Lecture 3: System Calls

Fall 2019
Jason Tang

Slides based upon Operating System Concept slides,
http://codex.cs.yale.edu/avi/os-book/OS9/slide-dir/index.html

Copyright Silberschatz, Galvin, and Gagne, 2013

http://codex.cs.yale.edu/avi/os-book/OS9/slide-dir/index.html

Topics

- System Calls

- Calling Conventions

+ Kernel Designs

Operating System Services

+ OS provides an environment to execute programs and provide services to
programs and users

 User interfaces: command line (CLlI), graphical (GUI), batch

« Program execution: loading program into memory, run program, end
execution (normally or abnormally)

- 1/O operations: handle filesystem, networking, interprocess communication

» Error detection: handle hardware failures, debugging

* Resource allocation, accounting, protection, security

Operating System Services

user and other system programs

GUI batch command line

user interfaces

system calls
program /0 file communication EslEe accounting
execution operations systems allocation
error pro;?glon
detection _ security
services

operating system

hardware

System Calls

- On modern operating systems, processes do not talk to hardware directly, but
must go through OS

- System Call: request from a process for OS to do some kind of work on its
behalf

- Application Programming Interface (API): interface provided by OS, usually in
a high-level language (C or C++), that is easier to work with than raw system
calls

« Win32 API for Windows, accessible through kernel32.dll

- POSIX for macOS, Linux, and other Unix-like, accessible through libc.so

—xample of System Calls

- Example: Sequence of system calls to copy contents of one file to another

Display dialog to choose source file
Display dialog to choose destination folder
Display progress dialog

Open source file for reading

OB BT g BY e =

Loop while more source bytes remaining:
1. Read n bytes from source file
2. Write n bytes to destination file
3. Update progress dialog

/. Close source file

8. Close destination file

9. Close progress dialog

10. Terminate normally

Open destination file for creating and writing

= 2 Minutes and 30 Seconds Remaining li_&J

Copying 2,228 items (712 MB) ‘

from Desktop (Desktop) to Local Disk (D:) (D:\)
About 2 minutes and 30 seconds remaining

¥ More information

| Stop

Typical System Call Implementation

Each system call has a unigue numeric identifier

« OS has a system call table that maps numbers to functionality requested

When invoking a system call, user places system call number and associated
parameters in an “agreed upon” location, then executes the trap instruction

OS retrieves system call number and parameters, then performs action

OS writes output data and return value to an “agreed upon” location, then
resumes user process

System Call Interface

user application

open ()
user
mode
system call interface
kernel
mode A
| open ()
: Implementation
i » of open ()
system call

return

—xamples of System Calls

* Process control: create process, terminate, load program, get process
attributes, wait for time, wait for event, allocate memory, obtain locks,
debugging support

- 1/O: create file, open file, read file, get file attributes

« Device management: request device, release device, read data

* Information maintenance: get system time, set system time

- Communications: send message, receive message, share data with another
process

* Protection: get permissions, allow access, deny access

Parameter Passing

« OS writer and user programs rely upon convention when choosing where to
store parameters and return values:

- Simplest: put all values in registers (hopefully there are enough!)

* Memory region: write to memory, then store starting memory address in a
register

- Push values onto stack; OS will pop values off the stack (based upon
stack register)

- Usually, hardware constraints dictate which system call convention used

10

Linux x86-64 System Call Convention

1. User-level applications use as integer registers for passing the sequence %rdi, %rsi, %rdx,
Jorcx, %or8 and %r9. The kernel interface uses %rdi, %rsi, %rdx, %r10, %r8 and %19.

2. A system-call is done via the syscall instruction. The kernel destroys registers %rcx and
Jor11.

3. The number of the syscall has to be passed in register %rax.
4. System-calls are limited to six arguments, no argument 1s passed directly on the stack.

5. Returning from the syscall, register %rax contains the result of the system-call. A value in
the range between -4095 and -1 indicates an error, it 1S -errno.

6. Only values of class INTEGER or class MEMORY are passed to the kernel.

https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI 11

Linux x86-64 System Call Numbers

#

64-bit system call numbers and entry vectors

i

The format is:

<number> <abi> <name> <entry point>

#

The x64 sys *() stubs are created on-the-fly for sys *() system calls
#

The abi is "common", "64" or "x32" for this file.
#

0 common read ~ x64 sys read

1 common write __X6b4 sys write

2~ common open __x64 sys open

3 common close ~_x64 sys close

4 common stat __x64 sys newstat

> common fstat __x64 sys newfstat

6 common lstat ~ _x64 sys newlstat

7 common poll ~ x64 sys poll

8 common lseek __x64 sys lseek

9 common mmap _ x64 sys mmap

https://elixir.bootlin.com/linux/latest/source/
arch/x86/entry/syscalls/syscall_64.tbl

12

Standard C Library Example

- Many standard C functions invoke underlying system calls

« Example: on Linux x86-64, printf () internally invokes write () (syscall
number 1)

#include <stdio.h>
int main ()

{

printf ("Greetings”); |-

return 0;

}

user
mode L

standard C library

kernel

mode
erite () >
system call

Operating System Designs

- Every OS has its purpose and internal design, though some designs are more
successful than others

- Early OSes written entirely in assembly language; modern ones are written in
C or C++

- Categories of OS design structures:

- simple - MS-DOS

 monolithic kernel - Unix

* microkernel - Mach

14

—xample: MS-DOS

15

Single-tasking, no protected-
mode, single memory space

Shell invoked when system
booted

Loads program into memory,
overwriting all but the kernel

Upon program exit, reload shell

free memory

free memory

command
interpreter

process

kernel

command
interpreter

(a)

At system startup

kernel

(b)

While running program

Simple Structure: MS-DOS

- Written to provide most functionality in least space
* Not divided into modules
- Interfaces and levels of functionality not well separated

‘ application program

resident system program

ROM BIOS device drivers

-

16

—xample: FreeBSD

« Unix-like, multitasking,
protected-mode

- Upon login, OS executes user’s
shell

« Shell executes fork () syscall
to create new process

 Child process executes
exec () syscall to load and

run program

17

process D

free memory

process C

Interpreter

process B

kernel

Monolithic Structure: Unix

- Kernel consists of everything between syscall interface and physical hardware

- Effectively a single process that handles everything

Kernel

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

signals terminal file system CPU scheduling
handling swapping block /O page replacement
character I/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

18

Layered Approach

* In practice, a monolithic kernel is divided into layers

- Layer O is hardware, layer 1 handles core functionality, layer n relies upon
layer n - 1

* Everything but outermost user layer runs in kernel space

layer N
user interface

layer 1

layer O
hardware

19

Microkernel Structure: Mach

- Microkernel handles memory allocation, process scheduling, and interprocess
communication

- Everything else moved into a user process

 Filesystem accesses, networking, user interfaces, ...

Application File Device user
Program System Driver mode
A A N A
messages .' E messages]
Interprocess izl cPU kernel
Communication managment scheduling mode
4 microkernel 1]
v v
hardware

20

Monolithic versus Microkernel

Speed

Memory

Monolithic

If one driver crashes,
entire kernel fails
WOrk

No extraneous context
switching, thus faster

Relatively modest Iin
memory usage

Microkernel

Kernel can restart system
processes as heeded

Must get entire kernel to Able to test just one part

without affecting rest

Slower due to message
passing

Memory footprint much
larger

21

Hybrid Kernels

- In practice, modern OSes are hybrid, influenced by both monolithic and
microkernel designs

 Linux is more monolithic, Windows and macOS are more microkernel

- Loadable kernel modules: bit of code that kernel can load (and usually
unload) while system is running, to extend functionality

- Examples: Linux kmod, Windows device driver, macOS extension

22

Linux Kernel Design

Linux kernel map
| functionalities human interface processing memory

ayore system

storage netwo

rking

- - kernel
RlICHE AR L B = e ., Momory acceas _ files & directories |~ sockets access
o aystem fils: " il sys_brk nwa
user cdev acd System Gzl Interface Syt tles st ::,.,. eys_viork €/6_TMaE shm_vm_ops o e sys_ooen sys scokeel
- | nuxisyscals h §ys_exacve sys chns i Pt reay sys_scoket
i / \\ ~ t fproc fsysts lcev -\ do_sigaction [sve srmel o 3y%_sencact yS_
space Ve I \ \\ : linusuaccess.h v ., | EYE ‘\" nfo sy5_shmat b -l': (il sps_accepl
fs " 3 € 6aIxXT ox_gen o
interfaces /1) B PR / £\ T TR e T frocnet
lnou!_ﬁps / L R] o . aya_fute | smeticio a;_m S \ = i s te=4_seq_show
[! ek ak eI S \ e
system calls consolé fops e limee ~
and syslem fies

feaviimem
. |mem_fops
\ | mmap_met

S

sy _wems

\ [O T p— , - W ntackoct

_rebool
bs.iok_mochte s =

_—

sys capsel| 1h, *“r‘
DE_Hokg

sys_msyne:
I A

=

 ineint g

virtual

inet_family_ors
M_nmh

.

ﬂ o
5“ l \ . inet_dgra™_ops

user pe-rlpherals

keyyba

- memary
electronics

AM WAR

disk controllers

5 P seq e e
1t zach t0q stow

snck_oet

protocol famlztll.l‘t

uni_amily_ops

“oto ops

SO .

network controllers

ATA Etherrat

http://www.makelinux.net/kernel_map/

23

