Lecture 17: Introduction to Linux Kernel

Fall 2019
Jason Tang

Slides based upon Linux Device Drivers, 3rd Edition
http://lwn.net/Kernel/L DD3/

http://lwn.net/Kernel/LDD3/

Topics

» Linux-specific Filesystems

» Linux Kernel Source Tree Layout

« Writing Kernel Modules

Linux Kernel

- Initially created in 1991 by Linus Torvalds, as a hobby during college

- Supported by numerous companies, often for embedded and specialized
systems

- Now used by billions of people, via Android

« Over 25 million lines of code spread across over 62,000+ files

Linux Distributions

- Although there is just one official Linux kernel, various people/groups package the
kernel with system libraries, system utilities, and common applications to form entire
distributions

 Thousands of distributions:

- Red Hat: Fedora, Red Hat Enterprise Linux (RHEL), CentOS

« Debian: Debian, Ubuntu, Mint

« Gentoo: Gentoo, Chrome OS

« SUSE: openSuse, SUSE Linux Enterprise

« Google: Android

Filesystem Hierarchy Standard (FHS)

« Most distributors have agreed upon general layout of a running Linux system

« /bin, /lib: essential binaries and libraries

- /etc: host-specific system configuration

- /media, /mnt: mount point for removable media or temporary filesystems

- /opt: add-on application software

 /tmp: temporary files

Pseudo-filesystems

» Linux represents almost everything as a file within the filesystem

* Not everything actually stored on hard disk

- Memory-backed files: “files” stored entirely in RAM

- /dev (via devfs), /tmp (via tmpfs), shared memory (via shmfs), other ramfs

* Virtual files: “files” dynamically generated by kernel during file operations

- /proc (via procfs), /sys (via sysfs), /sys/debug (via debugfs)

/dev

- Traditional location for permanently attached devices (as compared to
hotplug devices)

» Accessing a file within invokes matching kernel driver

- /dev/mem, /dev/null, /dev/zero: calls into kernel’s memory driver

- /dev/random, /dev/urandom: calls into kernel’s random driver

« Most devices implement file reading and/or writing

- “Reading” /dev/random returns random numbers from kernel’s PRNG pool

Device Classes

- Character (char) device: expressed as a stream of bytes, volatile storage

- Examples: /dev/console, /dev/random, /dev/ttyS0O

* Block device: I/0O must be transferred in one or more whole blocks, often in
increments of 512 bytes, non-volatile storage

- Examples: /dev/loop0, /dev/sda, /dev/sr0

- Network device: network |/O via kernel’s networking system

* No matching entry within /dev

/Oroc

- Holds process information and other control information

« Most of these virtual files implement reading, some also implement writing

- /proc/PID/status: returns status of process PID

- /proc/self: symbolic link to current process’s PID directory

- /proc/interrupts: returns all installed interrupt handlers and number of
iInterrupts that have been serviced

- /proc/slabinfo: returns state of kernel’s slab pools

/SYS

- Holds state of kernel subsystems and device drivers

- Like /proc, reading virtual files in /sys within returns current state, while
writing changes state

 Modern location to hold driver states

 Older kernels used to cram everything in /proc

- Hotplug devices represented in /sys

10

Kernel Subsystems

Process management

Memory management

Filesystems

Device control

Networking

Process i Memory

. management { | management

Concurrency, Virtual
multitasking memory
Arch- Memory
dependent : manager
code :

CPU Memory

features implemented as modules

The System Call Interface

Filesystems

Files and dirs:
the VFS

b Filesystem 1§ |
types i
e |

. Block devices |

O O

Disks & CDs

Device
control

Ttys &
device access

Character
devices

Consoles,
etc.

Networking

Connectivity

. Network |
i subsystem

IF drivers

O O

Network
interfaces

Kernel
subsystems

Features
implemented

Software
support

Hardware

11

Kernel Source

» Linux kernel source code now controlled via git revision control system

- Stable branches are named linux-4.9.y, linux-4.14.y, etc

 Next release of kernel is on master branch

* Linus Torvalds normally controls what gets pushed onto the master branch

- Other major developers maintain stable branches (e.g., Greg Kroah-
Hartman)

 Linux kernel written entirely in C (not C++, Java, Lua, Python, Ruby, ...)

12

Kernel Source Code Layout

- /Documentation: lots of information about kernel development, coding style,
notes about specific hardware

- /arch: architecture-dependent code

« /drivers: device drivers

« /include: header files

« /include/linux:; internal kernel header files

- /include/UAPI/linux: user space API, which are headers exported to user
programs

13

Kernel Source Code Layout

- /kernel: core kernel code (scheduler, thread synchronization)

- /lib: common kernel data structures and other code (linked list, trees)

- /net: networking code (TCP, UDP, IPv6)

- /scripts: kernel build system

14

Kernel Module (kmod)

« Chunk of code that may be added to kernel at runtime to extend functionality

* All kernel code written in C89, which means:

« Comments must be of form /* .. */ (slash-star)

 // (slash-slash) style is not permitted

* Variables must be declared at top of functions, not intermixed with code

* No variable-length arrays

* No floating-point arithmetic

15

Kernel Module Example

#include <linux/1init.h>
#include <linux/module.h>
MODULE LICENSE("GPL");

static int hello_init(void)

{
printk (KERN_ALERT "Hello, world\n");
return 0;
}
static void hello_exit(void)
{
printk (KERN_ALERT "Goodbye, cruel world\n");
}

module_init(hello_init);
module_exit(hello_exit);

16

Writing Kernel Modules

- Similar to C user software, in that there is a single entry point and exit point

* Module is responsible for cleaning up after itself during exit

* No standard library; only header files in kernel source tree’s /include may be
used

- Typically designed as event-driven application:

 During initialization, module registers callbacks into core kernel code

« When event occurs, core kernel invokes callback

« gotos used for error handling

17

Concurrency

- Linux kernel internally is multithreaded (via kthreads)

* Modules can be preempted, or can also be invoked concurrently

- Example: Multiple user space processes can read from /dev/random
simultaneously

- Callbacks must use synchronization to avoid race conditions

- mutex, semaphore, and/or condition variable

- futex, rcu_lock, spinlock

18

Compiling Kernel Modules

- Module could be compiled as part of Linux kernel (an in-tree module) or in
separate directory (an out-of-tree module)

- Either way requires kernel build system (Kbuild) support
- Typically, Kbuild will compile a file named foo.c into the kernel module foo.ko

« Load a module via insmod: insmod foo.ko

« Remove a module via rmmod: rmmod foo

19

Module Initialization

static int __init hello_init(void)

{
printk (KERN_ALERT "Hello, world\n");
return 0;

}

module_init(hello_init);

* Entry point into module, called by core kernel when module is inserted

- Nearly always declared as staticand has init token

+ Hint to kernel that function is only used at initialization, and can be purged
from memory afterwards

- Use module init () macro to declare which function is for initialization

20

Module Initialization

static int __init hello_init(void)

{
printk (KERN_ALERT "Hello, world\n");
return 0;

}

module_init(hello_init);

* Function returns 0 on successful initialization, or negative on error

* Return the negative of an errno value:

« —~ENOMEM: out of memory

« —EPERM: operation not permitted

21

Displaying Messages

static int __init hello_init(void)

{
printk (KERN_ALERT "Hello, world\n");

return 0;

}

module_init(hello_init);

« Classically, use printk () to generate messages

-+ Superseded in newer kernels by pr * () and dev * () functions

- Messages sent to kernel log

» Use dmesg command to view contents of kernel log

22

Module Shutdown

static void hello _exit(void)

{
}

module_exit(hello_exit);

printk (KERN_ALERT "Goodbye, cruel world\n");

Invoked by core kernel when module is unloaded

Responsible for releasing memory, unlocking locks, etc.

* You are responsible for cleaning up after yourself

Normally declared as both static and with exit token

Use module exit () macro to declare which function is for cleanup

23

