Lecture 21: Interrupt Handling

Fall 2019
Jason Tang

Slides based upon Linux Device Drivers, 3rd Edition
http://lwn.net/Kernel/L DD3/

http://lwn.net/Kernel/LDD3/

Topics

- Hardware Interrupts

* Linux Interrupt Handling

« Writing Interrupt Handlers

- Top-Half / Bottom-Half Design

Hardware Interrupts

 Real device drivers have to deal with real hardware

* Device drivers usually written using event-based design:

 Driver installs callbacks, and then enables hardware

- Hardware generates interrupts asynchronously

- Callbacks invoked to handle (or service) that interrupt

IRQ Handling

A hardware device sends an electrical signal on a physical interrupt line

« Processor detects that signal and translates it into an interrupt request (IRQ)
number

* Processor then jumps to kernel’s interrupt handling code

- Kernel searches through its interrupt request table (stored in RAM) for entry or
entries that match the IRQ

- If found, kernel jumps to the interrupt service routine (ISR) that was registered

- If not found, kernel ignores IRQ

IRQ Handling

On x86, IRQ table stored in
vector_irql] array

handle_IRQ_event()

Hardware
generates an interrupt
yes
' ' processor interrupts s there an interrupt run all interrupt
C Hardware PIC) the kernel handler on this line? handlers on this line
I 1
interrupt controller
no
do_IRQ() return to the
On x86, see /arch/ ret_from_intr() kernel code
’ . that was
x86/kernel/irg.c .
interrupted

Processor

https://notes.shichao.io/lkd/ch7/

Interrupt Handling Overview

Module Init / Probe

Register IRQ 4'-
« Register interrupt handler |—

| Interrupt Acknowledge
* Enable interrupts Generated Handling

User unloads driver Interrupt Handler
\

Module Remove / Exit

 Disable interrupts

» Disable interrupts Retrieve data from hardware

- Remove interrupt handler * Reenable interrupts

Linux Interrupt Handling

int request_irg(unsigned int irq, irq_handler_t handler,
unsigned long flags, const char *name, void xdev);

 Declared in include/linux/interrupt.h

* First parameter is which IRQ number to register

- Second parameter is a function pointer to invoke upon interrupt reception

- Third parameter is flag(s) when registering IRQ (often set to 0)

- Fourth parameter is a free-form name for ISR

- Fifth parameter is the ISR cookie

« Returns 0 on success, negative on error

—xample Interrupt Registration

if (request_irg(HP680_TS_IRQ, hp680 _ts_interrupt,
®, MODNAME, NULL) < 0) A
printk (KERN_ERR "hp680_touchscreen.c: Can't allocate irq %d\n",
HP680_TS IRQ);
err = —EBUSY:
goto faill;

}

« String given as fourth parameter is the one shown in /proc/interrupts:

S cat /proc/interrupts

CPUO CPU1 CPU2 CPU3
0: 4°] 0 0 0 TO-APIC-edge timer
1: 1818 0 0 0 IO-APIC-edge 18042
o: 38 277 27 18 TO-APIC-edge
8 : 0 0 0 0 IO-APIC-edge rtcO
9: 0 0 0 0 TO-APIC-fasteol acpi
12 733 0 0 0 TO-APIC-edge 18042

/\
ﬁRQ number J | Number of times ISR was invoked J Name of ISR 7

—xample ISR

static irqreturn_t hp680_ts_interrupt(int irqg, void xdev)

{
disable_irg_nosync(irq);
schedule_delayed work(&work, HZ / 20);
return IRQ_HANDLED;

}

* First parameter to ISR is IRQ number that raised interrupt

- Second parameter is the cookie (and was the last parameter to request irqg())

 Return value is of type irgreturn t (declared in include/linux/irgreturn.h)

- TRQ NONE: interrupt was not from this device (used when sharing IRQs)

- TRQ HANDLED: interrupt was handled by this device

—xample Interrupt Freeing

static void __exit hp680 _ts_exit(void)

{
free_irq(HP680_TS_IRQ, NULL);
cancel _delayed work_sync(&work);
input_unregister_device(hp680_ts_dev);
¥

- First parameter to free irg() is IRQ number (first parameter to
request irqg())

- Second parameter is the cookie (last parameter to request irqg())

- If module does not unregister ISR, kernel will panic when interrupt is raised

- Make sure ISRs are removed in module init/probe error paths

10

ISR Cookies

- Use cookies to identify which hardware instance corresponds to which IRQ
handler, in case the driver is handling multiple instances of that hardware

« Cookie is usually the return value from kmalloc () (the device private data)

static int 1i1i210x_1i2c_probe(struct i2c_client *xclient,
const struct i2c_device_id xid)
{

/* oo X/

struct 11i210x *xpriv;

/) vow X/

priv = kzalloc(sizeof(xpriv), GFP_KERNEL);

/%X wua X/

error = request_irq(client->irq, ili210x_irq, pdata—>irq_flags,
client->name, priv);

| oo

11

Writing Interrupt Handlers

« While kernel is servicing interrupt, no other useful work is occurring

+ Also while within ISR, that CPU is unable to handle additional incoming
iInterrupts

- May miss interrupts, especially when running a real-time system

 ISRs must finish quickly

- CPU disables preemption just before it jumps into interrupt handling code

- ISRs run in interrupt context, as compared to process context

12

Interrupt Context

- While running in interrupt context, ISR cannot be preempted (on that CPU)

- ISR may not call functions that can sleep:

» kmalloc () with GFP_ KERNEL (must instead use GFP ATOMIC)

e mutex lock()

« schedule timeout ()

- Calling any sleeping function will usually cause a kernel deadlock

13

Top-Half / Bottom-Half

- As that ISR must run fast and runs in interrupt context, common pattern is to
divide interrupt handling into two parts

- Top-Half: routine that responds to interrupt, running in interrupt context

* Acknowledges interrupt

- Wakes up a kthread to finish servicing interrupt

- Bottom-Half: routine that does actual work (delayed work)

- As that it is a kthread, it runs in process context

14

Threaded Interrupt Handling

int request_threaded_irg(unsigned int irq,
irg_handler_t handler,
irg_handler_t thread_fn,
unsigned long flags, const char *xname,
void xdev);

- Like request irg(), but with additional parameter thread fn

- If the handler function (top-half) returns IRO WAKE THREAD, then kernel will
automatically schedule a kthread to run thread fn (bottom-half)

+ Top-half should disable interrupts on that device

- Bottom-half should reenable interrupts after it has finished running

15

—xample Threaded Interrupt Registration

err = request_threaded_irg(dev->dev->irq, b43_interrupt_handler,
b43_interrupt_thread_handler,
IRQF_SHARED, KBUILD_MODNAME, dev);

if (err) {
b43err(dev—>wl, "Cannot request IRQ-%d\n",

dev—>dev->irq);
o _
I3

- Register threaded interrupt handler similarly as request irqg (), with
addition of parameter that specifies bottom-half

- Just like request irqg(), driver must call free irqg() at module exit/
remove and also within error handling code in module init/probe

16

—xample Top-Half

static irgreturn_t b43_interrupt_handler(int irq, void xdev_id)
{

struct b43 _wldev xdev = dev_id;

irgreturn_t ret;

if (unlikely(b43_status(dev) < B43_STAT _STARTED))
return IRQ_NONE;

spin_lock(&dev—>wl->hardirqg_lock);
ret = b43_do_interrupt(dev);
mmiowb () ;

spin_unlock(&dev->wl->hardirq_lock);

return ret;

}

- The top-half returns TRQ NONE Iif this driver is not handling interrupt,
TRQ HANDLED If it finished handling interrupt, or IRQ WAKE THREAD to
continue processing within a bottom-half

17

—xample Bottom-Half

static irqreturn_t b43_interrupt_thread_handler(int irqg, void xdev_id)

{

struct b43_wldev *dev dev_1id;

mutex_lock(&dev—>wl->mutex);
b43_do_interrupt_thread(dev);
mmiowb () ;
mutex_unlock(&dev—>wl->mutex);

return IRQ_HANDLED;
}

- Parameters to bottom-half same as parameters to top-half

- Bottom-half returns TRQ HANDLED when it has finished its work

- Because bottom-half is running in process context, it may use mutexes
and call other functions that can sleep

18

Spinlocks and Interrupt Handlers

« Spinlocks are safe to use in top-halves as that they do not sleep
- May be dangerous for a kthread to hold a spinlock that a top-half also needs
» Deadlock will occur if top-half is blocked on a single-processor system

- Solution is for kthread to ensure that top-half will not deadlock, even if
spinlock already held

- Use special form spin lock irgsave ()

- Must use this form whenever same spinlock can be held in both
interrupt and process context

19

Spinlocks and Interrupt Handlers

void spin_lock_irgsave(spinlock_t *xlock, unsigned long flags);
void spin_unlock_irgrestore(spinlock_t *lock, unsigned long flags);

- spin lock irgsave () acquires spinlock, saves the current state in
flags, and disables interrupts on that CPU

- spin unlock irgrestore () releases spinlock, then reenables interrupts

static inline unsigned char rtc_is_updating(void)

{

unsigned Llong flags;
unsigned char uip;

spin_lock_irqgsave(&rtc_lock, flags);

uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
spin_unlock_irqrestore(&rtc_lock, flags);
return ulp;

| From dnersiharic

20

Threaded Interrupt Handling Summary

Module Init / Probe

* Register threaded
interrupt handler

- Enable interrupts

User unloads driver

\ 4
Module Remove / Exit

 Disable interrupts

« Remove interrupt
handler

Register IRQ

N

Interrupt
Generated

Delayed Work

Interrupt Handler, Top-Half

« Disable hardware interrupt

- Return TRQ WAKE THREAD

Interrupt Handler, Bottom-Half

* Retrieve data from hardware

* Reenable hardware interrupt

« Return TRQ HANDLED

21

