
Lecture 17: Introduction to Linux Kernel

Fall 2019

Jason Tang

�1

Slides based upon Linux Device Drivers, 3rd Edition
http://lwn.net/Kernel/LDD3/

http://lwn.net/Kernel/LDD3/

Topics

• Linux-specific Filesystems

• Linux Kernel Source Tree Layout

• Writing Kernel Modules

�2

Linux Kernel

• Initially created in 1991 by Linus Torvalds, as a hobby during college

• Supported by numerous companies, often for embedded and specialized
systems

• Now used by billions of people, via Android

• Over 25 million lines of code spread across over 62,000+ files

�3

Linux Distributions

• Although there is just one official Linux kernel, various people/groups package the
kernel with system libraries, system utilities, and common applications to form entire
distributions

• Thousands of distributions:

• Red Hat: Fedora, Red Hat Enterprise Linux (RHEL), CentOS

• Debian: Debian, Ubuntu, Mint

• Gentoo: Gentoo, Chrome OS

• SUSE: openSuse, SUSE Linux Enterprise

• Google: Android

�4

Filesystem Hierarchy Standard (FHS)

• Most distributors have agreed upon general layout of a running Linux system

• /bin, /lib: essential binaries and libraries

• /etc: host-specific system configuration

• /media, /mnt: mount point for removable media or temporary filesystems

• /opt: add-on application software

• /tmp: temporary files

�5

Pseudo-filesystems

• Linux represents almost everything as a file within the filesystem

• Not everything actually stored on hard disk

• Memory-backed files: “files” stored entirely in RAM

• /dev (via devfs), /tmp (via tmpfs), shared memory (via shmfs), other ramfs

• Virtual files: “files” dynamically generated by kernel during file operations

• /proc (via procfs), /sys (via sysfs), /sys/debug (via debugfs)

�6

/dev

• Traditional location for permanently attached devices (as compared to
hotplug devices)

• Accessing a file within invokes matching kernel driver

• /dev/mem, /dev/null, /dev/zero: calls into kernel’s memory driver

• /dev/random, /dev/urandom: calls into kernel’s random driver

• Most devices implement file reading and/or writing

• “Reading” /dev/random returns random numbers from kernel’s PRNG pool

�7

Device Classes

• Character (char) device: expressed as a stream of bytes, volatile storage

• Examples: /dev/console, /dev/random, /dev/ttyS0

• Block device: I/O must be transferred in one or more whole blocks, often in
increments of 512 bytes, non-volatile storage

• Examples: /dev/loop0, /dev/sda, /dev/sr0

• Network device: network I/O via kernel’s networking system

• No matching entry within /dev

�8

/proc

• Holds process information and other control information

• Most of these virtual files implement reading, some also implement writing

• /proc/PID/status: returns status of process PID

• /proc/self: symbolic link to current process’s PID directory

• /proc/interrupts: returns all installed interrupt handlers and number of
interrupts that have been serviced

• /proc/slabinfo: returns state of kernel’s slab pools

�9

/sys

• Holds state of kernel subsystems and device drivers

• Like /proc, reading virtual files in /sys within returns current state, while
writing changes state

• Modern location to hold driver states

• Older kernels used to cram everything in /proc

• Hotplug devices represented in /sys

�10

Kernel Subsystems

• Process management

• Memory management

• Filesystems

• Device control

• Networking

�11

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: An Introduction to Device Drivers

The three classes are:

Character devices
A character (char) device is one that can be accessed as a stream of bytes (like a
file); a char driver is in charge of implementing this behavior. Such a driver usu-
ally implements at least the open, close, read, and write system calls. The text
console (/dev/console) and the serial ports (/dev/ttyS0 and friends) are examples
of char devices, as they are well represented by the stream abstraction. Char
devices are accessed by means of filesystem nodes, such as /dev/tty1 and /dev/lp0.
The only relevant difference between a char device and a regular file is that you
can always move back and forth in the regular file, whereas most char devices
are just data channels, which you can only access sequentially. There exist,
nonetheless, char devices that look like data areas, and you can move back and
forth in them; for instance, this usually applies to frame grabbers, where the
applications can access the whole acquired image using mmap or lseek.

Figure 1-1. A split view of the kernel

features implemented as modules

Process
management

Memory
management

Filesystems Device
control

Networking

Arch-
dependent

code

Memory
manager

Character
devices

Network
subsystem

CPU Memory

Concurrency,
multitasking

Virtual
memory

Files and dirs:
the VFS

Kernel
subsystems

Features
implemented

Software
support

Hardware

IF driversBlock devices

File system
types

Ttys &
device access Connectivity

Disks & CDs Consoles,
etc.

Network
interfaces

The System Call Interface

,ch01.2168 Page 6 Thursday, January 20, 2005 9:21 AM

Kernel Source

• Linux kernel source code now controlled via git revision control system

• Stable branches are named linux-4.9.y, linux-4.14.y, etc

• Next release of kernel is on master branch

• Linus Torvalds normally controls what gets pushed onto the master branch

• Other major developers maintain stable branches (e.g., Greg Kroah-
Hartman)

• Linux kernel written entirely in C (not C++, Java, Lua, Python, Ruby, …)

�12

Kernel Source Code Layout

• /Documentation: lots of information about kernel development, coding style,
notes about specific hardware

• /arch: architecture-dependent code

• /drivers: device drivers

• /include: header files

• /include/linux: internal kernel header files

• /include/UAPI/linux: user space API, which are headers exported to user
programs

�13

Kernel Source Code Layout

• /kernel: core kernel code (scheduler, thread synchronization)

• /lib: common kernel data structures and other code (linked list, trees)

• /net: networking code (TCP, UDP, IPv6)

• /scripts: kernel build system

�14

Kernel Module (kmod)

• Chunk of code that may be added to kernel at runtime to extend functionality

• All kernel code written in C89, which means:

• Comments must be of form /* … */ (slash-star)

• // (slash-slash) style is not permitted

• Variables must be declared at top of functions, not intermixed with code

• No variable-length arrays

• No floating-point arithmetic

�15

Kernel Module Example

�16

#include <linux/init.h>
#include <linux/module.h>
MODULE_LICENSE("GPL");

static int hello_init(void)
{
 printk(KERN_ALERT "Hello, world\n");
 return 0;
}

static void hello_exit(void)
{
 printk(KERN_ALERT "Goodbye, cruel world\n");
}

module_init(hello_init);
module_exit(hello_exit);

Writing Kernel Modules

• Similar to C user software, in that there is a single entry point and exit point

• Module is responsible for cleaning up after itself during exit

• No standard library; only header files in kernel source tree’s /include may be
used

• Typically designed as event-driven application:

• During initialization, module registers callbacks into core kernel code

• When event occurs, core kernel invokes callback

• gotos used for error handling

�17

Concurrency

• Linux kernel internally is multithreaded (via kthreads)

• Modules can be preempted, or can also be invoked concurrently

• Example: Multiple user space processes can read from /dev/random
simultaneously

• Callbacks must use synchronization to avoid race conditions

• mutex, semaphore, and/or condition variable

• futex, rcu_lock, spinlock

�18

Compiling Kernel Modules

• Module could be compiled as part of Linux kernel (an in-tree module) or in
separate directory (an out-of-tree module)

• Either way requires kernel build system (Kbuild) support

• Typically, Kbuild will compile a file named foo.c into the kernel module foo.ko

• Load a module via insmod: insmod foo.ko

• Remove a module via rmmod: rmmod foo

�19

Module Initialization

• Entry point into module, called by core kernel when module is inserted

• Nearly always declared as static and has __init token

• Hint to kernel that function is only used at initialization, and can be purged
from memory afterwards

• Use module_init() macro to declare which function is for initialization

�20

static int __init hello_init(void)
{
 printk(KERN_ALERT "Hello, world\n");
 return 0;
}

module_init(hello_init);

Module Initialization

• Function returns 0 on successful initialization, or negative on error

• Return the negative of an errno value:

• -ENOMEM: out of memory

• -EPERM: operation not permitted

�21

static int __init hello_init(void)
{
 printk(KERN_ALERT "Hello, world\n");
 return 0;
}

module_init(hello_init);

Displaying Messages

• Classically, use printk() to generate messages

• Superseded in newer kernels by pr_*() and dev_*() functions

• Messages sent to kernel log

• Use dmesg command to view contents of kernel log

�22

static int __init hello_init(void)
{
 printk(KERN_ALERT "Hello, world\n");
 return 0;
}

module_init(hello_init);

Module Shutdown

• Invoked by core kernel when module is unloaded

• Responsible for releasing memory, unlocking locks, etc.

• You are responsible for cleaning up after yourself

• Normally declared as both static and with __exit token

• Use module_exit() macro to declare which function is for cleanup

�23

static void hello_exit(void)
{
 printk(KERN_ALERT "Goodbye, cruel world\n");
}

module_exit(hello_exit);

