD, then kernel will
automatically schedule a kthread to run thread_fn (bottom-half)

• Top-half should disable interrupts on that device

• Bottom-half should reenable interrupts after it has finished running

�15

int request_threaded_irq(unsigned int irq,
 irq_handler_t handler,
 irq_handler_t thread_fn,
 unsigned long flags, const char *name,
 void *dev);

Example Threaded Interrupt Registration

• Register threaded interrupt handler similarly as request_irq(), with
addition of parameter that specifies bottom-half

• Just like request_irq(), driver must call free_irq() at module exit /
remove and also within error handling code in module init/probe

�16

err = request_threaded_irq(dev->dev->irq, b43_interrupt_handler,
 b43_interrupt_thread_handler,
 IRQF_SHARED, KBUILD_MODNAME, dev);
if (err) {
 b43err(dev->wl, "Cannot request IRQ-%d\n",
 dev->dev->irq);
 goto out;
}

From drivers/net/wireless/
b43/main.c

Example Top-Half

• The top-half returns IRQ_NONE if this driver is not handling interrupt,
IRQ_HANDLED if it finished handling interrupt, or IRQ_WAKE_THREAD to
continue processing within a bottom-half

�17

static irqreturn_t b43_interrupt_handler(int irq, void *dev_id)
{
 struct b43_wldev *dev = dev_id;
 irqreturn_t ret;

 if (unlikely(b43_status(dev) < B43_STAT_STARTED))
 return IRQ_NONE;

 spin_lock(&dev->wl->hardirq_lock);
 ret = b43_do_interrupt(dev);
 mmiowb();
 spin_unlock(&dev->wl->hardirq_lock);

 return ret;
}

This function returns IRQ_NONE
or IRQ_WAKE_THREAD

Example Bottom-Half

• Parameters to bottom-half same as parameters to top-half

• Bottom-half returns IRQ_HANDLED when it has finished its work

• Because bottom-half is running in process context, it may use mutexes
and call other functions that can sleep

�18

static irqreturn_t b43_interrupt_thread_handler(int irq, void *dev_id)
{
 struct b43_wldev *dev = dev_id;

 mutex_lock(&dev->wl->mutex);
 b43_do_interrupt_thread(dev);
 mmiowb();
 mutex_unlock(&dev->wl->mutex);

 return IRQ_HANDLED;
}

Spinlocks and Interrupt Handlers

• Spinlocks are safe to use in top-halves as that they do not sleep

• May be dangerous for a kthread to hold a spinlock that a top-half also needs

• Deadlock will occur if top-half is blocked on a single-processor system

• Solution is for kthread to ensure that top-half will not deadlock, even if
spinlock already held

• Use special form spin_lock_irqsave()

• Must use this form whenever same spinlock can be held in both
interrupt and process context

�19

Spinlocks and Interrupt Handlers

• spin_lock_irqsave() acquires spinlock, saves the current state in
flags, and disables interrupts on that CPU

• spin_unlock_irqrestore() releases spinlock, then reenables interrupts

�20

void spin_lock_irqsave(spinlock_t *lock, unsigned long flags);
void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags);

static inline unsigned char rtc_is_updating(void)
{
 unsigned long flags;
 unsigned char uip;

 spin_lock_irqsave(&rtc_lock, flags);
 uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
 spin_unlock_irqrestore(&rtc_lock, flags);
 return uip;
}

From drivers/char/rtc.c

Threaded Interrupt Handling Summary

�21

• Register threaded
interrupt handler

• Enable interrupts

Module Init / Probe

• Disable hardware interrupt

• Return IRQ_WAKE_THREAD

Interrupt Handler, Top-Half

• Disable interrupts

• Remove interrupt
handler

Module Remove / Exit
Delayed Work

User unloads driver

Interrupt
Generated

Kernel

Register IRQ

• Retrieve data from hardware

• Reenable hardware interrupt

• Return IRQ_HANDLED

Interrupt Handler, Bottom-Half

