
Lecture 22 – Concurrency
Control Part 2

These slides are based on “Database System Concepts” 6th
edition book (whereas some quotes and figures are used from the
book) and are a modified version of the slides which accompany
the book (http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html),
in addition to the 2009/2012 CMSC 461 slides by Dr. Kalpakis

CMSC 461, Database Management Systems
Spring 2018

Dr. Jennifer Sleeman https://www.csee.umbc.edu/~jsleem1/courses/461/spr18

Logistics

● Phase 4 due 4/30/2018
● Homework 6 due 5/2/2018
● Final Project Plan 5/14/2018

Reminder: Presentation Slots

Concurrency Control

Why do we need it?

Based on and image from “Database System Concepts” book and slides, 6th edition

3

Lock-Based Protocols

● A lock is a mechanism to control concurrent
access to a data item

● Data items can be locked in two modes :
○ exclusive (X) mode. Data item can be both read as well

as written. X-lock is requested using lock-X instruction.
○ shared (S) mode. Data item can only be read. S-lock is

requested using lock-S instruction.
● Lock requests are made to

concurrency-control manager. Transaction
can proceed only after request is granted.

Based on and image from “Database System Concepts” book and slides, 6th edition

4

Lock-Based Protocols

Lock-compatibility matrix

● A transaction may be granted a lock on an
item if the requested lock is compatible with
locks already held on the item by other
transactions

Based on and image from “Database System Concepts” book and slides, 6th edition

5

Lock-Based Protocols

● Any number of transactions can hold shared
locks on an item,
− but if any transaction holds an exclusive on the

item no other transaction may hold any lock on
the item.

● If a lock cannot be granted, the requesting
transaction is made to wait till all incompatible
locks held by other transactions have been
released. The lock is then granted.

Based on and image from “Database System Concepts” book and slides, 6th edition

6

Lock-Based Protocols

What is a common problem we have with
locking?

What happens to a transaction when it is
starved?

Based on and image from “Database System Concepts” book and slides, 6th edition

7

The Two-Phase Locking Protocol

● This is a protocol which ensures
conflict-serializable schedules.

● Phase 1: Growing Phase
− transaction may obtain locks
− transaction may not release locks

● Phase 2: Shrinking Phase
− transaction may release locks
− transaction may not obtain locks

● The protocol ensures serializability. It can be
proved that the transactions can be serialized
in the order of their lock points (i.e. the point
where a transaction acquired its final lock).

Based on and image from “Database System Concepts” book and slides, 6th edition

8

● Two-phase locking does not ensure freedom
from deadlocks

● Cascading roll-back is possible under
two-phase locking. To avoid this, follow a
modified protocol called strict two-phase
locking. Here a transaction must hold all its
exclusive locks till it commits/aborts.

● Rigorous two-phase locking is even stricter:
here all locks are held till commit/abort. In this
protocol transactions can be serialized in the
order in which they commit.

The Two-Phase Locking Protocol

Based on and image from “Database System Concepts” book and slides, 6th edition

9

What is a cascadeless
schedule?

● There can be conflict serializable
schedules that cannot be obtained if
two-phase locking is used.

● However, in the absence of extra
information (e.g., ordering of access to
data), two-phase locking is needed for
conflict serializability

The Two-Phase Locking Protocol

Based on and image from “Database System Concepts” book and slides, 6th edition

11

Implementation of Locking

● A lock manager can be implemented as a
separate process to which transactions
send lock and unlock requests

● The lock manager replies to a lock request
by sending a lock grant messages (or a
message asking the transaction to rollback,
in case of a deadlock)

● The requesting transaction waits until its
request is answered

Based on and image from “Database System Concepts” book and slides, 6th edition

12

Implementation of Locking

● The lock manager maintains a
data-structure called a lock table to record
granted locks and pending requests

● The lock table is usually implemented as
an in-memory hash table indexed on the
name of the data item being locked

Based on and image from “Database System Concepts” book and slides, 6th edition

13

Lock Table
● Black rectangles indicate granted locks,

white ones indicate waiting requests
● Lock table also records the type of lock

granted or requested
● New request is added to the end of the

queue of requests for the data item, and
granted if it is compatible with all earlier
locks

● Unlock requests result in the request being
deleted, and later requests are checked to
see if they can now be granted

● If transaction aborts, all waiting or granted
requests of the transaction are deleted
− lock manager may keep a list of locks

held by each transaction, to implement
this efficiently

Based on and image from “Database System Concepts” book and slides, 6th edition

14

Graph-Based Protocols

● Graph-based protocols are an alternative to
two-phase locking

● Impose a partial ordering → on the set
D = {d1, d2 ,..., dh} of all data items.
− If di → dj then any transaction accessing both

di and dj must access di before accessing dj.
− Implies that the set D may now be viewed as a

directed acyclic graph, called a database
graph.

● The tree-protocol is a simple kind of graph
protocol.

Based on and image from “Database System Concepts” book and slides, 6th edition

15

Tree Protocol
1. Only exclusive locks are

allowed.
2. The first lock by Ti may be on

any data item. Subsequently, a
data Q can be locked by Ti
only if the parent of Q is
currently locked by Ti.

3. Data items may be unlocked at
any time.

4. A data item that has been
locked and unlocked by Ti
cannot subsequently be
relocked by Ti

Based on and image from “Database System Concepts” book and slides, 6th edition

16

● The tree protocol ensures conflict
serializability as well as freedom from
deadlock.

● Unlocking may occur earlier in the
tree-locking protocol than in the two-phase
locking protocol.
− shorter waiting times, and increase in

concurrency
− protocol is deadlock-free, no rollbacks are

required

Graph-Based Protocols

Based on and image from “Database System Concepts” book and slides, 6th edition

17

● Drawbacks
− Protocol does not guarantee recoverability or

cascade freedom
● Need to introduce commit dependencies to ensure

recoverability
− Transactions may have to lock data items that

they do not access.
● increased locking overhead, and additional waiting

time
● potential decrease in concurrency

● Schedules not possible under two-phase
locking are possible under tree protocol, and
vice versa.

Graph-Based Protocols

Based on and image from “Database System Concepts” book and slides, 6th edition

18

Deadlock Handling

● Consider the following two transactions:
 T1: write (X) T2: write(Y)
 write(Y) write(X)
● Schedule with deadlock

Based on and image from “Database System Concepts” book and slides, 6th edition

19

● System is deadlocked if there is a set of
transactions such that every transaction in
the set is waiting for another transaction in
the set.

● Deadlock prevention protocols ensure
that the system will never enter into a
deadlock state. Some prevention strategies
− Require that each transaction locks all its data items

before it begins execution (predeclaration).
− Impose partial ordering of all data items and require

that a transaction can lock data items only in the order
specified by the partial order (graph-based protocol).

Deadlock Handling

Based on and image from “Database System Concepts” book and slides, 6th edition

20

More Deadlock Prevention Strategies
● Following schemes use transaction timestamps

for the sake of deadlock prevention alone.

Based on and image from “Database System Concepts” book and slides, 6th edition

21

● wait-die scheme - non-preemptive
− older transaction may wait for younger one to release data item.

Younger transactions never wait for older ones; they are rolled
back instead.

− a transaction may die several times before acquiring needed data
item

● wound-wait scheme - preemptive
− older transaction wounds (forces rollback) of younger transaction

instead of waiting for it. Younger transactions may wait for older
ones.

− may be fewer rollbacks than wait-die scheme.

● Both in wait-die and in wound-wait
schemes, a rolled back transactions is
restarted with its original timestamp. Older
transactions thus have precedence over
newer ones, and starvation is hence
avoided.

● Timeout-Based Schemes:
− a transaction waits for a lock only for a specified

amount of time. After that, the wait times out and the
transaction is rolled back.

− thus deadlocks are not possible
− simple to implement; but starvation is possible. Also

difficult to determine good value of the timeout interval.

More Deadlock Prevention Strategies

Based on and image from “Database System Concepts” book and slides, 6th edition

22

Deadlock Detection

● Deadlocks can be described as a wait-for
graph, which consists of a pair G = (V,E),
− V is a set of vertices (all the transactions in the

system)
− E is a set of edges; each element is an

ordered pair Ti →Tj.
● If Ti → Tj is in E, then there is a directed

edge from Ti to Tj, implying that Ti is waiting
for Tj to release a data item.

Based on and image from “Database System Concepts” book and slides, 6th edition

23

Deadlock Detection

● When Ti requests a data item currently
being held by Tj, then the edge Ti Tj is
inserted in the wait-for graph. This edge is
removed only when Tj is no longer holding
a data item needed by Ti.

● The system is in a deadlock state if and
only if the wait-for graph has a cycle. Must
invoke a deadlock-detection algorithm
periodically to look for cycles.

Based on and image from “Database System Concepts” book and slides, 6th edition

24

Is there a deadlock?

Is there a deadlock?

Deadlock Recovery

● When a deadlock is detected :
− Some transaction will have to rolled back (made

a victim) to break deadlock. Select that
transaction as victim that will incur minimum
cost.

− Rollback -- determine how far to roll back
transaction

● Total rollback: Abort the transaction and then restart
it.

● More effective to roll back transaction only as far as
necessary to break deadlock.

− Starvation happens if same transaction is
always chosen as victim. Include the number of
rollbacks in the cost factor to avoid starvation

Based on and image from “Database System Concepts” book and slides, 6th edition

27

Multiple Granularity

● Allow data items to be of various sizes and
define a hierarchy of data granularities,
where the small granularities are nested
within larger ones

● Can be represented graphically as a tree
(but don't confuse with tree-locking
protocol)

Based on and image from “Database System Concepts” book and slides, 6th edition

28

Multiple Granularity

● When a transaction locks a node in the tree
explicitly, it implicitly locks all the node's
descendents in the same mode.

● Granularity of locking (level in tree where
locking is done):
− fine granularity (lower in tree): high

concurrency, high locking overhead
− coarse granularity (higher in tree): low

locking overhead, low concurrency

Based on and image from “Database System Concepts” book and slides, 6th edition

29

Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are

− database
− area
− file
− record

Based on and image from “Database System Concepts” book and slides, 6th edition

30

Intention Lock Modes
● In addition to S and X lock modes, there are

three additional lock modes with multiple
granularity:
− intention-shared (IS): indicates explicit locking at a

lower level of the tree but only with shared locks.
− intention-exclusive (IX): indicates explicit locking at a

lower level with exclusive or shared locks
− shared and intention-exclusive (SIX): the subtree

rooted by that node is locked explicitly in shared mode
and explicit locking is being done at a lower level with
exclusive-mode locks.

● Intention locks allow a higher level node to
be locked in S or X mode without having to
check all descendant nodes.

Based on and image from “Database System Concepts” book and slides, 6th edition

31

Compatibility Matrix with Intention Lock Modes

The compatibility matrix for all lock modes is:

Based on and image from “Database System Concepts” book and slides, 6th edition

32

Timestamp-Based Protocols

● Each transaction is issued a timestamp when it
enters the system. If an old transaction Ti has
time-stamp TS(Ti), a new transaction Tj is
assigned time-stamp TS(Tj) such that

TS(Ti) < TS(Tj)
● The protocol manages concurrent execution

such that the time-stamps determine the
serializability order.

Timestamp-Based Protocols

● In order to assure such behavior, the protocol
maintains for each data Q two timestamp
values:
− W-timestamp(Q) is the largest time-stamp of any

transaction that executed write(Q) successfully.
− R-timestamp(Q) is the largest time-stamp of any

transaction that executed read(Q) successfully.

● The timestamp ordering protocol ensures
that any conflicting read and write
operations are executed in timestamp
order.

● Suppose a transaction Ti issues a read(Q)
− If TS(Ti) < W-timestamp(Q), then Ti needs to

read a value of Q that was already overwritten.
● Hence, the read operation is rejected, and Ti is

rolled back.
− If TS(Ti)≥ W-timestamp(Q), then the read

operation is executed, and R-timestamp(Q) is
set to max(R-timestamp(Q), TS(Ti)).

Timestamp-Based Protocols

● Suppose that transaction Ti issues write(Q).
− If TS(Ti) < R-timestamp(Q), then the value of Q that

Ti is producing was needed previously, and the
system assumed that that value would never be
produced.
● Hence, the write operation is rejected, and Ti is

rolled back.
− If TS(Ti) < W-timestamp(Q), then Ti is attempting to

write an obsolete value of Q.
● Hence, this write operation is rejected, and Ti is

rolled back.
− Otherwise, the write operation is executed, and

W-timestamp(Q) is set to TS(Ti).

Timestamp-Based Protocols

Example Use of the Protocol
● A partial schedule for several data items for transactions with

timestamps 1, 2, 3, 4, 5

Correctness of Timestamp-Ordering Protocol

● The timestamp-ordering protocol guarantees
serializability since all the arcs in the
precedence graph are of the form:

Thus, there will be no cycles in the precedence
graph

● Timestamp protocol ensures freedom from
deadlock as no transaction ever waits.

● But the schedule may not be cascade-free,
and may not even be recoverable.

Based on and image from “Database System Concepts” book and slides, 6th edition

Thomas’ Write Rule

● Modified version of the timestamp-ordering
protocol in which obsolete write operations
may be ignored under certain
circumstances.

● When Ti attempts to write data item Q, if
TS(Ti) < W-timestamp(Q), then Ti is
attempting to write an obsolete value of
{Q}.
− Rather than rolling back Ti as the timestamp

ordering protocol would have done, this {write}
operation can be ignored.

Based on and image from “Database System Concepts” book and slides, 6th edition

Validation-Based Protocol
Execution of transaction Ti is done in three phases.
 1. Read and execution phase: Transaction Ti

writes only to temporary local variables
 2. Validation phase: Transaction Ti performs a

``validation test'' to determine if local variables can
be written without violating serializability.

 3. Write phase: If Ti is validated, the updates are
applied to the database; otherwise, Ti is rolled back.

Based on and image from “Database System Concepts” book and slides, 6th edition

● Each transaction Ti has 3 timestamps
− Start(Ti) : the time when Ti started its execution
− Validation(Ti): the time when Ti entered its

validation phase
− Finish(Ti) : the time when Ti finished its write

phase
● Serializability order is determined by

timestamp given at validation time, to
increase concurrency.
− Thus TS(Ti) is given the value of Validation(Ti).

Validation-Based Protocol

Based on and image from “Database System Concepts” book and slides, 6th edition

● This protocol is useful and gives greater
degree of concurrency if probability of
conflicts is low.
− because the serializability order is not

pre-decided, and
− relatively few transactions will have to be rolled

back.

Validation-Based Protocol

Based on and image from “Database System Concepts” book and slides, 6th edition

Schedule Produced by Validation

Example of schedule produced using
validation

Based on and image from “Database System Concepts” book and slides, 6th edition

Multiversion Schemes

● Multiversion schemes keep old versions of
data item to increase concurrency.
− Multiversion Timestamp Ordering
− Multiversion Two-Phase Locking

● Each successful write results in the
creation of a new version of the data item
written.

● Use timestamps to label versions.

Based on and image from “Database System Concepts” book and slides, 6th edition

Multiversion Schemes

● When a read(Q) operation is issued, select
an appropriate version of Q based on the
timestamp of the transaction, and return
the value of the selected version.

● reads never have to wait as an appropriate
version is returned immediately.

Based on and image from “Database System Concepts” book and slides, 6th edition

Multiversion Timestamp Ordering
● Each data item Q has a sequence of versions <Q1, Q2,....,

Qm>. Each version Qk contains three data fields:
− Content -- the value of version Qk.
− W-timestamp(Qk) -- timestamp of the transaction that

created (wrote) version Qk
− R-timestamp(Qk) -- largest timestamp of a transaction

that successfully read version Qk
● when a transaction Ti creates a new version Qk of Q, Qk's

W-timestamp and R-timestamp are initialized to TS(Ti).
● R-timestamp of Qk is updated whenever a transaction Tj

reads Qk, and TS(Tj) > R-timestamp(Qk).

Based on and image from “Database System Concepts” book and slides, 6th edition

● Suppose that transaction Ti issues a read(Q)
or write(Q) operation. Let Qk denote the
version of Q whose write timestamp is the
largest write timestamp less than or equal to
TS(Ti).
− If transaction Ti issues a read(Q), then the value

returned is the content of version Qk.
− If transaction Ti issues a write(Q)

● if TS(Ti) < R-timestamp(Qk), then transaction Ti is
rolled back.

● if TS(Ti) = W-timestamp(Qk), the contents of Qk are
overwritten

● else a new version of Q is created.

Multiversion Timestamp Ordering

Based on and image from “Database System Concepts” book and slides, 6th edition

● Observe that
− Reads always succeed
− A write by Ti is rejected if some other transaction

Tj that (in the serialization order defined by the
timestamp values) should read
Ti's write, has already read a version created by
a transaction older than Ti.

● Protocol guarantees serializability

Multiversion Timestamp Ordering

Based on and image from “Database System Concepts” book and slides, 6th edition

Multiversion Two-Phase Locking

● Differentiates between read-only
transactions and update transactions

● Update transactions acquire read and write
locks, and hold all locks up to the end of the
transaction. That is, update transactions
follow rigorous two-phase locking.
− Each successful write results in the creation of

a new version of the data item written.
− each version of a data item has a single

timestamp whose value is obtained from a
counter ts-counter that is incremented during
commit processing.

Based on and image from “Database System Concepts” book and slides, 6th edition

Multiversion Two-Phase Locking

● Read-only transactions are assigned a
timestamp by reading the current value of
ts-counter before they start execution; they
follow the multiversion timestamp-ordering
protocol for performing reads.

Based on and image from “Database System Concepts” book and slides, 6th edition

● When an update transaction wants to read a
data item:
− it obtains a shared lock on it, and reads the

latest version.
● When it wants to write an item

− it obtains X lock on; it then creates a new
version of the item and sets this version's
timestamp to ∞.

● When update transaction Ti completes,
commit processing occurs:
− Ti sets timestamp on the versions it has created

to ts-counter + 1
− Ti increments ts-counter by 1

Multiversion Two-Phase Locking

Based on and image from “Database System Concepts” book and slides, 6th edition

● Read-only transactions that start after Ti
increments ts-counter will see the values
updated by Ti.

● Read-only transactions that start before Ti
increments the
ts-counter will see the value before the
updates by Ti.

● Only serializable schedules are produced.

Multiversion Two-Phase Locking

Based on and image from “Database System Concepts” book and slides, 6th edition

MVCC: Implementation Issues

● Creation of multiple versions increases
storage overhead
− Extra tuples
− Extra space in each tuple for storing version

information
● Versions can, however, be garbage

collected
− E.g. if Q has two versions Q5 and Q9, and the

oldest active transaction has timestamp > 9,
than Q5 will never be required again

Based on and image from “Database System Concepts” book and slides, 6th edition

Research - Comparing
Concurrency Schemes

Source: https://www.ijarcce.com/upload/2015/march-15/IJARCCE%2060.pdf

