
Lecture 6: Introduction to Python

Fall 2022

Jason Tang

 1

Topics

• How computers run code

• Anatomy of Python

• CMSC 104 coding standards

 2

• In the beginning, people “wrote” programs in machine code (i.e., binary)

• Error prone

• Not exactly fun

• Nobody does this anymore

• Machine code (obviously) only ran on specific machines

Machine Code

 3

01111100111000110001100111010110
01111101000001000010000111010110
01111100011001110100001000010100
01001110100000000000000000100000

Assembly

• As a shortcut, programmers created pneumonic “words” for common binary
patterns

• Computer assembled these words to binary code

• Still not fun, but better than nothing

• Still specific to particular machines

• Still in use today -- including by your friendly lecturer!

 4

MULLW R7,R3,R3
MULLW R8,R4,R4
ADD R3,R7,R8
BLR

First Computer Languages

• Fortran - scientific computing

• Oldest programming language still in use (1957)

• Lisp - based on lambda calculus

• Second oldest language still used today (1958)

• Modern languages are no longer tied to specific machines

 5

S1 = 3.0
S2 = 4.0
H2 = (S1 * S1) + (S2 * S2)

(defun sumsquare (s1 s2)
 (+ (* s1 s1) (* s2 s2)))

C Programming Language

• Derived from language “B”, 1972

• Fairly efficient, close to the machine

• Sometimes called “portable assembly”

• Language used to write Linux itself

• One of the most widely used computer language today

 6

int sumsquare(int s1, int s2) {
 return ((s1*s1) + (s2*s2));
}

Python

• Introduced in 1991 as a modern language

• Named after Monty Python’s Flying Circus

• Emphasizes code readability and reducing number of lines of code necessary
to express the same concepts as C

• Useful side-effect is that Python is a good first language for beginners

• Latest version is Python 3.10

• In this class, anything from Python 3.6 to newer is acceptable

 7
https://www.geeksforgeeks.org/history-of-python/;
https://www.python.org/community/logos/

Why Different Computer Languages?

• Just like human languages, different computer languages were designed to
meet different goals:

• Solve different kinds of problems

• Speed of execution

• Size (in bytes of memory)

• Ease of learning

• Ease of writing

 8

Compiled Languages

• In the end, computers are still machines that operate in binary

• Programmers use an editor, like emacs or nano, to create source files
containing computer code

• For some computer languages like C, programmers then use a compiler

• Compiler reads source files

• Compiler converts source code into usable machine code

• Find out more about machine code in CMSC 411

 9

Interpreted Languages

• Alternative is for programmers to write their code with a text editor

• Then the computer runs a special program called an interpreter that takes the
source code and dynamically turns it into execution for just that instance

 10

Compiled Versus Interpreted Languages

• Example of Compiled: Write a book in English, republish the text into Braille,
and then give the new text to a visually impaired reader

• Example of Interpreted: Write a book in English, and then read the book out
load to a visually impaired person

 11

Language
Type Pro Con Examples

Compiled Takes full advantage
of hardware

Harder to learn
and master

C, C++, Java,
Fortran

Interpreted Quicker to write and
prototype

Slower
execution

Python, PHP,
Perl, Lisp

Sample Python Program

• This is a valid, syntactically, and semantically correct Python program

• These lecture slides will have syntax highlighting to automatically colorize
parts of the code; the colors themselves are ignored by the compiler

• Simple text editors, like nano, do not perform syntax highlighting

• More advanced text editors, like emacs, add syntax highlighting and other
advanced functionality

 12

print("Hello, world!")

Actual File Contents

• While the above program is human readable text, internally the computer
transforms every character into a binary value via the ASCII encoding

• If the above text were saved to the file foo.py, the computer would store
exactly these bytes:

 13

print("Hello, world!")

0x70 0x72 0x69 0x6e 0x74 0x28 0x22 0x48
0x65 0x6c 0x6c 0x6f 0x2c 0x20 0x77 0x6f
0x72 0x6c 0x64 0x21 0x22 0x29 0x0a

Running Python Code

• Most common way to run Python code is via its interpreter

• On GL, that interpreter is at /usr/bin/python

• Execute the code like so:

• In Linux, /usr/bin is usually within your search path, so you can also run
the code like so:

• If you don’t have a Linux computer handy, you can also use the website
https://www.online-python.com to prototype some code

 14

$ /usr/bin/python foo.py

$ python foo.py

How Interpreters Really Work

• All interpreters read the source code file and then executes it

• Simple interpreters read one line at a time, analyzes the syntax, and then runs
just that line

• Newer interpreters read a line, then transforms it into an intermediate form
called byte code

• Complex lines are broken down into multiple, simpler byte code instructions

• Each byte code instruction roughly corresponds to an actual computer
hardware operation

• Byte code can be saved to disk, to speed up later program invocations

 15

Python Execution Summary

 16

you, the
programmer

foo.py

optionally
save to 
foo.pyc

loads code
into RAM

editor Python interpreter

syntax checker

subsequent 
 executions

Python 
Virtual Machine

foo
program
executes

if first 
execution

byte code loader

load from 
foo.pyc

Anatomy of a Python Program

• Save the above to a file named foo.py and then run the code

• These slides and many printed Python programs prefix code with line
numbers

• These line numbers merely identify lines of code; programmers do not
actually enter those lines

• Line 1 causes the computer to output (“print”) a line for the human

• All parts of this code are necessary: opening and closing parentheses, both
double quotation marks

 17

print("Hello, world!")1

Python Syntax Error

• Modify the code by adding a third double-quotation mark (indicated above in
pink)

• Now try to run the code 
 
 
 

• Mnemonic: for every opening double-quotation mark, there needs to be a
closing mark before the end of line (EOL)

 18

print("Hello, world!"")1

$ python foo.py
 File "/afs/umbc.edu/users/j/t/jtang/home/foo.py", line 1
 print("Hello, world!"")
 ^
SyntaxError: EOL while scanning string literal

Another Python Program

• Lines 1 through 3 is a program comment

• Comments are for the benefit of human reader; the interpreter ignores
them

• Line 4 uses the print routine to display something to the screen

 19

This is my second program

print("Will\nit\nblend?")

1
2
3
4

Comments

• Descriptive text to aid the reader to understand program contents

• Ignored by preprocessor (and therefore compiler and linker)

• Begins with # (“pound character”, “hashtag”, “octothorpe”) and continues to
end of line

• All of your homework and project submissions must have file header comments

• This comment must have your name and email address; when submitting a
project then also include your partner’s name and address

• Then write a short description of the program’s purpose

 20

print("Will\nit\nblend?")

• A single Python statement

• Calls pre-made Python algorithm (i.e., function) named print with a single
argument (i.e., input)

• That argument is the string Will\nit\nblend?

 21

"Will\nit\nblend?"

• Python strings are sequences of characters enclosed by either single-quotes
or double-quotes

• 'Will\nit\nblend?' and "Will\nit\nblend?" are equivalent

• Caution: ' is not the same as ‘; likewise " is not the same as “

• Backslash introduces an escape sequence

• \n represents a newline (as if hitting Enter key), \' is the literal single
quote

• So what does "Will\nit\nblend?" represent?

 22

Coding Style

• See course web site for Python programming standards and indentation
guidelines

• All homework submissions must conform to these standards, such as
including file header comments

• All assignments have a style grade

• Bad style will negatively impact your grade

• Note: comments and proper spacing are not required during exams

 23

