UMBC

AN HONORS UNIVERSITY IN MARYLAND

CMSC 461, Database Management Systems
Spring 2018

Lecture 19 — Query Processing
Part 1

These slides are based on “Database System Concepts” 61"
edition book (whereas some quotes and figures are used from the
book) and are a modified version of the slides which accompany
the book (http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html),
in addition to the 2009/2012 CMSC 461 slides by Dr. Kalpakis

Dr. Jennifer Sleeman https://www.csee.umbc.edu/~jsleem1/courses/461/spr18

Logistics

. Homework #4 due 4/9/2018
. Homework #5 due 4/18/2018
. Phase 4 due 4/23/2018

Lecture Outline

* Review Hashing
» Overview of Query Processing
» Selection

Hashing Review

bucket 0

Based on some input key,

the address of the bucket is

returned
bucket 1

/15151 Mozart | Music |40000

bucket 2
32343| El Said History 80000
58583| Califieri | History |60000
bucket 3
22222| Einstein | Physics |95000
33456/ Gold Physics 87000
98345| Kim Elec. Eng.|80000

bucket 4

12121 | Wu Finance [90000
76543 | Singh Finance [80000
bucket 5

76766| Crick Biology |72000
bucket 6

10101 |Srinivasan [Comp. Sci.|[65000
45565 |[Katz Comp. Sci.|75000
83821 |Brandt |Comp. Sci.[92000
bucket 7

Why is this better than sequential file organization?

Based on and image from “Database System Concepts” book

and slides, 6t edition

Hashing Review

. What is a bucket?

. Can the hash function return the same
bucket for two different keys?

. What is bucket overflow?

. What is one way to handle bucket
overflow?

. What properties should our hash function
have?

Based on and image from “Database System Concepts” book and slides, 6" édition

Hashing Review

bucket 0
76766 | —]]
What is this?
bucket 1
45565
76543
bucket 2
22222 76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. 65000
bucket 3 45565 | Katz Comp. Sci. 75000
10101 —| 83821 | Brandt Comp. Sci. 92000
> 98345 | Kim Eleec. Eng. 80000
> 12121 | Wu Finance 90000
bucket 4 \—> 76543 | Singh Finance 80000
—>| 32343 | El Said History 60000
> 58583 | Califieri History 62000
~> > 15151 | Mozart Music 40000
bucket 5 J/ > 22222 | Einstein | Physics 95000
15151 | - 58583 | T~ > 33465 [Gold Physics 87000
33456 ——r 98345
— //
bucket 6 /
83821
bucket 7
12121]
32343 T

Based on and image from “Database System Concepts” book and slides, 6" édition

Hashing Review

Why is static hashing deficient?

Based on and image from “Database System Concepts” book and slides, 6" édition

Hashing Review

Why is static hashing deficient?
Fixed set of buckets

When database grows have to use overflow
buckets

If space is allocated for future growth, large
amount of space wasted

Based on and image from “Database System Concepts” book and slides, 6" édition

Indexing In-Class

Simple Vs. Unique

CREATE UNIQUE INDEX index_nhame

ON table name (columnl, column2,..

CREATE INDEX index_name

ON table name (columnl, column2,..

)5

)5

Indexing In-Class

Altering the index:

ALTER table name ADD PRIMARY KEY
(columnl, column2,...)

ALTER table name ADD UNIQUE 1index name
(columnl, column2,...)

ALTER table name ADD index name (columnl,
column2,...)

ALTER table name ADD FULLTEXT index_name
(columnl, column2,...)

Indexing In-Class

Showing the index:

SHOW INDEX FROM table name;

Indexing In-Class

Go to:
https://relational.fit.cvut.cz/dataset/IMDb
We are going to play with this database.

https://relational.fit.cvut.cz/dataset/IMDb

Indexing In-Class

Issue the following commands at the
command line:

mysql -h relational.fit.cvut.cz -u guest -p
(where password is ‘relational’)

use imdb_|js;

Indexing In-Class

mysql> show tables;

| actors |

| directors |

| directors_genres |
| movies |

| movies_directors |
| movies_genres |

| roles |

7 rows in set (0.11 sec)

Indexing In-Class

mysql> describe movies;

e — S —— e —— - e —— T — +
| Field | Type | Null | Key | Default | Extra |
T —— e ——— e —— e — e —— e T — +

lid |int(11) |NO |PRI|O | |

| name | varchar(100) | YES | MUL | NULL | |
| year |int(11) |YES | |NULL | |

| rank | float | YES | | NULL | |

+o———— Fomm e +o—— +-——- Fom———e +om———— +

4 rows in set (0.16 sec)

Indexing In-Class

mysql> describe actors;

F e + s TR o T F e i plT TR +
|Field |Type | Null|Key | Default | Extra |
T — + e — o T —— o T —— +
| id lint(11) [NO [PRI|O | |

first_ name	varchar(100)	YES	MUL	NULL	
last name	varchar(100)	YES	MUL	NULL	
gender	char(1)	YES		NULL	

B ——— + +o——— +-———- Fo———e +om——— +

4 rows in set (0.19 sec)

Indexing In-Class

mysql> describe roles;

e ———) e —— e —— - L e —— S T — +
| Field | Type | Null | Key | Default | Extra |
T — T —— e —— o e — L T — L T — +

actor_id	int(11)	NO	PRI	NULL	
movie_id	int(11)	NO	PRI	NULL	
role	varchar(100)	NO	PRI	NULL	

Fo—————e B e —— +e—— +——— Fe—————e +e———— +

3 rows in set (0.14 sec)

Indexing In-Class

Noticed we gave -h relational.fit.cvut.cz
command to mysqgl which means we are
connecting to a remote database

Indexing In-Class

Let’'s create a local version of this database:

We are going to use mysgldump to do it.
mysqgldump -h relational.fit.cvut.cz imdb_ijs -u

guest -p > myimdb.sq|

Indexing In-Class

Let’s create a local version of this database:
CREATE DATABASE imdb;
GRANT ALL ON imdb.* TO root@'localhost’;

mysql -u root -p imdb < myimdb.sql

Indexing In-Class

Log in to mysql this time as local user on the localhost:

mysql -u root -p

use imdb:;

Indexing In-Class

Issue the following query:

Select * from actors limit 500;

Look at total time to execute.

Indexing In-Class

Log in to mysql this time as local user:

mysql -u root -p

use imdb:;

Issue the following query:

Select * from movies limit 500:;

Look at total time to execute.

Indexing In-Class

SHOW INDEX FROM actors;
What do you see”?
Select * from actors where first name like 'Ko%";

Look at total time to execute.
1302 rows in set (0.01 sec) ~

Indexing In-Class

Now remove the index.
SHOW INDEX FROM actors;

R RS S S S N Fememmeaaaan T R NI
_____________ ¥

| Table | Non_unique | Key name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part
Index_comment |

4ommmmee- Hmmmmmmmmee Hmmmm e Hmmmmmmmmee EGEEEEEEE Hmmmmmmmme Fommmmmmee o
_____________ +

| actors | 0 | PRIMARY | 1| id | A | 818795 | NULL
|

| actors | 1 | actors_first_name | 1 | first _name | A 90311 | NULL
|

| actors | 1 | actors_last_name | 1 | last_name | A | 283192 | NULL
|

Fmmmmmm e Fmmmmmmm e Fmmmmmm e B Fmmmmmmmmme o n B Fmmmmmmmmm oo B
_____________ +

3 rows in set (0.00 sec)

Fm--mmee- Fo=---- R L Fommmmmm- +--
| NnuLL | | BTREE | |

| NULL | YES | BTREE

| NULL | YES | BTREE | |
+-------- +------ e R +--

Indexing In-Class

Now remove the index.
ALTER TABLE actors DROP INDEX

actors_first_name;

Indexing In-Class

After removing the index verify it is gone.
SHOW INDEX FROM actors;

R —— 4oemmmemeenas e e e . 4ommmemeenas 4rmmmmmmecnaas T AR R e R —— .
____________ +

| Table | Non_unique | Key_ name | seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
Index_comment |

R —— 4oemmmemeenas e e e . 4ommmemeenas 4rmmmmmmecnaas T AR R e R —— .
____________ +

| actors | © | PRIMARY | 1] id | A | 818795 | NULL | NULL | | BTREE

| actors | 1 | actors_last_name | 1 | last_name | A | 283192 | NULL | NULL | YES | BTREE

2 rows in set (0.00 sec)

Indexing In-Class

Now run the query again.
Select * from actors where first_name like 'Ko%";
Look at total time to execute.

1302 rows in set (0.27 sec)

Indexing In-Class

According to the MySQL documentation:

B-Tree Index Characteristics

A B-tree index can be used for column comparisons in expressions that use the =, >, >=, <, <=, or BETWEEN operators. The index also can be used for LIKE comparisons if the
argument to LIKE is a constant string that does not start with a wildcard character. For example, the following SELECT statements use indexes:

1 SELECT * FROM tbl_name WHERE key_col LIKE 'Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE 'Pat% _ck%';

In the first statement, only rows with 'Patrick' <= key_col < 'Patricl®' are considered. In the second statement, only rows with 'Pat' <= key_col < 'Pau’ are

considered.

The following SELECT statements do not use indexes:

1 SELECT * FROM tbl_name WHERE key_col LIKE '%Patrick%';
2 SELECT * FROM tbl_name WHERE key_col LIKE other_col;

In the first statement, the LIKE value begins with a wildcard character. In the second statement, the LIKE value is not a constant.

Source: https://dev.mysql.com/doc/refman/5.5/en/index-btree-hash.html

Indexing In-Class

Let’s test this to verify it is true:
Notice we don’t have our index.
SHOW INDEX FROM actors;

PR ——— oo e oo dommm e ommmmmm e o R I FRE— o R —— oo
____________ +

| Table | Non_unique | Key name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
Index_comment |

PR ——— oo e oo dommm e ommmmmm e o R I FRE— o R —— oo
____________ +

| actors | 0 | PRIMARY | 1| id | A | 818795 | NULL | NULL | | BTREE | |

|

| actors | 1 | actors_last_name | 1 | last_name | A | 283192 | NULL | NULL | YES | BTREE | |

|

4mmmmmmen 4mmmmmm e fmmmmmmm e Hmmmmmmm e dommm e 4ommmmm e fmmmmmm e 4ommmmmmees Hmmmm———- 4o dommmm e dommmmmean 4---
____________ +

2 rows in set (0.00 sec)

Indexing In-Class

Let’s test this to verify it is true:

Select * from actors where first name like '%ok%!'
or first_name like '"%ri%";

Look at total time to execute.

83531 rows in set (0.37 sec)

Indexing In-Class

Let’'s add the index again.

ALTER TABLE actors ADD INDEX
actors_first_name (first_name);

SHOW INDEX FROM actors;

A Hmmmmm e oo Hmmmm Hmmmmmm e 4o mm e dmmm Hmmmm e 4o o Hmmmmmmm e o +--
_____________ +

| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
Index_comment |

mmm - o mmm e Ao o mmm e Hommmmm e Hommmmmmmm e dommmmm e Hommm - Hommmm - 4o Hommmmmm oo oo e +--
_____________ +

| actors | @ | PRIMARY | 1| id | A 818795 | NULL | NULL | | BTREE

|

| actors | 1 | actors_first_name | 1| first_name | A 90311 | NULL | NULL | YES | BTREE

|

| actors | 1 | actors_last_name 1| last_ name | A 283192 | NULL | NULL | YES | BTREE

|

Fmmmmmm - B Rt Fmmmmmm e B T e B e R B D P B Fommmmm e m +--
_____________ +

3 rows in set (0.00 sec)

Indexing In-Class

Let’s test this to verify it is true:

Select * from actors where first name like '%ok%!'
or first_name like '"%ri%";

Look at total time to execute.

83531 rows in set (0.34 sec)

Indexing In-Class

MySQL documentation on hashing indexing:

Hash Index Characteristics
Hash indexes have somewhat different characteristics from those just discussed:

* They are used only for equality comparisons that use the = or <=> operators (but are very fast). They are not used for comparison operators such as < that find a range
of values. Systems that rely on this type of single-value lookup are known as “key-value stores”; to use MySQL for such applications, use hash indexes wherever
possible.

* The optimizer cannot use a hash index to speed up ORDER BY operations. (This type of index cannot be used to search for the next entry in order.)

* MySQL cannot determine approximately how many rows there are between two values (this is used by the range optimizer to decide which index to use). This may
affect some queries if you change a MyISAM or InnoDB table to a hash-indexed MEMORY table.

* Only whole keys can be used to search for a row. (With a B-tree index, any leftmost prefix of the key can be used to find rows.)

Source: https://dev.mysql.com/doc/refman/5.5/en/index-btree-hash.html

Indexing In-Class

Remove the index.
ALTER TABLE actors DROP INDEX

actors_first_name;

Indexing In-Class

After removing the index verify it is gone.
SHOW INDEX FROM actors;

R —— 4oemmmemeenas e e e . 4ommmemeenas 4rmmmmmmecnaas T AR R e R —— .
____________ +

| Table | Non_unique | Key_ name | seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
Index_comment |

R —— 4oemmmemeenas e e e . 4ommmemeenas 4rmmmmmmecnaas T AR R e R —— .
____________ +

| actors | © | PRIMARY | 1] id | A | 818795 | NULL | NULL | | BTREE

| actors | 1 | actors_last_name | 1 | last_name | A | 283192 | NULL | NULL | YES | BTREE

2 rows in set (0.00 sec)

Indexing In-Class

Let’'s add the index as a hash.

ALTER TABLE actors ADD INDEX
actors_first_name (first_name) USING HASH,;

SHOW INDEX FROM actors;

——

| Tabl | N q | Key | Seq d | Col name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
Index_commen t |
——

| actors | @ | PRIMARY | 1| id | A | 818795 | NULL | NULL | | BTREE | |

|

| actors | 1 | actors_first_name 1 | first_name | A 90311 | NULL | NULL | YES | BTREE

|

| actors | 1 | actors_last_name 1| last_ name | A 283192 | NULL | NULL | YES | BTREE

|

--

Indexing In-Class

Rerun the queries:
Select * from actors where first name like 'Ko%";

Any difference? Why?

Lecture Outline

* Review Hashing
* Overview of Query Processing
» Selection

Overview of Query Processing

. Parsing and translation
. Optimization
. Evaluation

parser and
translator

evaluation engine

| @
data statistics
Based on and image from “Database System Concepts” book and slides, 6 diton about data

relational-algebra
expression

<Gpim-—

<« execution plan

Y

query

query
output

Basic Steps in Query Processing

. Parsing
- check syntax
- verify relations exist
Translation
- translate the query into its internal form
- translate internal form into relational algebra
. Evaluation
- The query-execution engine takes a query-evaluation
plan, executes that plan, and returns the answers to
the query

Based on and image from “Database System Concepts” book and slides, 6" édition

Basic Steps in Query Processing :
Optimization
. A relational algebra expression may have many

equivalent expressions

Osalary<75000(I Lsaany(INStructor)) is equivalent to

Hsalaly(gsala/y<75000 (i nstructor))

. Each relational algebra operation can be evaluated
using one of several different algorithms
- Correspondingly, a relational-algebra expression
can be evaluated in many ways.

Based on and image from “Database System Concepts” book and slides, 6" édition

Basic Steps in Query Processing :
Optimization

. Annotated expression specifying detailed evaluation
strategy is called an evaluation-plan.
- can use an index on salary to find instructors with
salary < 75000,
- or can perform complete relation scan and
discard instructors with salary 75000

Based on and image from “Database System Concepts” book and slides, 6" édition

Basic Steps in Query Processing :
Optimization

. Evaluation primitive — relational algebra operation
annotated

. Query evaluation plan — Sequence of operations to
be used for evaluating query

. Query execution engine -
- Accepts plan
- Executes plan
- Returns a result

on and image from “Database System Concepts” book and slides, 6" editon

Basic Steps in Query
Processing: Optimization

Different evaluation plans — different costs
Database system must construct most efficient query
evaluation plan
Query Optimization — Chooses evaluation plan with
lowest cost
- Cost is estimated using statistical information from the
database catalog
. number of tuples in each relation, size of tuples,
etc.

Once lowest cost plan chosen, query is evaluated and
records returned

Based on and image from “Database System Concepts” book and slides, 6" édition

Basic Steps in Query

Processing: Optimization
. We will study
- How to measure query costs
- Algorithms for evaluating relational algebra
operations
- How to combine algorithms for individual
operations in order to evaluate a complete
expression
. Read Chapter 14 (will not be covered in this class)
- How to optimize queries, how to find an evaluation
plan with lowest estimated cost

Based on and image from “Database System Concepts” book and slides, 6" édition

Measures of Query Cost

e Estimate cost of individual operations then combine for
guery evaluation plan cost
e Costis generally measured as_total elapsed time for
answering query
— Many factors contribute to time cost
e disk accesses
e CPU
e or even network communication

Based on and image from “Database System Concepts” book and slides, 6" édition

Measures of Query Cost

e Typically disk access is the predominant cost, and is also
relatively easy to estimate. Measured by taking into

account
— Number of seeks * average-seek-cost
— Number of blocks read * average-block-read-cost

— Number of blocks written * average-block-write-cost
e Cost to write a block is greater than cost to read a
block
— data is read back after being written to ensure that
the write was successful

Based on and image from “Database System Concepts” book and slides, 6" édition

Measures of Query Cost

For simplicity we just use the number of block transfers from disk and
the number of seeks as the cost measures

- tT— time to transfer one block

- tS — time for one seek
- Cost for b block transfers plus S seeks
* *
+
b*t +S*t,

We ignore CPU costs for simplicity
- Real systems do take CPU cost into account
We do not include cost to writing output to disk in our cost formulae

Based on and image from “Database System Concepts” book and slides, 6" édition

Measures of Query Cost

Several algorithms can reduce disk 10 by using extra buffer space
- Amount of real memory available to buffer depends on other
concurrent queries and OS processes, known only during execution
We often use worst case estimates, assuming only the minimum
amount of memory needed for the operation is available
Required data may be buffer resident already, avoiding disk |/O
- But hard to take into account for cost estimation

Based on and image from “Database System Concepts” book and slides, 6" édition

Measures of Query Cost

. Response Time — time it takes to execute the plan
- Hard to estimate due to:
. Dependence on contents of buffer when query
execution begins
. Dependence on how distributed in a multi-disk
configuration
. Optimizers try to minimize resource consumption vs.
response time

Based on and image from “Database System Concepts” book and slides, 6" édition

Profiling In-class

Let’s look at how MySQL profiles our queries:

SET profiling = 1;
Execute the following queries:

Select * from actors where first nhame like 'Ko%!'
or first_name like "'Wr%";

select a.first_ name, a.last_ name, r.role, m.name,
m.year from actors a, roles r, movies m where
a.ild=r.actor_id and m.id=r.movie_id limit 500;

Read more https://dev.mysql.com/doc/refman/5.7/en/show-profiles.html

Profiling In-class

Let’s look at how MySQL profiles our queries:

Run the follow commands:

SHOW PROFILES;

Read more https://dev.mysql.com/doc/refman/5.7/en/show-profiles.html

Profiling In-class
You should see something like this:

mysql> SHOW PROFILES;

| 1 | 0.00880925 | Select * from actors where first_name like 'Ko%' or first_name like 'Wr%'

|

| 2 | 0.00449275 | select a.first_name, a.last name, r.role, m.name, m.year from actors a, roles r, movies m where
a

.id=r.actor_id and m.id=r.movie_id limit 500 |

2 rows in set, 1 warning (0.00 sec)

Read more https://dev.mysql.com/doc/refman/5.7/en/show-profiles.html

Profiling In-class

Let’s look at how MySQL profiles our queries:
SHOW PROFILE FOR QUERY 1;

+ + +
| Status | Duration |
+ + +
| starting | 0.000134 |

| checking permissions | 0.000018 |
| Opening tables | 0.000032 |

| init | 0.000064 |

| System lock | 0.000020 |
| optimizing | 0.000022 |

| statistics | 0.000263 |

| preparing | 0.000037 |

| executing | 0.000007 |

| Sending data | 0.008110 |
| end | 0.000018 |

| query end | 0.000019 |

closing tables	0.000014
freeing items	0.000029
cleaning up	0.000024
+ + +

15 rows in set, 1 warning (0.00 sec)

Read more https://dev.mysql.com/doc/refman/5.7/en/show-profiles.html

Profiling In-class

Let’s look at how MySQL profiles our queries:
SHOW PROFILE FOR QUERY 2;

+ + +
| Status | Duration |
+ + +
| starting | 0.000133 |

checking permissions	0.000010
checking permissions	0.000005
checking permissions	0.000008
Opening tables	0.000035

| init | 0.000044 |

| System lock | 0.000028 |
| optimizing | 0.000023 |

| statistics | 0.000091 |

| preparing | 0.000029 |

| executing | 0.000007 |

| Sending data | 0.003984 |
| end | 0.000013 |

| query end | 0.000015 |

closing tables	0.000015
freeing items	0.000031
cleaning up	0.000024
+ + +

17 rows in set, 1 warning (0.00 sec)

Read more https://dev.mysql.com/doc/refman/5.7/en/show-profiles.html

Explain In-class

Let’s look at how MySQL Explain can be used:

mysql> explain actors;

dmmmm oo R - - Hmmmm - dmmmmm e Hmmmmm o +
| Field | Type | Null | Key | Default | Extra |
dmmmm oo R - - Hmmmm - dmmmmm e Hmmmmm o +
id	int(11)	NOo	PRI	@	
first _name	varchar(100)	YES	MUL	NULL	
1last name	varchar(100)	YES	MUL	NULL	
gender	char(1)	YES		NULL	
dmmmm oo R mmmm - Hmmmm- mmmm e Hmmmmm o +
4 rows in set (0.00 sec)

mysql> explain movies;

4mmmmm o dmmmm e --m - - Hmmmmmm o ommmm o +

| Field | Type | Null | Key | Default | Extra |
4mmmmm o dmmmm e --m - - Hmmmmmm o ommmm o +

| id | int(11) | NO | PRI | @ | |

| name | varchar(100) | YES | MUL | NULL | |

| year | int(11) | YES | | NULL | |

| rank | float | YES | | NULL | |
4mmmmm o dmmmm e - - - Hmmmmmmm o e +

4 rows in set (0.00 sec)

mysql> explain roles;

dmmmm e dmmmmmm e mmm - - o Hmmmmm o +

| Field | Type | Null | Key | Default | Extra |
dmmmm e dmmmmmm e mmm - - o Hmmmmm o +

| actor_id | int(11) | NO | PRI | NULL | |

| movie id | int(11) | NOo | PRI | NULL | |

| role | varchar(100) | NO | PRI | NULL [[
dmmmm e dmmmmmm oo o - - oo 4mmmmmm - +

3 rows in set (0.00 sec)

Read more https://dev.mysql.com/doc/refman/5.7/en/using-explain.html

Explain In-class

Let’s look at how MySQL Explain can be used:

mysql> explain Select * from actors where first_name like 'Ko%' or first_name like 'Wr%';

e 4mmmmmmo- dommmmmmemmean #mmmmme- #mmmmmmmemmeceeeaa- dommmmmmmmeceeeeaa- 4ommmmmmmee 4ommmm- 4mmmmm- dommmmmmmea #mmmmmmmman
_____________ +

| id | select_type | table | partitions | type | possible keys | key | key len | ref | rows | filtered | Extra

|

e 4mmmmmmo- dommmmmmemmean #mmmmme- #mmmmmmmemmeceeeaa- dommmmmmmmeceeeeaa- 4ommmmmmmee 4ommmm- 4mmmmm- dommmmmmmea #mmmmmmmman
_____________ +

| 1 | SIMPLE | actors | NULL | range | actors_first_name | actors_first name | 303 | NULL | 1322 | 100.00 | Using
index condition |

e 4mmmmmmo- dommmmmmemmean #mmmmme- #mmmmmmmemmeceeeaa- dommmmmmmmeceeeeaa- 4ommmmmmmee 4ommmm- 4mmmmm- dommmmmmmea #mmmmmmmman
_____________ +

1 row in set, 1 warning (©.00 sec)

mysql> explain select a.first_name, a.last_name, r.role, m.name, m.year from actors a, roles r, movies m where a.id=r.actor_id and
m.id=r.movie_id limit 500;

oocoosoosssssoons Boocooos Doscooosoooos Foocoooao fossonosocosoosasoncooncooos Foccooscoos focsooooos fosccoscccossoooo Foocoooos Foocoomoos
SR +

| id | select_type | table | partitions | type | possible keys | key | key len | ref rows | filtered
| Extra

oocoosoossossoons Foocooos Doscooosoooos Foocoooao fossonosocosoosasoncooncooos Foccooscoos focsooooos fosccoscccossoooo Foocoooos Foocoomoos
SR +

| 1 | SIMPLE | m | NULL | ALL | PRIMARY | NULL | NULL | NULL | 392486 | 100.00
| NuLL |

| 1 | SIMPLE | r | NuLL | ref | PRIMARY,actor_id,movie_id | movie_id | 4 | imdb.m.id | 9 | 100.00
| Using index |

| 1 | SIMPLE | a | NULL | eq_ref | PRIMARY | PRIMARY | 4 | imdb.r.actor_id | 1| 100.00
| NuLL |

oocoosoossossoons Foocooos Doscooosoooos Foocoooao fossonosocosoosasoncooncooos Foccooscoos focsooooos fosccoscccossoooo Foocoooos Foocoomoos
SR +

3 rows in set, 1 warning (0.00 sec)

Read more https://dev.mysql.com/doc/refman/5.7/en/using-explain.html

Explain In-class

Let’s look at how MySQL Explain can be used:

explain select actors.first name, actors.last name, roles.role,
movies.name, movies.year from actors, roles, movies where
roles.actor_id=actors.id and roles.movie id=movies.id and
movies.name like 'S%' and actors.first name like 'Wr%';

e LT e dmmmmmmm e oo T T omm o L
-------- et T B T TP S

| id | select_type | table | partitions | type | possible_keys | key | key len | ref

| rows | filtered | Extra

e LT e dmmmmmmm e oo T T omm o L
-------- et T B T TP S

| 1 | SIMPLE | actors | NULL | range | PRIMARY,actors_first_name | actors_first_name | 303 | NULL

| 20| 100.00 | Using index condition |

| 1 | SIMPLE | roles | NULL | ref | PRIMARY,actor_id,movie_id | actor_id | 4

imdb.actors.id | 4 | 100.00 | Using index |

| 1 | SIMPLE | movies | NULL | eq_ref | PRIMARY,movies_name | PRIMARY | 4 |
imdb.roles.movie_id | 1 | 18.07 | Using where |

e LT e dmmmmmmm e oo T T omm o L
-------- et e e T TP S

3 rows in set, 1 warning (0.00 sec)

Read more https://dev.mysql.com/doc/refman/5.7/en/using-explain.html

Explain In-class

Let’s look at how MySQL Explain can be used:

explain select actors.first name, actors.last name, roles.role,
movies.name, movies.year from actors, roles, movies where
roles.actor_id=actors.id and roles.movie id=movies.id and
movies.name like 'S%' limit 500;

oo o R o e Fmmmm e R Fmm -
R R T +

| id | select_type | table | partitions | type | possible_keys | key | key len | ref

| rows | filtered | Extra

oo o R o e Fmmmm e R Fmm -
R R T +

| 1 | SIMPLE | movies | NULL | range | PRIMARY,movies_name | movies_name | 303 | NULL

| 70086 | 100.00 | Using index condition |

| 1 | SIMPLE | roles | NULL | ref | PRIMARY,actor_id,movie id | movie_id | 4 | imdb.movies.id

| 10 | 100.00 | Using index

| 1 | SIMPLE | actors | NULL | eq_ref | PRIMARY | PRIMARY | 4 |
imdb.roles.actor_id | 1| 100.00 | NULL |

oo o R o e Fmmmm e R Fmm -
R R T +

3 rows in set, 1 warning (0.00 sec)

Read more https://dev.mysql.com/doc/refman/5.7/en/using-explain.html

Explain In-class

Let’s look at how MySQL Explain can be used:

explain select actors.first name, actors.last name, roles.role,
movies.name, movies.year from actors, roles, movies where
roles.actor_id=actors.id and roles.movie id=movies.id and
movies.name like 'S%' and actors.first name like 'S%' limit 500;

oo o R o e Fmm - o T
———————— e e T T PP

| id | select_type | table | partitions | type | possible_keys | key | key len | ref

| rows | filtered | Extra

oo o R o e Fmm - o T
———————— e e T T PP

| 1 | SIMPLE | actors | NULL | range | PRIMARY,actors_first name | actors_first name | 303 | NULL

| 112800 | 100.00 | Using index condition |

| 1 | SIMPLE | roles | NULL | ref | PRIMARY,actor_id,movie id | actor_id | 4

imdb.actors.id | 4 | 100.00 | Using index |

| 1 | SIMPLE | movies | NULL | eq_ref | PRIMARY,movies_name | PRIMARY | 4

imdb.roles.movie_id | 1 | 18.07 | Using where |

oo o R o e Fmm - o T
———————— e e T T PP

3 rows in set, 1 warning (0.00 sec)

Read more https://dev.mysql.com/doc/refman/5.7/en/using-explain.html

Lecture Outline

* Review Hashing and Indexing in Context
» Overview of Query Processing
e Selection

Selection Operation

. File scan
- Lowest level operator to access data
- Algorithms to locate/retrieve records

. Assuming tuples are stored in one file for a selection
operation

. Let's look at each search algorithm

Based on and image from “Database System Concepts” book and slides, 6" édition

Selection Operation

. Algorithm A1 (linear search)
- Scan each file block and test all records to see whether
they satisfy the selection condition
- Initial seek required to access first block

Cost estimate = b, block transfers + 1 seek

" b, denotes number of blocks containing records from relation r

If selection is on a key attribute, can stop on finding record
» cost = (b,/2) block transfers + 1 seek

Based on and image from “Database System Concepts” book and slides, 6" édition

Selection Operation

. Linear search can be applied to any file regardless of
- selection condition or
- ordering of records in the file, or
- availability of indices
. Slower than other algorithms
. Note: binary search generally does not make sense since
data is not stored consecutively
- except when there is an index available,
- and binary search requires more seeks than index
search

Based on and image from “Database System Concepts” book and slides, 6" édition

Selections Using Indices

Index scan — search algorithms that use an index
- selection condition must be on search-key of index
. A2 (primary index, equality on key)

- Retrieve a single record that satisfies the corresponding
equality condition

- Equality comparison on key attribute with primary index

- Use index to retrieve record that satisfies equality
condition

Cost=(h,+ 1) * (t; + t5)

- Can be used B+-Tree file organization to help access
performance
. Problems related to relocation and secondary indices

Based on and image from “Database System Concepts” book and slides, 6" édition

Selections Using Indices

. A3 (primary index, equality on nonkey)

- Retrieve multiple records using a primary index when
selection condition specifies equality comparison on
nonkey attribute

- Records will be on consecutive blocks

. Let b = number of blocks containing matching
records

Cost=h;*(t;+ts5) +ts+t:*b

Based on and image from “Database System Concepts” book and slides, 6" édition

Selections Using Indices

. A4 (secondary index, equality on nonkey)
- Retrieve a single record if the search-key is a
candidate key

Cost=(h +1)* (t +t)

- Retrieve multiple records if search-key is not a
candidate key
. each of n matching records may be on a
different block

Cost= (h.+n) " (. +1t,)

Can be very expensive!

Based on and image from “Database System Concepts” book and slides, 6" édition

Selections Involving Comparisons

. Selections of the formo,_, (r) or o
- a linear search,
- or by using indices in the following ways:
. AS5 (primary index, comparison)
- Relation is sorted on A
- Forag, . (r) useindex to find first tuple = v and scan
relation sequentially from there
- Foro,_, (r) just scan relation sequentially till first tuple >

ASV(]
v; do not use index

A 1N by using

Based on and image from “Database System Concepts” book and slides, 6" édition

Base

Selections Involving Comparisons

. A6 (secondary index, comparison)
- Use secondary ordered index for <,<=>=7>
- Forg, . (r) useindex to find first index entry = v and
scan index sequentially from there, to find pointers to
records.
- Foro,_, (r) just scan leaf pages of index finding pointers

to records, till first entry > v
- In either case, retrieve records that are pointed to

. requires an I/O for each record
. Linear file scan may be cheaper

d on and image from “Database System Concepts” book and slides, 6 editon

Implementation of Complex Selections

. Conjunction: ¢, A A... (1)
. A7 (conjunctive selection using one index)
- Select a combination of 6. and algorithms A1 through A7
that results in the least cost for 6, (r)
- Test other conditions on tuple after fetching it into
memory buffer
. A8 (conjunctive selection using composite index)
- Use appropriate composite (multiple-key) index if
available
- Type of index determines whether A2, A3 or A4 will be
used

Based on and image from “Database System Concepts” book and slides, 6" édition

Base

Implementation of Complex Selections

. A9 (conjunctive selection by intersection of identifiers)

Requires indices with record pointers

Use corresponding index for each condition, and take
iIntersection of all the obtained sets of record pointers
Then fetch records from file

If some conditions do not have appropriate indices,
apply test in memory

Cost is sum of costs of each index scan + cost of
retrieving records in intersection of retrieved lists of
pointers , can retrieve records in sorted order

d on and image from “Database System Concepts” book and slides, 6 editon

Implementation of Complex Selections

. A10 (disjunctive selection by union of identifiers)

Applicable if all conditions have available indices.
* Otherwise use linear scan.

Use corresponding index for each condition, and take union
of all the obtained sets of record pointers.

Then fetch records from file
Negation: o.¢(r)
' Use linear scan on file
If very few records satisfy -0, and an index is applicable to 6

* Find satisfying records using index and fetch from file

Based on and image from “Database System Concepts” book and slides, 6" édition

