
Lecture 3: System Calls

Fall 2019

Jason Tang

�1

Slides based upon Operating System Concept slides,
http://codex.cs.yale.edu/avi/os-book/OS9/slide-dir/index.html
Copyright Silberschatz, Galvin, and Gagne, 2013

http://codex.cs.yale.edu/avi/os-book/OS9/slide-dir/index.html

Topics

• System Calls

• Calling Conventions

• Kernel Designs

�2

Operating System Services

• OS provides an environment to execute programs and provide services to
programs and users

• User interfaces: command line (CLI), graphical (GUI), batch

• Program execution: loading program into memory, run program, end
execution (normally or abnormally)

• I/O operations: handle filesystem, networking, interprocess communication

• Error detection: handle hardware failures, debugging

• Resource allocation, accounting, protection, security

�3

Operating System Services

�4

System Calls

• On modern operating systems, processes do not talk to hardware directly, but
must go through OS

• System Call: request from a process for OS to do some kind of work on its
behalf

• Application Programming Interface (API): interface provided by OS, usually in
a high-level language (C or C++), that is easier to work with than raw system
calls

• Win32 API for Windows, accessible through kernel32.dll

• POSIX for macOS, Linux, and other Unix-like, accessible through libc.so

�5

Example of System Calls

• Example: Sequence of system calls to copy contents of one file to another

�6

1. Display dialog to choose source file
2. Display dialog to choose destination folder
3. Display progress dialog
4. Open source file for reading
5. Open destination file for creating and writing
6. Loop while more source bytes remaining:

1. Read n bytes from source file
2. Write n bytes to destination file
3. Update progress dialog

7. Close source file
8. Close destination file
9. Close progress dialog
10.Terminate normally

Typical System Call Implementation

• Each system call has a unique numeric identifier

• OS has a system call table that maps numbers to functionality requested

• When invoking a system call, user places system call number and associated
parameters in an “agreed upon” location, then executes the trap instruction

• OS retrieves system call number and parameters, then performs action

• OS writes output data and return value to an “agreed upon” location, then
resumes user process

�7

System Call Interface

�8

Examples of System Calls

• Process control: create process, terminate, load program, get process
attributes, wait for time, wait for event, allocate memory, obtain locks,
debugging support

• I/O: create file, open file, read file, get file attributes

• Device management: request device, release device, read data

• Information maintenance: get system time, set system time

• Communications: send message, receive message, share data with another
process

• Protection: get permissions, allow access, deny access

�9

Parameter Passing

• OS writer and user programs rely upon convention when choosing where to
store parameters and return values:

• Simplest: put all values in registers (hopefully there are enough!)

• Memory region: write to memory, then store starting memory address in a
register

• Push values onto stack; OS will pop values off the stack (based upon
stack register)

• Usually, hardware constraints dictate which system call convention used

�10

Linux x86-64 System Call Convention

�11

1. User-level applications use as integer registers for passing the sequence %rdi, %rsi, %rdx,
%rcx, %r8 and %r9. The kernel interface uses %rdi, %rsi, %rdx, %r10, %r8 and %r9.  

2. A system-call is done via the syscall instruction. The kernel destroys registers %rcx and
%r11.  

3. The number of the syscall has to be passed in register %rax.  

4. System-calls are limited to six arguments, no argument is passed directly on the stack.  

5. Returning from the syscall, register %rax contains the result of the system-call. A value in
the range between -4095 and -1 indicates an error, it is -errno.  

6. Only values of class INTEGER or class MEMORY are passed to the kernel.

https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI

Linux x86-64 System Call Numbers

�12

64-bit system call numbers and entry vectors

The format is:
<number> <abi> <name> <entry point>

The __x64_sys_*() stubs are created on-the-fly for sys_*() system calls

The abi is "common", "64" or "x32" for this file.

0 common read __x64_sys_read
1 common write __x64_sys_write
2 common open __x64_sys_open
3 common close __x64_sys_close
4 common stat __x64_sys_newstat
5 common fstat __x64_sys_newfstat
6 common lstat __x64_sys_newlstat
7 common poll __x64_sys_poll
8 common lseek __x64_sys_lseek
9 common mmap __x64_sys_mmap

https://elixir.bootlin.com/linux/latest/source/
arch/x86/entry/syscalls/syscall_64.tbl

Standard C Library Example

• Many standard C functions invoke underlying system calls

• Example: on Linux x86-64, printf() internally invokes write() (syscall
number 1)

�13

Operating System Designs

• Every OS has its purpose and internal design, though some designs are more
successful than others

• Early OSes written entirely in assembly language; modern ones are written in
C or C++

• Categories of OS design structures:

• simple - MS-DOS

• monolithic kernel - Unix

• microkernel - Mach

�14

Example: MS-DOS

• Single-tasking, no protected-
mode, single memory space

• Shell invoked when system
booted

• Loads program into memory,
overwriting all but the kernel

• Upon program exit, reload shell

�15

At system startup While running program

Simple Structure: MS-DOS

• Written to provide most functionality in least space

• Not divided into modules

• Interfaces and levels of functionality not well separated

�16

Example: FreeBSD

• Unix-like, multitasking,
protected-mode

• Upon login, OS executes user’s
shell

• Shell executes fork() syscall
to create new process

• Child process executes
exec() syscall to load and
run program

�17

Monolithic Structure: Unix

• Kernel consists of everything between syscall interface and physical hardware

• Effectively a single process that handles everything

�18

Layered Approach

• In practice, a monolithic kernel is divided into layers

• Layer 0 is hardware, layer 1 handles core functionality, layer n relies upon
layer n - 1

• Everything but outermost user layer runs in kernel space

�19

Microkernel Structure: Mach

• Microkernel handles memory allocation, process scheduling, and interprocess
communication

• Everything else moved into a user process

• Filesystem accesses, networking, user interfaces, …

�20

Monolithic versus Microkernel

�21

Monolithic Microkernel

Reliability If one driver crashes,
entire kernel fails

Kernel can restart system
processes as needed

Ease of
Development

Must get entire kernel to
work

Able to test just one part
without affecting rest

Speed No extraneous context
switching, thus faster

Slower due to message
passing

Memory Relatively modest in
memory usage

Memory footprint much
larger

Hybrid Kernels

• In practice, modern OSes are hybrid, influenced by both monolithic and
microkernel designs

• Linux is more monolithic, Windows and macOS are more microkernel

• Loadable kernel modules: bit of code that kernel can load (and usually
unload) while system is running, to extend functionality

• Examples: Linux kmod, Windows device driver, macOS extension

�22

Linux Kernel Design

�23http://www.makelinux.net/kernel_map/

