UMBC

AN HONORS UNIVERSITY IN MARYLAND

CMSC 461, Database Management Systems
Fall 2014

MySQL Views
& Comparing SQL to NoSQL

These slides are based on “Database System Concepts” book
and slides, 6™ ¢dton and the 2009/2012 CMSC 461 slides by Dr.
Kalpakis

Jennifer Sleeman http://www.csee.umbc.edu/~jsleem1/courses/461

Logistics

. Homework 1 is graded

. Phase 1 grading will begin this week

. Homework 2 is posted

. Phase 2 and data scripts will post soon

Lecture Outline

* Quick Introduction to Views
* NoSQL

Lecture Outline

e Quick Introduction to Views
* NoSQL

Views

. Relations stored in the database, logical model

level
. May not be desirable for all users to see the

entire logical model
. A 'view' of the relation with a subset of

information may be more appropriate

Views: A Scenario

. Consider a person who needs to know an instructor’s
name and department.

F o F e B e F o +

| ID | name | dept_name | salary |
Fommee F e F o Fem——— +

| 10101 | Srinivasan | Comp. Sci. | 68250.00 |
| 12121 | Wu | Finance | 94500.00 |

| 15151 | Mozart | Music | 42000.00 |

| 22222 | Einstein | Physics | 99750.00 |

| 32343 | El Said | History | 63000.00 |

| 33456 | Gold | Physics | 91350.00 |

| 45565 | Katz | Comp. Sci. | 78750.00 |
| 58583 | Califieri | History | 65100.00 |

| 76543 | Singh | Finance | 84000.00 |

| 76766 | Crick | Biology | 75600.00 |

| 83821 | Brandt | Comp. Sci. | 96600.00 |

| 98345 | Kim | Elec. Eng. | 84000.00 |
e — e —— e — T —— +

Views: A Scenario

. We don't necessarily want to share salary
. And possibly ID is not very useful

Fem——— +--- + —_——t-
| ID | name | dept_name

+e—— +--- + _—t
| 10101 | Srinivasan | Comp. S
| 12121 | Wu | Finance |

| 15151 | Mozart | Music |
| 22222 | Einstein | Physics

| 32343 | El Said | History |
| 33456 | Gold | Physics |
| 45565 | Katz | Comp. Sci.
| 58583 | Califieri | History |
| 76543 | Singh | Finance

| 76766 | Crick | Biology |
| 83821 | Brandt | Comp. Sci

| 98345 | Kim | Elec. Eng. |
+e—— +--- + —_—t-

Views: A Scenario

. Instead we may wish to provide this information only

F o Fommem +
| name | dept_name |
Fe————e F e +
| Srinivasan | Comp. Sci. |
| Wu | Finance |

Mozart	Music
Einstein	Physics
EI Said	History

Gold	Physics
Katz	Comp. Sci.
Califieri	History

| Singh | Finance |
| Crick | Biology |

| Brandt | Comp. Sci. |
| Kim | Elec. Eng. |
Fomm Femmm +

Views

. A view provides a mechanism to hide certain data from the
view of certain users

It also provides a way to create a personalized collection
of relations

. Any relation that is not of the conceptual model but is
made visible to a user as a “virtual relation” is called a
view.

. You can think of a view as a relation, select from it, join

upon it, some views allow deletes, inserts and updates

. There is no data contained in the view, the view data is

derived from other relations

View Definition

. A view is defined using the create view statement which
has the form

create view v as < query expression >

where v is the view name and
<query expression> is any legal SQL expression

. Once a view is defined, the view name can be used to

refer to the virtual relation that the view generates

. View definition is not the same as creating a new relation

by evaluating the query expression

- a view definition results in a saved expression which is
executed when the view is used

Examples of Views

. A view of instructors without their salary
create view faculty as

select ID, name, dept _name;

from instructor

. Find all instructors in the Biology department
select name

from faculty

where dept _name = ‘Biology’;

. Create a view of department salary totals
create view departments_total salary(dept name,
total salary)

as

select dept _name, sum (salary)

from instructor

group by dept_name,

Examples of Views

mysql> create view faculty as
select name, dept_name from instructor;
Query OK, 0 rows affected (0.16 sec)

mysql> select * from faculty;

Fom—— Fe———— e +
| name | dept_name |
F————— +e—————- +
| Srinivasan | Comp. Sci. |
| Wu | Finance |

| Mozart | Music |

| Einstein | Physics |

| EI Said | History |

| Gold | Physics |

| Katz | Comp. Sci. |
| Califieri | History |

| Singh | Finance |

| Crick | Biology |

| Brandt | Comp. Sci. |
| Kim | Elec. Eng. |
F e B el +
12 rows in set (0.00 sec)

More Examples of Views

mysql> select * from faculty natural join course;

Fomm e F e Fomm———m F o i +

| dept_name | name | course_id | title | credits |
Fomm e Fommeem Fomm——m Fomm e Fommee +

| Comp. Sci. | Srinivasan | CS-190 | Game Design | 4 |
| Comp. Sci. | Srinivasan | CS-315 | Robotics | 3|

| Comp. Sci. | Katz | CS-190 | Game Design | 4 |
| Comp. Sci. | Katz | CS-315 | Robotics | 3 |

| Biology | Crick | BIO-301 | Genetics | 4 |

| Comp. Sci. | Brandt | CS-190 | Game Design | 4 |
| Comp. Sci. | Brandt | CS-315 | Robotics | 3|
Fomm e Fommeem Fomm——m Fomm e Fommee +

7 rows in set (0.01 sec)

Views Defined Using Other Views

. One view may be used in the expression defining another
view

. Aview relation v, is said to depend directly on a view
relation v, if v, is used in the expression defining v,

. Aview relation v_ is said to depend on view relation v, if
either v, depends directly to v, or there is a path of
dependencies from v_ to v,

. A view relation v is said to be recursive if it depends on
itself

Views Defined Using Other Views

. create viewphysics fall 200 as

select course.course _id, sec id, building, room_number
. from course, section
. Where course.course_id = section.course id
and course.dept_name = 'Physics’
and section.semester = 'Fall’
and section.year = '2009’;

. create view physics_fall 2009 watson as

. select course_id, room_number
. from phyS|cs faII 2009

View Expansion

. A way to define the meaning of views defined in terms of

other views
. Letview v, be defined by an expression e, that may itself
contain uses of view relations

. View expansion of an expression repeats the following

replacement step:

. repeat

Find any view relation v. in e,
Replace the view v. by the expression defining v.
. until no more view relations are presentin e,

. As long as the view definitions are not recursive, this loop

will terminate

View Expansion

. If we take the previously defined view and expand it

create view physics _fall 2009 watson as
(select course_id, room _number
from (select course.course _id, building, room_number
from course, section
where course.course _id = section.course _id
and course.dept_name = 'Physics’
and section.semester = 'Fall’
and section.year ='2009’)
where building= "Watson’;

Materialized Views

. Materializing a view: create a physical table containing all
the tuples in the result of the query defining the view

. If relations used in the query are updated, the materialized
view result becomes out of date

. Need to maintain the view, by updating the view whenever
the underlying relations are updated.

Update of Views

. Can express updates, inserts and deletions using views
. Moadifications through views can be problematic

- Must be translated to the actual relations in the logical
model

Update of Views

. If we define the following views:
create view faculty as
select ID, name, dept _name;
from instructor
. then insert the following:
insert into faculty values ('30765°, 'Green’, ‘Music’);
. We must insert the tuple:
('30765°, 'Green’, ‘Music’, null)
. Into the instructor relation since we need to provide a
salary
. Or we have to reject the insert

Update of Views

. Another problem that occurs:

create view instructor _info as

select ID, name, building

from instructor, department

where instructor.dept _name= department.dept name;

. Then we insert the following:

insert into instructor _info values ((69987°, "White’, "Taylor’);

Instructor:

Department:
Fommmmoe +-———————— D e — Fomeem +
|Field | Type |Null|Key | A R PR
I A— bt |+F'eIQI |+Type |+Nu|| |+Key|+
ID |varchar(5) |[NO |PRI| ottt
| name | varchar(20) |[NO | | | dept_name | varchar(20) | NO | PRI |

| building | varchar(15) | YES | |
| budget | decimal(12,2) | YES | |
e F e e +ee— +

| dept_name | varchar(20) | YES | MUL |

| salary |decimal(8,2) | YES | |
B D F e +e—— +ee——- +

Update of Views

. How do we know which department?

. If multiple departments in Taylor which to choose?

. What if no department related to building Taylor?

. Most SQL implementations allow updates only on simple
views

. The from clause has only one database relation.

. The select clause contains only attribute names of the
relation, and does not have any expressions, aggregates,
or distinct specification.

. Any attribute not listed in the select clause can be set to
null

. The query does not have a group by or having clause.

Errors from MySQL

mysql> select * from faculty;

+ +- -+

| name | dept_name |

+ +- -+

| Srinivasan | Comp. Sci. | create view faculty as

| Wu | Finance | select name, dept_name from instructor

| Mozart | Music |

| Einstein | Physics |

| EI Said | History |

| Gold | Physics |

| Katz | Comp. Sci. |
| Califieri | History |

| Singh | Finance |

| Crick | Biology |

| Brandt | Comp. Sci. |
| Kim | Elec. Eng. |
+ +- -+
12 rows in set (0.00 sec)

mysql> insert into faculty values ("White', 'Math');

ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint fails
(‘university . instructor’, CONSTRAINT ‘instructor_ibfk_1" FOREIGN KEY
(‘dept_name’) REFERENCES ‘department’ (‘dept_ name™) ON DELETE SET NULL)

Errors from MySQL

mysql> create view instructor_info as
-> select ID, name, building
-> from instructor, department
-> where instructor.dept name=
department.dept _name;
Query OK, 0 rows affected (0.06 sec)

mysql> insert into instructor_info values ('69987', 'White',
'Taylor');ERROR 1394 (HY000): Can not insert into join
view 'university.instructor_info' without fields list

mysql> insert into instructor_info (ID,name,building) values
('69987', 'White', "Taylor");

ERROR 1393 (HY000): Can not modify more than one
base table through a join view 'university.instructor_info'

Update Views

Create view history_instructors as
select *
from instructor
where dept_name= "History’;

. What happens if we insert ('25566°, 'Brown’, 'Biology’,
100000) into history instructors?

Update Views

create view history _instructors as
select *
from instructor where dept_name= 'History’,

What happens if we insert ('25566’, 'Brown’, 'Biology’, 100000) into history instructors?

Instructor:

+ +- -+ + +

|ID |name |dept_name |salary | mysql> select * from history_instructors;
+ +- -+ + + e R e R +

| 10101 | Srinivasan | Comp. Sci. | 68250.00 | ID |name | dept_name | salary |
| 12121 | Wu | Finance | 94500.00 | -

| 15151 | Mozart | Music | 42000.00 | oo N +

| 22222 | Einstein | Physics | 99750.00 | | 32343 | El Said | History | 63000.00 |
| 25566 | Brown | Biology | 100000.00| | 58583 | Califieri | History |65100.00 |
| 32343 | El Said | History | 63000.00 | S — S S— S R— S T—— +

| 33456 | Gold | Physics | 91350.00 |

| 45565 | Katz | Comp. Sci. | 78750.00 |
| 58583 | Califieri | History | 65100.00 |

| 76543 | Singh | Finance | 84000.00 |

| 76766 | Crick | Biology | 75600.00 |

| 83821 | Brandt | Comp. Sci. | 96600.00 |
| 98345 | Kim | Elec. Eng. | 84000.00 |

+ +- -+ + +

Lecture Outline

* Quick Introduction to Views
* NoSQL

Why NoSQL?

. Scalability |
- Vertical i
m |low performance
m lots of work
m expensive I ” o SRR
— Horizontal e B EE B E B
m Auto-sharding 2] Scalo-out

Honzonmtal scalabildy

scalability

a2 labilily

teal
Scale-up
TR, .

Image credit: http://www.differencebetween.info/difference-between-nosql-and-sql-database

Why NoSQL?

e Flexibility
— System changes during developmental lifecycle
— Difficult with relational model
- Schema-free = rapid application development

' RDBMS No SQL

Rigid B Flexible
Looks at parts i Looks at whole
Relational ' Object-oriented
Structured | Semi-structured
' Mature ' VS Emerging
| Stable Scalable
Consistent Eventually Consistent

Image credit: https://www.tatvasoft.com/blog/why-nosql-is-required-when-rdbms-is-proven/

Why NoSQL?

e Performance
— Cross table queries, joining
— Doesn’t map into software objects well
— No cross queries/data implemented through objects

Why NoSQL? Performance?

MongoDB 2.6 vs PostgreSQL 9.4 Performance

| 25000
20000
15000
10000

5000

B MongoDB 2.6
M Postgres 9.4

25% less

2.2X

Faster 2.8X
L Faster
Data Load SELECT INSERT DB Size (MB)
(seconds) (seconds) (seconds)

Image credit: http://maurizioturatti.com/blog/2015/01/06/using-nosql-wrong-reason/

34.47 -

5.78

3.80
212

0.00

Select (sec)

Mongodb 3.2.0
Mongodb 3.2.0 MMAPv1
Mysqgl 5.7.8

PG 9.5b1 jsquery

PG 9.5b1 jpo

PG 9.5b1

A

Image credit: http://erthalion.info/2015/12/29/json-benchmarks/

http://maurizioturatti.com/blog/2015/01/06/using-nosql-wrong-reason/

3UT YOU SAID'IT

Vo
<WOULD/GENBETTER!

Comparing SQL and NoSQL

Model Type
Data

Schema
Scalability
Language
Joins

Support
Flexibility
Auto Elasticity
Transaction
Current State
Data structure

Examples

SQL

Relational

Small — Medium data sets
Static (Schema based)
Vertical

SQL to query data

Used for complex queries
Great Support

Rigid schema

Requires downtime

ACID

Mature

Structured e.g. Tables

Oracle, Microsoft SQL
Server, MySQL

Image Credit: https://www.udemy.com/nosql-databases-for-beginners/

NoSQL

Non -Relational

Large data sets
Dynamic(Schema less)
Horizontal

NoSQL — JSON to query
No joins

Community Support
Flexible

Automatic, No outage
CAP Theorem
Emerging
Semi-structured =JSON

MongoDB
Cassandra,HBase,CouchDB

NoSQL - The Landscape

S0 Databases | Non-S0L Databases
« Document DBs S R e —
. Key-Value - wE
o i 8
+ Graph E s [
. Big Table/Tabular T G ——
. Object i sl . =il
xgl %a) ? >
dE 2 SR AT
&
@000

http://www.differencebetween.info/difference-between-nosql-and-sqgl-database

NoSQL - The Landscape

Type

Key-Value
Store

Wide Column
Store

Document
Store

Graph Store

<:| Increasing Data Complexity

Image credit: https://www.udemy.com/nosql-databases-for-beginners/

NoSQL - MongoDB

« Document DBs

. MongoDB
— high performance i
— easily scalable

MNo-S0QL space

L3

¢ MongoDB

=cale & Speead

 RDBMS
® -
Features

Image credit: http://sqgl-vs-nosql.blogspot.com/2013/10/the-base-difference-between-sqgl-and.html

MongoDB - the basics

« Documents stored as documents (JSON-like)
— BSON (Binary representation) of JSON
» Follow similar structures as in programming languages

Example JSON Document

XML
<Hode> "id":10002,
<£id>10002<fid>
<Hame>john</Hame> "name":"john"

</Hode>

<Mode
£id>10003</id> "id": 10003,
<Hame>Scott</Hame> "name™:" Scott”

</Hode>
<Mode
<id>10004<id>
<Hame>Mohan< /Hams>
</Hode>
<Mode
<id>10001< id>
<Hames>Deepak «/Hames>
</Hode>

"id":10004,

"name" :"Mohan"

"id™: 10001,
"name":"Deepak™

Image credit: http://sqgllearnergroups.blogspot.com/2014/03/how-to-get-json-format-through-sql.html

MongoDB - A Collection

« A collection is a group of MongoDB documents
. Similar to a table in MySQL grouping of MongoDB
documents.

db.users.insert (<+—— collection

{
name: "sue", <«—— field: value q .
: ocumen
age: 26, <—— field: value
gtatus: "A" <+«—— field: value
3

)

Image credit: https://docs.mongodb.com

MongoDB - A Document

« A documentis a ‘record’ in a MongoDB collection
« There can be multiple documents in a collection
« And each document can contain different fields

db.users.insert (<+—— collection

{
name: "sue", <«—— field: value q .
age: 26, <+—— field: value QU
gtatus: "A" <+— field: value

3

)

Image credit: https://docs.mongodb.com

MongoDB - A Field

. A field is a name-value pair in a document
. Fields are similar to MySQL columns

db.users.insert (<+—— collection

{
name: "sue", <«—— field: value q
age: 26, <+—— field: value ordmens
status: “A" «— field: value

3

)

Image credit: https://docs.mongodb.com

MongoDB - Types

e Many of the types are similar to MySQL fype N
e However, there is support for more Double

String

advanced types (i.e. Javascript) Object
e Every type has a number that can be e
referenced: Undefined

Object id

Boolean

{ field: { S$type: <BSON type> } } Date

Null

Deprecated.

© 00 N o 0o b~ W DN -

— -
= O

Regular
Expression

JavaScript 13
Symbol 14 Deprecated.

JavaScript 15
(with scope)

32-bit integer 16

Timestamp 17

64-bit integer 18

Min key 255 Query with -1.
Max key 127

https://docs.mongodb.com

MongoDB - A Document

. And each document can contain different fields
 Including embedded sub-documents

i
i
_id: <0bjectldl=z,
username: “123xyz",
contact: { :
phane: "123-456-T7898", > edded 51
_email: "xyr@example.com" demumEt
¥ .
access: { .
level: 3, [, Embe
Eroup: “dev’ >
-I' i
t

Image credit: https://docs.mongodb.com

MongoDB - the basics

. Selecting a database to use:

use helloMongoDB

. Inserting a document into the database:
db.helloMyCollection.insert({ name: “Jenn” })

. Inserting multiple documents into the database:

db.helloMyCollection.insert([{ name: “Emmie” }

, {name: “Alex”}])

https://docs.mongodb.com

MongoDB - the basics

. Removing a document from the collection:

db.helloMyCollection.remove (name: “Jenn”)

. Remove all documents from collection:

db.helloMyCollection.remove ({})

« Drop collection:

db.helloMyCollection.drop ()

https://docs.mongodb.com

MongoDB - the basics
. Querying:

db.helloMyCollection.find()

« Querying with criteria:

db.helloMyCollection.find (Yname”:”jenn”)

https://docs.mongodb.com

MongoDB - the basics

« Querying with

‘ ’ RDBMS Equivalent Operation Syntax
where . .
Equality {<key>:<value>} where field = value
clauses
Less Than {<key>:{$lt:<valu where field < value
e>}}
Less Than Equals {<key>:{$lte:<val where field <=
ue>3}} value
Greater Than {<key>:{$gt:<valu where field > value
e>}}
Greater Than Equals {<key>:{$gte:<val where field >=
ue>3}} value
Not Equals {<key>:{$ne:<val where field != value
ue>}}

Table credit: https://www.tutorialspoint.com/mongodb/mongodb_query document.htm

Comparing MySQL and MongoDB

RDBMS MongoDB
Database Database
Table Collection
Tuple/Row Document
column Field
Table Join Embedded Documents
Primary Key Primary Key (Default key _id provided

by mongo db itself)

Image Credit: https://www.slideshare.net/EnochJoshua1/mongodb-for-beginners

Comparing MySQL and MongoDB

+ + +

| ID | name | dept_name | salary |

+ + + + +

| 10101 | Srinivasan | Comp. Sci. | 65000.00 |
| 12121 | Wu | Finance | 90000.00 |

| 15151 | Mozart | Music | 40000.00 |
| 32343 | El Said | History | 60000.00 |

+ + + FR— + +
45565 |Katz | Comp. Sci. | 75000.00 .
I58583{Ca|ifieri ||Histo$y |6|2000 00 | | | Field | Type | Null| Key | Default | Extra |
' + + PR — + +
| 76543 | Singh | Finance | 80000.00 |
183821 | Brandt | Comp. Sci. | 92000.00 | | 1D 'Va“’har:(f’)z' NONAPR' | NNUL'J'LLL o
| 98345 | Kim | Elec. Eng. | 80000.00 | |name | varchar(20) | | .

| dept_name | varchar(20) | YES | MUL | NULL | |

N S |salary |decimal(8,2) | YES | |NULL | |

_ _ + + + + + + +
| ID |course id | sec_id | semester | year |
|+1o1o1+|cs.1o1+ K +|FaII +| 2oo;| N ! oy ot
| 45565 | CS-101 | 1 | Spring | 2010 | LFleId |+Type |+NuII |+Key-|FDefauIt+| Extrri|
2921130 |1 1S 108w N0 PRI |
110101 | CS-315 | 1 | Spring | 2010 | | course_id | varchar(8) | NO | PRI| NULL | |
| 45565 | CS-319 | 1 | Spring | 2010 | | sec_id |varchar(8) |NO |PRI|NULL | |
183821 [CS-319 |2 |Spring | 2010 | | semester | varchar(6) | NO | PRI | NULL | |

| year | decimal(4,0) | NO |PRI|NULL | |

| 10101 | CS-347 |1 |Fall | 2009 | L N .} A N N
98345	EE-181	1	Spring	2009
12121	FIN-201	1	Spring	2010
32343	HIS-351	1	Spring	2010
15151	MU-199	1	Spring	2010

+ + + + + +

Comparing MySQL and MongoDB

Lecture Outline

* Quick Introduction to Views
* NoSQL

