
CMSC 461, Database Management Systems
Spring 2018

Chapter 6 – Formal Relational 
Query Languages

Jennifer Sleeman https://www.csee.umbc.edu/~jsleem1/courses/461/spr18

These slides are based on “Database System Concepts” book 
and slides, 6th edition, and the 2009/2012 CMSC 461 slides by Dr. 
Kalpakis



Logistics

● Homework 1 due Wednesday 2/7/2018
● Dr. Sleeman out on Wednesday

− Class will still meet, guest lecturer
● Project is posted, we will review today
● Phase 1 of project is due 2/14/2018



Lecture Outline

• Intro to Relational Algebra
• Fundamental Operations
• Additional Operations
• Summary
• In Class Exercise



Lecture Outline

• Intro to Relational Algebra
• Fundamental Operations
• Additional Operations 
• Summary
• In Class Exercise



Relational Algebra

● A procedural query language based on the 
mathematical theory of sets that is the 
foundation of commercial DBMS query 
languages

● The operations typically take one or two 
relations as inputs and give a new relation as a 
result

● Can build expressions using multiple relational  
operations



Relational Algebra

● What is the difference between a 
procedural language and a 
non-procedural language?



Relational Algebra

● Procedural languages tell you how to 
process a query (a sequence of steps 
provide the how)

● Non-Procedural or declarative 
languages tell you what to process 
but not how to process



Relational Algebra

● Six basic operators
− select: σ
− project: ∏
− union: ∪
− set difference: – 
− Cartesian product: x
− rename: ρ



Lecture Outline

• Intro to Relational Algebra
• Fundamental Operations
• Additional Operations 
• Summary
• In Class Exercise



Select Operation

σp(r) = {t | t ∈ r and p(t)}
 

Where p is the selection predicate, a formula in 
propositional calculus consisting of terms connected by 
logical operators ∧ (and), ∨ (or), ¬ (not)
Each term is one of: 

<attribute> op <attribute> 
<attribute> op <constant>  
where op is one of:  =  ≠  >  ≥  <  ≤
 

 



Select Operation
 
Instructor.dept_name = Department.dept_name (Simple pred)
Instructor.dept_name='Finance' (Simple pred)
Instructor.dept_name = Department.dept_name or Instructor.Name 
= 'Wu' (Boolean Combination pred)
Instructor.dept_name = Department.dept_name and 
Instructor.Name = 'Wu' (Boolean Combination pred)
Not Instructor.Name = 'Wu' (Boolean Combination pred)
 



Select Operation



Select Operation



Example Select Operation

σ dept_name=“Physics”(instructor)



Project Operation
∏

A1, A2, …, Ak (r)
Where A1, A2 are attribute names and r is a relation name.
The result is defined as the relation of k columns obtained by dropping the 
columns that are not listed
Duplicate rows removed from result, since relations are sets



Example Project Operation
 

To eliminate the dept_name attribute of instructor

          ∏ID, name, salary (instructor) 



Union Operation

r  ∪ s = {t | t ∈ r or t ∈ s}
For r ∪ s to be valid, these relations have to be union compatible.

− r and s must have the same arity (same number of attributes)
− the domains of the corresponding attributes must be compatible 

(example: 2nd column  of r deals with the same type of values as does 
the 2nd column of s)



Example Union Operation

To find all courses taught in the Fall 2009 
semester, or in the Spring 2010 semester, or in 
both

   ∏course_id (σ semester=“Fall”  Λ year=2009 (section))  ∪  
   ∏course_id (σ semester=“Spring”  Λ year=2010 (section))



Set Difference Operation

 r – s  = {t | t ∈ r and t ∉ s}

Set difference must be taken between compatible relations.
− r and s must have the same arity
− Attribute domains of r and s must be compatible



Example Set Difference Operation

To find all courses taught in the Fall 2009 
semester, but not in the Spring 2010 
semester
   ∏course_id (σ semester=“Fall”  Λ year=2009 (section))  
−  
   ∏course_id (σ semester=“Spring”  Λ year=2010 (section))



Cartesian-Product Operation

r x s = {t q | t ∈ r and q ∈ s}
Assume that attributes of r and s are disjoint.  If attributes of r 
and s are not disjoint, then renaming must be used.



Example Cartesian-Product 
Operation

 
To find the names of all instructors in the Physics department 
together with the course_id of all courses they taught:

∏name,course_id (σ instructor.ID=teaches.ID(σ depart_name = 

“Physics” (instructor x teaches)))
 
For r = instructor x teaches:
(instructor.ID, name, dept_name, salary
teaches.ID, course_id, sec_id, semester, year)



Composition of Operations

Can build expressions using multiple operations
Relational-algebra expression – composition of 
relational-algebra operations
Example:  σA=C(r x s)

σA=C(r x s)

r x s



Rename Operation

ρ x (E)
Returns the expression E under the name X
If a relational-algebra expression E has arity n, 
then 
                                          
 
returns the result of expression E under the name 

X, and with the
attributes renamed to A1 , A2 , …., An .
 



Rename Operation

● Allows us to name, and therefore to refer to, the 
results of relational-algebra expressions.

● Allows us to refer to a relation by more than one 
name.



Example Rename Operation

σ instructor.salary < d.salary (instructor X ρ d (instructor))
 
Using the rename operation to rename a 
reference to the instructor table so the relation can 
be referenced twice without ambiguity 
                                          
 



Example 2 Rename Operation

 ρ 

d(InstructorID,InstructorName,InstructorDepartName,InstructorS

alary) (instructor)
 
 Using the rename operation to rename attributes  
                                          
 



Alternative – Positional Notation

Name attributes of relation implicitly 
− $1 – first attribute, $2 – second attribute …

Also applies to results of relational-algebra 
operations
 



Alternative – Positional Notation

What is the output? ∏$4 (σ $4 < $8 (instructor X instructor))



Example Queries
Find the largest salary in the university

− Step 1: find instructor salaries that are less than some other instructor 
salary (i.e. not maximum)

− using a copy of instructor under a new name d
∏instructor.salary (σ instructor.salary < d,salary  

                                      (instructor x ρd (instructor)))  

− Step 2: Find the largest salary
∏salary (instructor) – 
   ∏instructor.salary (σ instructor.salary < d,salary  

                                       (instructor x ρd (instructor))) 



Example Queries
Find the names of all instructors in the 
Physics department, along with the 
course_id of all courses they have taught

 ∏instructor.ID,course_id (σdept_name=“Physics” (
                   σ instructor.ID=teaches.ID (instructor x teaches)))

 

∏instructor.ID,course_id (σinstructor.ID=teaches.ID (
                   σ dept_name=“Physics” (instructor) x teaches))

 



Experimenting with Relational 
Algebra - Relational

http://ltworf.github.io/relational/
On Github https://github.com/ltworf/relational/
 
Query := Query BinaryOp Query
Query := (Query)
Query := σ PYExprWithoutParenthesis (Query) | σ (PYExpr) 
(Query)
Query := π FieldList (Query)
Query := ρ RenameList (Query)
FieldList := Ident | Ident , FieldList
RenameList := Ident ➡ Ident | Ident ➡ Ident , RenameList
BinaryOp := * | - | � | � | ÷ | �� | �LEFT� | �RIGHT� | �FULL�
 

http://ltworf.github.io/relational/
https://github.com/ltworf/relational/


Relational – Creating a relation



Adding tuples - Relational



Select Operation - Relational



Project Operation - Relational



Cartesian Product - Relational



Cartesian Product - Relational



Relational Algebra Expressions - 
Relational



Relational Algebra Expressions - 
Relational



Lecture Outline

• Intro to Relational Algebra
• Fundamental Operations
• Additional Operations
• Summary
• In Class Exercise



Additional Operations

● We define additional operations that do not add 
any expressive power to the relational algebra, 
but that simplify common queries.
− Set intersection
− Natural join
− Division
− Assignment

 
 


