
Lecture 6: Interprocess Communication

Fall 2019

Jason Tang

�1

Slides based upon Operating System Concept slides,
http://codex.cs.yale.edu/avi/os-book/OS9/slide-dir/index.html
Copyright Silberschatz, Galvin, and Gagne, 2013

http://codex.cs.yale.edu/avi/os-book/OS9/slide-dir/index.html

Topics

• Shared Memory

• Message Passing

• Examples of IPC

�2

Interprocess Communication

• Processes may be independent of each other, or cooperating with each other

• Cooperating systems can be affected by other processes:

• Information sharing

• Modularity and speedup

• Convenience

• Cooperating processes need IPC: shared memory and/or message passing

�3

Communication Models

�4

Message Passing Shared Memory

Producer-Consumer

• Classic paradigm for cooperating processes:

• Producer (often only one process) pushes data to a buffer

• Consumer (often multiple processes) retrieves data from buffer

• Unbounded buffer: no practical limit on size of buffer

• Bounded buffer: fixed buffer size

�5

Example Bounded Buffer Code

• in holds the index to next free buffer element

• out holds the index to first used buffer element

• Buffer is empty when in == out, and is full when ((in + 1) %
BUFFER_SIZE) == out

�6

#define BUFFER_SIZE 10
typedef struct {
 …
} Item;
Item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

Producer and Consumer Code

• What is the usable
capacity of buffer?

• What issues are
there with this
code?

�7

while (true) {
 Item next_produced = foo();
 while (((in + 1) % BUFFER_SIZE) == out)
 ; /* wait for consumer */
 buffer[in] = next_produced;
 in = (in + 1) % BUFFER_SIZE;
}

while (true) {
 while (in == out)
 ; /* wait for producer*/
 Item next_consumed = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
 bar(next_consumed);
}

Producer

Consumer

Shared Memory

• Memory buffer(s) shared between cooperating processes and/or operating
system

• Can be used to share lots of data

• Synchronization is significant problem

• What if two producers write to same buffer location?

�8

Message Passing

• Send data from one entity (process or kernel) to another entity

• direct: one-to-one relationship

• broadcast: one-to-many (or maybe no listeners)

• Main operations are send(message) and receive(message)

• message is either fixed size or variable length

• Usually, message is somewhat short

�9

Message Passing Implementation

• To pass a message from process P to process Q, they need to:

• First establish a communications link

• Then exchange messages via send() / receive()

• Usually, links are unidirectional; bi-directional achieved using two links

• Usually, no built-in acknowledgement when message received

• Software needs to implement a message passing scheme that defines
message format, acknowledgement, error handling, etc

�10

Communications Links

• Physical:

• shared memory

• hardware bus

• network

• Logical:

• direct or indirect

• blocking or non-blocking

• automatic or explicit buffering

�11

Direct Communication

• Both sender and receiver must know each other’s identity

• send(Q, message): send message to process Q

• receive(P, message): receive message from process P

• OS establishes link automatically when message sent

• Address symmetry: both P and Q must name each other to communicate

• Disadvantage is lack of discovery

�12

Indirect Communication

• Messages are directed and received through a common intermediary, known
as mailboxes or ports

• Each mailbox has a unique ID

• send(A, message): send message to mailbox A

• receive(A, message): receive message from mailbox A

• New operations: create and destroy mailbox

• Address asymmetry: processes do not have to know each other, just
existence of mailbox A

�13

Mailbox Sharing

• May have multiple senders and receivers

• If P sends message, and Q and R receives, who gets message?

• Possible resolutions:

• Disallow multiple receivers

• Permit only one receive() operation at a time

• OS chooses who gets message (typically via round-robin)

• Allow peeking at message

�14

Message Synchronization

• Blocking send: sender blocked until message is received

• Blocking receive: receiver blocked until message is available

• Non-blocking send: sender sends message and continues, does not wait for
receiver

• Non-blocking receive: receiver gets an available message, or a special code
(often NULL) to indicate no messages available

• Sender and receiver do not have to choose same blocking/non-blocking
scheme

�15

Buffering

• Queue of messages attached to link

• Zero capacity: no queue at all; sender must wait for receiver (a so-called
rendezvous)

• Bounded capacity: maximum capacity of n

• If less than n messages in queue, a blocking sender will add to queue
and continue

• If n messages already in queue, a blocking sender blocks

• Unbounded capacity: infinite size; sender never blocks

�16

POSIX Signals

• Unidirectional, direct, non-blocking, buffered (n = 1) message from one
process to another

• Signal is an unsigned integer value

• Used for asynchronous notification

• A process does not normally wait for a signal to arrive

• When a process receives a signal, the OS forces a jump to a signal handler
to process the signal; when that handler returns, control resumes at prior
location (a so-called software interrupt)

�17

Examples of Signals

• If no signal handler is explicitly set, then instead jump to a default handler

�18

Signal
Name

Signal
Number Meaning Default Handler

SIGINT 2 Interrupt from
keyboard (Ctrl-C) Terminate process

SIGKILL 9 Kill signal Terminate process,
cannot be overridden

SIGSEGV 11 Invalid memory
reference

Terminate, and
generate core file

SIGCHLD 20,17,18 Child stopped or
terminated Ignored

Example of Signal Handling

�19

#define _POSIX_SOURCE
#include <signal.h>
#include <stdio.h>

static void my_fault_handler(int signum) {
 printf("Caught signal number %d\n", signum);
}

int main(void) {
 sigset_t mask;
 sigemptyset(&mask);
 struct sigaction sa = {
 .sa_handler = my_fault_handler,
 .sa_mask = mask,
 .sa_flags = 0
 };
 sigaction(SIGSEGV, &sa, NULL);
 raise(SIGSEGV);
 return 0;
}

Remote Procedure Calls

• Client-server design: one producer and multiple consumers

• Example: HTTP daemon and multiple web browsers

• One use of client-server is to implement RPC

• Client connects to server

• Client sends name of procedure to invoke, and its parameters

• Daemon does work

• Daemon sends back results

�20

RPC Implementation

• Stub: client-side proxy representing procedure

• When RPC invoked, stub locates server and marshals parameters

• Data reformatted to a common format, such as External Data
Representation (XDR): big-endian, 32-bit words, strings padded to 4 bytes

• RPC daemon unmarshalls data into its native format and performs work

• OS typically has mechanism to advertise RPC services (the matchmaker)

�21

Execution of RPC

�22

