
Lecture 5 Chapter 3 –
Introduction to SQL

Jennifer Sleeman

These slides are based on “Database System Concepts” book
and slides, 6th edition, and the 2009/2012 CMSC 461 slides by Dr.
Kalpakis

CMSC 461, Database Management Systems
Spring 2018

https://www.csee.umbc.edu/~jsleem1/courses/461/spr18

Logistics

● Phase 1 of project is due 2/15/2018

Lecture Outline

• Overview
• Data Definition Language
• Data Manipulation Language

Lecture Outline

• Overview
• Data Definition Language
• Data Manipulation Language

Overview

● SQL – most widely used
● Used to:

− Query database
− Define structure of the data
− Modify data in database
− Specify security constraints

History
● Original Version

− Called Sequel
− Developed by IBM
− Part of System R project in early 1970's

● Renamed Structured Query Language (SQL)
● ANSI and ISO standard SQL:

− SQL-86, SQL-89, SQL-92
− SQL:1999, SQL:2003, SQL:2008

● Commercial systems offer most, if not all,
SQL-92 features, plus varying feature sets from
later standards and special proprietary features.
− Not all examples here may work on your particular

system

SQL Language

● Data-definition language (DDL)
− Define relation schemas, delete relations, modify

relation schemas
● Data-manipulation language (DML)

− Query information, insert tuples, delete tuples,
modify tuples in database

● Integrity
● View Definition
● Transaction Control
● Embedded SQL and Dynamic SQL

− Embed in programming languages
● Authorization

Lecture Outline

• Overview
• Data Definition Language
• Data Manipulation Language

SQL Data Definition

● The SQL data-definition language (DDL)
allows the specification of information about
relations, including:
− Schema for each relation
− Types of values for attributes
− Integrity constraints
− Relation indices
− Security and Authorization
− Physical storage structure

Domain Types in SQL
● char(n) - Fixed length character string, with user-specified

length n.
● varchar(n) - Variable length character strings, with

user-specified maximum length n.
● int - Integer (a finite subset of the integers that is

machine-dependent).
● smallint - Small integer (a machine-dependent subset of the

integer domain type).
● numeric(p,d) - Fixed point number, with user-specified

precision of p digits, with n digits to the right of decimal point.
● real, double precision - Floating point and double-precision

floating point numbers, with machine-dependent precision.
● float(n) - Floating point number, with user-specified precision

of at least n digits.
● More covered in Chapter 4

Use your own computer for this
exercise

MySQL Exercise

Login to MySQL

MySQL Exercise

mysql -u <username> -p

MySQL Exercise

Create a database called
lecture5

MySQL Exercise

create database lecture5;

MySQL Exercise

Create a new user

MySQL Exercise

CREATE USER jenn IDENTIFIED BY
'jennspassword';

grant usage on *.* to jenn@localhost identified
by 'jennspassword';

grant all privileges on lecture5.* to
jenn@localhost;

MySQL Exercise

Login to MySQL as new user

MySQL Exercise

First: type exit
mysql -u jenn -p

MySQL Exercise

Connect to the database

MySQL Exercise

 use lecture5;

MySQL Exercise

Look at what tables are defined
in the lecture5 database

MySQL Exercise

show tables;

MySQL Exercise

Create a table called test_char

MySQL Exercise

create table test_char (capacity char(2));

MySQL Exercise

Look at the table you just
created

MySQL Exercise

describe test_char;

MySQL Exercise

Insert into the test_char table

MySQL Exercise

insert into test_char (capacity) values
(100);

MySQL Exercise

What happened?

MySQL Exercise

Errors and Defining sizes

create table test_char (capacity char(2));

insert into test_char (capacity) values (100);

ERROR 1406 (22001): Data too long for column
'capacity' at row 1

Let change the data type….

MySQL Exercise

Errors and Defining Sizes

create table test_varchar (capacity varchar(2));

Errors and Defining Sizes

insert into test_varchar (capacity) values (100);

Errors and Defining Sizes

drop table test_varchar;

create table test_varchar (capacity varchar(3));

insert into test_varchar (capacity) values (100);

Create Table Construct

SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),

...,
(integrity-constraintk))

r is the name of the relation
each Ai is an attribute name in the schema of relation r
Di is the data type of values in the domain of attribute Ai

Create Table Construct

Example:

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2));

How do you view the structure of
the table you created?

How do you view the structure of
the table you created?

describe instructor;

Integrity Constraints in Create
Table

Primary Key (Aj1, Aj2 ..., Ajm)
Required not null
Require unique

Foreign Key (Ak1, Ak2 ..., Akn) references r
 Not null

Specifies null not allowed

Integrity Constraints in Create
Table

Example:

Declares ID as the primary key for instructor, depart_name as the
foreign key and name as 'not null'.

create table instructor (
 ID char(5),
 name varchar(20) not null,
 dept_name varchar(20),
 salary numeric(8,2),
 primary key (ID),
 foreign key (dept_name) references department
(dept_name) on delete set null);

Examples

create table student (
 ID varchar(5),
 name varchar(20) not null,
 dept_name varchar(20),
 tot_cred numeric(3,0),
 primary key (ID),
 foreign key (dept_name)
 references department (dept_name)
on delete set null);

Examples
create table takes (
 ID varchar(5),
 course_id varchar(8),
 sec_id varchar(8),
 semester varchar(6),
 year numeric(4,0),
 grade varchar(2),
 primary key (ID, course_id, sec_id, semester, year),
 foreign key (ID) references student (ID) on delete set null,
 foreign key (course_id, sec_id, semester, year) references
section (course_id,sec_id, semester, year) on delete set null);

Examples

create table course (
 course_id varchar(8) primary key,
 title varchar(50),
 dept_name varchar(20),
 credits numeric(2,0),
 foreign key (dept_name) references
department (dept_name) on delete set null);

Primary key declaration can be combined with
attribute declaration as shown above

Can I do this?

create table course (
 course_id varchar(8),
 title varchar(50),
 dept_name varchar(20) primary key,
 credits numeric(2,0),
 foreign key (dept_name) references
department (dept_name) on delete set null);

Can I do this?

create table course (
 course_id varchar(8),
 title varchar(50),
 dept_name varchar(20) primary key,
 credits numeric(2,0),
 foreign key (dept_name) references
department (dept_name) on delete set null);

ERROR 1215 (HY000): Cannot
add foreign key constraint

Can I do this?

create table course2 (
 course_id varchar(8) primary key,
 title varchar(50) primary key,
 dept_name varchar(20),
 credits numeric(2,0),
 foreign key (dept_name) references
(dept_name) on delete set null);

Can I do this?

create table course2 (
 course_id varchar(8) primary key,
 title varchar(50) primary key,
 dept_name varchar(20),
 credits numeric(2,0),
 foreign key (dept_name) references
department (dept_name) on delete set null);

ERROR 1068 (42000): Multiple primary key defined

Can I do this?
create table course (
 course_id varchar(8) primary key,
 title varchar(50),
 dept_name varchar(20),
 credits numeric(2,0),
 foreign key (dept_name) references
department (dept_name) on delete set null);
insert into course (course_id, title, dept_name, credits) values ("BIO-101", "Intro to
Bio", "Biology", 4);
insert into course (course_id, title, dept_name, credits) values ("BIO-101", "Intro to
Bio", "Biology", 3);

Can I do this?
create table course (
 course_id varchar(8) primary key,
 title varchar(50),
 dept_name varchar(20),
 credits numeric(2,0),
 foreign key (dept_name) references
department (dept_name) on delete set null);

mysql> insert into course (course_id, title, dept_name, credits) values
("BIO-101", "Intro to Bio", "Biology", 4);
Query OK, 1 row affected (0.01 sec)

mysql> insert into course (course_id, title, dept_name, credits) values
("BIO-101", "Intro to Bio", "Biology", 3);
ERROR 1062 (23000): Duplicate entry 'BIO-101' for key 'PRIMARY'

Insert Construct

Newly created relation empty
Use insert command to add tuples

 create table instructor (
 ID char(5),
 name varchar(20) not null,
 dept_name varchar(20),
 salary numeric(8,2));

Insert Construct

insert into instructor (ID,name,dept_name,salary) values
(‘10211’, ’Smith’, ’Biology’, 66000);

insert into instructor (ID,name,dept_name,salary)
values (‘10211’, null, ’Biology’, 66000);

Drop and Delete Construct

drop table student
− Deletes the all tuples and the schema
− Table must be recreated in order to insert tuples

after a drop command

delete from student
− Deletes all tuples, but retains the relation

Alter Table Construct

alter table
− alter table r add A D

● where A is the name of the attribute to be added
to relation r and D is the domain of A.

● All tuples in the relation are assigned null as the
value for the new attribute.

− alter table r drop A
● where A is the name of an attribute of relation r
● Dropping of attributes not supported by SOME

databases (most support it)

MySQL Alter Syntax
alter_specification: table_options
 | ADD [COLUMN] col_name column_definition
 [FIRST | AFTER col_name]
 | ADD [COLUMN] (col_name column_definition,...)
 | ADD {INDEX|KEY} [index_name]
 [index_type] (index_col_name,...) [index_option] ...
 | ADD [CONSTRAINT [symbol]] PRIMARY KEY
 [index_type] (index_col_name,...) [index_option] ...
 | ADD [CONSTRAINT [symbol]]
 UNIQUE [INDEX|KEY] [index_name]
 [index_type] (index_col_name,...) [index_option] ...
 | ADD FULLTEXT [INDEX|KEY] [index_name]
 (index_col_name,...) [index_option] ...
 | ADD SPATIAL [INDEX|KEY] [index_name]
 (index_col_name,...) [index_option] ...
 | ADD [CONSTRAINT [symbol]]
 FOREIGN KEY [index_name] (index_col_name,...)
 reference_definition

MySQL Alter Syntax
 | ALTER [COLUMN] col_name {SET DEFAULT literal | DROP
DEFAULT}
 | CHANGE [COLUMN] old_col_name new_col_name column_definition
 [FIRST|AFTER col_name]
 | MODIFY [COLUMN] col_name column_definition
 [FIRST | AFTER col_name]
 | DROP [COLUMN] col_name
 | DROP PRIMARY KEY
 | DROP {INDEX|KEY} index_name
 | DROP FOREIGN KEY fk_symbol
 | DISABLE KEYS
 | ENABLE KEYS
 | RENAME [TO|AS] new_tbl_name
 | ORDER BY col_name [, col_name] ...

MySQL Alter Syntax
 | CONVERT TO CHARACTER SET charset_name [COLLATE
collation_name]
 | [DEFAULT] CHARACTER SET [=] charset_name [COLLATE [=]
collation_name]
 | DISCARD TABLESPACE
 | IMPORT TABLESPACE
 | ADD PARTITION (partition_definition)
 | DROP PARTITION partition_names
 | COALESCE PARTITION number
 | REORGANIZE PARTITION [partition_names INTO
(partition_definitions)]
 | ANALYZE PARTITION {partition_names | ALL}
 | CHECK PARTITION {partition_names | ALL}
 | OPTIMIZE PARTITION {partition_names | ALL}
 | REBUILD PARTITION {partition_names | ALL}
 | REPAIR PARTITION {partition_names | ALL}
 | PARTITION BY partitioning_expression
 | REMOVE PARTITIONING

Lecture Outline

• Overview
• Data Definition Language
• Data Manipulation Language

Basic Query Structure
The SQL data-manipulation language (DML) provides the
ability to query information, and insert, delete and update
tuples
A typical SQL query has the form:

select A1, A2, ..., An
from r1, r2, ..., rm
where P

An represents an attribute
rm represents a relation
P is a predicate
The result of a SQL query is a relation

The select Clause
● The select clause list the attributes

desired in the result of a query
− Corresponds to the projection operation of the

relational algebra
− Example - Find the names of all instructors:

select name
from instructor

● NOTE: SQL names are case insensitive (i.e., you may
use upper- or lower-case letters.)
− E.g. Name ≡ NAME ≡ name
− Some people use upper case wherever we use bold

font.

The select Clause
● SQL allows duplicates in relations as well

as in query results.
− To force the elimination of duplicates, insert the

keyword distinct after select.

Find the names of all departments with instructor, and
remove duplicates:

select distinct dept_name
from instructor

The select Clause
● The keyword all specifies that duplicates not be

removed
− Not necessary since the default is to allow

duplicates

select all dept_name
from instructor

The select Clause
● An asterisk in the select clause denotes “all attributes”

Select *
from instructor

● The select clause can contain arithmetic expressions
involving the operation, +, –, *, and /, and operating on
constants or attributes of tuples.

The query:
 select ID, name, salary/12

 from instructor
would return a relation that is the same as the instructor
relation, except that the value of the attribute salary is
divided by 12..

The select Clause - Examples
select *
from instructor

+-------+------------+------------+----------+
| ID | name | dept_name | salary |
+-------+------------+------------+----------+
10101	Srinivasan	Comp. Sci.	65000.00
12121	Wu	NULL	90000.00
15151	Mozart	Music	40000.00
22222	Einstein	Physics	95000.00
32343	El Said	History	60000.00
33456	Gold	Physics	87000.00
45565	Katz	Comp. Sci.	75000.00
58583	Califieri	History	62000.00
76543	Singh	NULL	80000.00
76766	Crick	Biology	72000.00
83821	Brandt	Comp. Sci.	92000.00
98345	Kim	Elec. Eng.	80000.00
+-------+------------+------------+----------+

The select Clause - Examples
select name
from instructor

+------------+
| name |
+------------+
| Srinivasan |
| Wu |
| Mozart |
| Einstein |
| El Said |
| Gold |
| Katz |
| Califieri |
| Singh |
| Crick |
| Brandt |
| Kim |
+------------+

The select Clause - Examples
select name, salary
from instructor +------------+----------+

| name | salary |
+------------+----------+
Srinivasan	65000.00
Wu	90000.00
Mozart	40000.00
Einstein	95000.00
El Said	60000.00
Gold	87000.00
Katz	75000.00
Califieri	62000.00
Singh	80000.00
Crick	72000.00
Brandt	92000.00
Kim	80000.00
+------------+----------+

The select Clause - Examples
select distinct(salary)
from instructor +----------+

| salary |
+----------+
| 65000.00 |
| 90000.00 |
| 40000.00 |
| 95000.00 |
| 60000.00 |
| 87000.00 |
| 75000.00 |
| 62000.00 |
| 80000.00 |
| 72000.00 |
| 92000.00 |
+----------+

The where Clause
● The where clause specifies conditions that the result

must satisfy
− Corresponds to the selection predicate of the

relational algebra.
● Comparison results can be combined using the logical

connectives and, or, and not.
● Comparisons can be applied to results of arithmetic

expressions

The where Clause
To find all instructors in Comp. Sci. dept with salary >
80000

select name
from instructor
where dept_name = ‘Comp. Sci.' and salary > 80000

Query Multiple Relations
● Accessing information across relations

− List in the from clause each relation to access
− Specify matching condition using the where clause
− Matching attribute occurs in both relations

To find all instructors in Comp. Sci. dept with salary > 80000

select name, instructor.dept_name, building
from instructor, department
where instructor.dept_name = department.dept_name;

The from Clause
● The from clause lists the relations involved in the

query
− Corresponds to the Cartesian product operation of

the relational algebra.

Find the Cartesian product instructor X teaches
select *
from instructor, teaches

− generates every possible instructor – teaches pair,
with all attributes from both relations

● Cartesian product not very useful directly, but useful
combined with where-clause condition (selection
operation in relational algebra)

Cartesian Product instructors x
teaches

The from Clause
● Think of from clause with multiple relations

as iterative process
− For each tuple t1 in relation r1

● For each tuple t2 in relation r2
− ….

● Resulting relation has all attributes from all relations in
from clause

● Use prefixes if attribute names are the same across
relations in from clause

SQL Query
1. Generate Cartesian product from relations in from
clause
2. Apply predicates from where clause
3. For each tuple, output attributes from select clause
4. Implementations differ for efficiency

Joins
● For all instructors who have taught some course, find

their names and the course ID of the courses they
taught.

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID

Joins
● Find the course ID, semester, year and title of each

course offered by the Comp. Sci. department

select section.course_id, semester, year, title
from section, course
where section.course_id = course.course_id and
dept_name = ‘Comp. Sci.'

Natural Join
● Natural join operates on two relations and

produces a result relation
● Natural join matches tuples with the same

values for all common attributes, and
retains only one copy of each common
column

Natural Join
So instead of writing:

Select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID;

We can write:

Select name, course_id
from instructor natural join teaches;

Natural Join
Select name, course_id
from instructor natural join teaches;

Natural Join
● The from clause can have a combination

of relations using natural join

select A1, A2, ..., An
from r1 natural join r2 natural join …
natural join rm
where P;

● Even more generally, a from clause can
be in the form of from E1,E2 ... En

Natural Join
Let's compare:

select name, title
from instructor natural join teaches,course
where teaches.course_id = course.course_id;

select name, title
from instructor natural join teaches natural join course;

Comparing Natural Joins
+-------+------------+------------+----------+
| ID | name | dept_name | salary |
+-------+------------+------------+----------+
10101	Srinivasan	Comp. Sci.	65000.00
12121	Wu	Finance	90000.00
15151	Mozart	Music	40000.00
22222	Einstein	Physics	95000.00
32343	El Said	History	60000.00
33456	Gold	Physics	87000.00
45565	Katz	Comp. Sci.	75000.00
58583	Califieri	History	62000.00
76543	Singh	Finance	80000.00
76766	Crick	Biology	72000.00
83821	Brandt	Comp. Sci.	92000.00
98345	Kim	Elec. Eng.	80000.00
+-------+------------+------------+----------+

+-------+-----------+--------+----------+------+
| ID | course_id | sec_id | semester | year |
+-------+-----------+--------+----------+------+
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
10101	CS-101	1	Fall	2009
45565	CS-101	1	Spring	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
10101	CS-315	1	Spring	2010
45565	CS-319	1	Spring	2010
98345	CS-319	2	Spring	2010
10101	CS-347	1	Fall	2009
98345	EE-181	1	Spring	2009
12121	FIN-201	1	Spring	2010
32343	HIS-351	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
+-------+-----------+--------+----------+------+

+-----------+----------------------------+------------+---------+
| course_id | title | dept_name | credits |
+-----------+----------------------------+------------+---------+
BIO-101	Intro. to Biology	Biology	4
BIO-301	Genetics	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3
CS-319	Image Processing	Comp. Sci.	3
CS-347	Database System Concepts	Comp. Sci.	3
EE-181	Intro. to Digital Systems	Elec. Eng.	3
FIN-201	Investment Banking	Finance	3
HIS-351	World History	History	3
MU-199	Music Video Production	Music	3
PHY-101	Physical Principles	Physics	4
+-----------+----------------------------+------------+---------+

Instructor

Teache
s

Course

Comparing Natural Joins

+------------+----------------------------+
| name | title |
+------------+----------------------------+
Srinivasan	Intro. to Computer Science
Srinivasan	Robotics
Srinivasan	Database System Concepts
Wu	Investment Banking
Mozart	Music Video Production
Einstein	Physical Principles
El Said	World History
Katz	Intro. to Computer Science
Katz	Image Processing
Crick	Intro. to Biology
Crick	Genetics
Brandt	Game Design
Brandt	Game Design
Kim	Image Processing
Kim	Intro. to Digital Systems
+------------+----------------------------+
15 rows in set (0.00 sec)

+------------+----------------------------+
| name | title |
+------------+----------------------------+
Srinivasan	Intro. to Computer Science
Srinivasan	Robotics
Srinivasan	Database System Concepts
Wu	Investment Banking
Mozart	Music Video Production
Einstein	Physical Principles
El Said	World History
Katz	Intro. to Computer Science
Katz	Image Processing
Crick	Intro. to Biology
Crick	Genetics
Brandt	Game Design
Brandt	Game Design
Kim	Intro. to Digital Systems
+------------+----------------------------+
14 rows in set (0.00 sec)

● select name, title from instructor natural join teaches,course
● where teaches.course_id = course.course_id;

● select name, title
● from instructor natural join teaches natural join course;

Lecture Outline

• Overview
• Data Definition Language
• Data Manipulation Language

In Class Exercise
create a table called department_L5
with attributes: department name, building, budget

create a primary key

create a table called course_L5
with attributes: course id, title, department name, credits

create a primary key
reference the department table

create a table called instructor_L5
with attributes: name, department name, salary

create a primary key
reference the department table

In Class Exercise
 Add 3 departments:

 Department Biology is in the Watson building and has a 90000 budget.
 Department Computer Science is in the Taylor building and has a budge of 100000.
 Department Electrical Engineering is in the Taylor building and has a budget of 85000.

 Add 5 instructors:

 Dr. Katz works in Computer Science and earns a salary of 75000
 Dr. Brandt works in Computer Science and earns a salary of 92000
 Dr. Kim works in Electrical Engineering and earns a salary of 80000
 Dr. Crick works in Biology and earns a salary of 72000
 Dr. Wu works in Finance and earns a salary of 90000

What happened? How do you fix this problem?

 Add 6 courses:

Course BIO-101 is the Introduction to Biology offered in the Biology department and worth 4 credits.
Course BIO-399 is the Computational Biology offered in the Biology department and worth 3 credits.
Course CS-190 is the Game Design offered in the Computer Science department and worth 4 credits.
Course CS-315 is the Robotics offered in the Computer Science department and worth 3 credits.
Course FIN-201 is the Investment Banking offered in the Finance department and worth 3 credits.
Course HIS-351 is the World History offered in the History department and worth 3 credits.

In Class Exercise
 Add 2 additional departments to fix the insert problem:

 Department History is in the Painter building and has a 50000 budget
 Department Finance is in the Painter building and has a budge of 120000 budget

In Class Exercise
Create the following queries:

1. Select instructors with a salary greater than 75000
2. For each instructor select all the courses they could teach based
on their department using Cartesian product and a where clause
3. For each instructor select all the courses they could teach based
on their department using natural join
4. Select instructors working in the Taylor building
5. Select instructor names who could teach 4 credit courses in the
Computer Science department
6. Select instructors who could teach Robotics course or the World
History course
7. Delete the Finance department from the Department table, what
happens?
8. Drop table Department, what happens?

