
Lecture 19 – Query Processing
Part 1

These slides are based on “Database System Concepts” 6th
edition book (whereas some quotes and figures are used from the
book) and are a modified version of the slides which accompany
the book (http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html),
in addition to the 2009/2012 CMSC 461 slides by Dr. Kalpakis

CMSC 461, Database Management Systems
Spring 2018

Dr. Jennifer Sleeman https://www.csee.umbc.edu/~jsleem1/courses/461/spr18

Logistics

● Homework #4 due 4/9/2018
● Homework #5 due 4/18/2018
● Phase 4 due 4/23/2018

Lecture Outline

• Review Hashing
• Overview of Query Processing
• Selection

Hashing Review

H(K)

Based on some input key,
the address of the bucket is
returned

Why is this better than sequential file organization?

K

Based on and image from “Database System Concepts” book and slides, 6th edition

● What is a bucket?

● Can the hash function return the same

bucket for two different keys?

● What is bucket overflow?

● What is one way to handle bucket
overflow?

● What properties should our hash function
have?

●
●

Hashing Review

Based on and image from “Database System Concepts” book and slides, 6th edition

Hashing Review
What is this?

Based on and image from “Database System Concepts” book and slides, 6th edition

Hashing Review

Why is static hashing deficient?

Based on and image from “Database System Concepts” book and slides, 6th edition

Why is static hashing deficient?

Fixed set of buckets

When database grows have to use overflow
buckets

If space is allocated for future growth, large
amount of space wasted

Hashing Review

Based on and image from “Database System Concepts” book and slides, 6th edition

Simple Vs. Unique

CREATE UNIQUE INDEX index_name

ON table_name (column1, column2,...);

CREATE INDEX index_name

ON table_name (column1, column2,...);

Indexing In-Class

Altering the index:

ALTER table_name ADD PRIMARY KEY
(column1, column2,...)

ALTER table_name ADD UNIQUE index_name
(column1, column2,...)

ALTER table_name ADD index_name (column1,
column2,...)

ALTER table_name ADD FULLTEXT index_name
(column1, column2,...)

Indexing In-Class

Showing the index:

SHOW INDEX FROM table_name;

Indexing In-Class

Go to:
https://relational.fit.cvut.cz/dataset/IMDb

We are going to play with this database.

Indexing In-Class

https://relational.fit.cvut.cz/dataset/IMDb

Issue the following commands at the
command line:

 mysql -h relational.fit.cvut.cz -u guest -p

(where password is ‘relational’)

use imdb_ijs;

Indexing In-Class

mysql> show tables;

+--------------------+

| Tables_in_imdb_ijs |

+--------------------+

| actors |

| directors |

| directors_genres |

| movies |

| movies_directors |

| movies_genres |

| roles |

+--------------------+

7 rows in set (0.11 sec)

Indexing In-Class

mysql> describe movies;

+-------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+--------------+------+-----+---------+-------+

| id | int(11) | NO | PRI | 0 | |

| name | varchar(100) | YES | MUL | NULL | |

| year | int(11) | YES | | NULL | |

| rank | float | YES | | NULL | |

+-------+--------------+------+-----+---------+-------+

4 rows in set (0.16 sec)

Indexing In-Class

mysql> describe actors;

+------------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+--------------+------+-----+---------+-------+

| id | int(11) | NO | PRI | 0 | |

| first_name | varchar(100) | YES | MUL | NULL | |

| last_name | varchar(100) | YES | MUL | NULL | |

| gender | char(1) | YES | | NULL | |

+------------+--------------+------+-----+---------+-------+

4 rows in set (0.19 sec)

Indexing In-Class

mysql> describe roles;

+----------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+--------------+------+-----+---------+-------+

| actor_id | int(11) | NO | PRI | NULL | |

| movie_id | int(11) | NO | PRI | NULL | |

| role | varchar(100) | NO | PRI | NULL | |

+----------+--------------+------+-----+---------+-------+

3 rows in set (0.14 sec)

Indexing In-Class

Noticed we gave -h relational.fit.cvut.cz
command to mysql which means we are
connecting to a remote database

Indexing In-Class

Let’s create a local version of this database:

We are going to use mysqldump to do it.

mysqldump -h relational.fit.cvut.cz imdb_ijs -u
guest -p > myimdb.sql

Indexing In-Class

Let’s create a local version of this database:

CREATE DATABASE imdb;

GRANT ALL ON imdb.* TO root@'localhost';

 mysql -u root -p imdb < myimdb.sql

Indexing In-Class

Log in to mysql this time as local user on the localhost:

mysql -u root -p

use imdb;

Indexing In-Class

Issue the following query:

Select * from actors limit 500;

Look at total time to execute.

Indexing In-Class

Log in to mysql this time as local user:

mysql -u root -p

use imdb;
Issue the following query:

Select * from movies limit 500;

Look at total time to execute.

Indexing In-Class

SHOW INDEX FROM actors;

What do you see?

Select * from actors where first_name like 'Ko%';

Look at total time to execute.

1302 rows in set (0.01 sec)

Indexing In-Class

Now remove the index.

SHOW INDEX FROM actors;

+--------+------------+-------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+--
-------------+

| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
Index_comment |

+--------+------------+-------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+--
-------------+

| actors | 0 | PRIMARY | 1 | id | A | 818795 | NULL | NULL | | BTREE | |
|

| actors | 1 | actors_first_name | 1 | first_name | A | 90311 | NULL | NULL | YES | BTREE | |
|

| actors | 1 | actors_last_name | 1 | last_name | A | 283192 | NULL | NULL | YES | BTREE | |
|

+--------+------------+-------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+--
-------------+

3 rows in set (0.00 sec)

Indexing In-Class

Now remove the index.

ALTER TABLE actors DROP INDEX
actors_first_name;

Indexing In-Class

After removing the index verify it is gone.

SHOW INDEX FROM actors;

+--------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---
------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
Index_comment |
+--------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---
------------+
| actors | 0 | PRIMARY | 1 | id | A | 818795 | NULL | NULL | | BTREE | |
|
| actors | 1 | actors_last_name | 1 | last_name | A | 283192 | NULL | NULL | YES | BTREE | |
|
+--------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---
------------+
2 rows in set (0.00 sec)

Indexing In-Class

Now run the query again.

Select * from actors where first_name like 'Ko%';

Look at total time to execute.

1302 rows in set (0.21 sec)

Indexing In-Class

According to the MySQL documentation:

Indexing In-Class

Source: https://dev.mysql.com/doc/refman/5.5/en/index-btree-hash.html

Let’s test this to verify it is true:

Notice we don’t have our index.

SHOW INDEX FROM actors;

+--------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---
------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
Index_comment |
+--------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---
------------+
| actors | 0 | PRIMARY | 1 | id | A | 818795 | NULL | NULL | | BTREE | |
|
| actors | 1 | actors_last_name | 1 | last_name | A | 283192 | NULL | NULL | YES | BTREE | |
|
+--------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---
------------+
2 rows in set (0.00 sec)

Indexing In-Class

Let’s test this to verify it is true:

Select * from actors where first_name like '%ok%'
or first_name like '%ri%';

Look at total time to execute.

83531 rows in set (0.37 sec)

Indexing In-Class

Let’s add the index again.

ALTER TABLE actors ADD INDEX
actors_first_name (first_name);

SHOW INDEX FROM actors;

+--------+------------+-------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+--
-------------+

| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
Index_comment |

+--------+------------+-------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+--
-------------+

| actors | 0 | PRIMARY | 1 | id | A | 818795 | NULL | NULL | | BTREE | |
|

| actors | 1 | actors_first_name | 1 | first_name | A | 90311 | NULL | NULL | YES | BTREE | |
|

| actors | 1 | actors_last_name | 1 | last_name | A | 283192 | NULL | NULL | YES | BTREE | |
|

+--------+------------+-------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+--
-------------+

3 rows in set (0.00 sec)

Indexing In-Class

Let’s test this to verify it is true:

Select * from actors where first_name like '%ok%'
or first_name like '%ri%';

Look at total time to execute.

83531 rows in set (0.34 sec)

Indexing In-Class

MySQL documentation on hashing indexing:

Indexing In-Class

Source: https://dev.mysql.com/doc/refman/5.5/en/index-btree-hash.html

Remove the index.

ALTER TABLE actors DROP INDEX
actors_first_name;

Indexing In-Class

After removing the index verify it is gone.

SHOW INDEX FROM actors;

+--------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---
------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
Index_comment |
+--------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---
------------+
| actors | 0 | PRIMARY | 1 | id | A | 818795 | NULL | NULL | | BTREE | |
|
| actors | 1 | actors_last_name | 1 | last_name | A | 283192 | NULL | NULL | YES | BTREE | |
|
+--------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---
------------+
2 rows in set (0.00 sec)

Indexing In-Class

Let’s add the index as a hash.

 ALTER TABLE actors ADD INDEX
actors_first_name (first_name) USING HASH;

SHOW INDEX FROM actors;

+--------+------------+-------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+--
-------------+

| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
Index_comment |

+--------+------------+-------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+--
-------------+

| actors | 0 | PRIMARY | 1 | id | A | 818795 | NULL | NULL | | BTREE | |
|

| actors | 1 | actors_first_name | 1 | first_name | A | 90311 | NULL | NULL | YES | BTREE | |
|

| actors | 1 | actors_last_name | 1 | last_name | A | 283192 | NULL | NULL | YES | BTREE | |
|

+--------+------------+-------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+--
-------------+

3 rows in set (0.00 sec)

Indexing In-Class

Rerun the queries:

Select * from actors where first_name like 'Ko%';

Any difference? Why?

Indexing In-Class

Lecture Outline

• Review Hashing
• Overview of Query Processing
• Selection

Overview of Query Processing
● Parsing and translation
● Optimization
● Evaluation

Based on and image from “Database System Concepts” book and slides, 6th edition

Basic Steps in Query Processing

● Parsing
− check syntax
− verify relations exist

● Translation
− translate the query into its internal form
− translate internal form into relational algebra

● Evaluation
− The query-execution engine takes a query-evaluation

plan, executes that plan, and returns the answers to
the query

Based on and image from “Database System Concepts” book and slides, 6th edition

Basic Steps in Query Processing :
Optimization

● A relational algebra expression may have many
equivalent expressions

● Each relational algebra operation can be evaluated
using one of several different algorithms
− Correspondingly, a relational-algebra expression

can be evaluated in many ways.

Based on and image from “Database System Concepts” book and slides, 6th edition

Basic Steps in Query Processing :
Optimization

● Annotated expression specifying detailed evaluation
strategy is called an evaluation-plan.
− can use an index on salary to find instructors with

salary < 75000,
− or can perform complete relation scan and

discard instructors with salary 75000

Based on and image from “Database System Concepts” book and slides, 6th edition

Basic Steps in Query Processing :
Optimization

● Evaluation primitive – relational algebra operation
annotated

● Query evaluation plan – Sequence of operations to
be used for evaluating query

● Query execution engine -
− Accepts plan
− Executes plan
− Returns a result

Based on and image from “Database System Concepts” book and slides, 6th edition

Basic Steps in Query
Processing: Optimization

● Different evaluation plans – different costs
● Database system must construct most efficient query

evaluation plan
● Query Optimization – Chooses evaluation plan with

lowest cost
− Cost is estimated using statistical information from the

database catalog
● number of tuples in each relation, size of tuples,

etc.
● Once lowest cost plan chosen, query is evaluated and

records returned

Based on and image from “Database System Concepts” book and slides, 6th edition

Basic Steps in Query
Processing: Optimization

● We will study
− How to measure query costs
− Algorithms for evaluating relational algebra

operations
− How to combine algorithms for individual

operations in order to evaluate a complete
expression

● Read Chapter 14 (will not be covered in this class)
− How to optimize queries, how to find an evaluation

plan with lowest estimated cost

Based on and image from “Database System Concepts” book and slides, 6th edition

Measures of Query Cost
● Estimate cost of individual operations then combine for

query evaluation plan cost
● Cost is generally measured as total elapsed time for

answering query
− Many factors contribute to time cost

● disk accesses
● CPU
● or even network communication

Based on and image from “Database System Concepts” book and slides, 6th edition

Measures of Query Cost
● Typically disk access is the predominant cost, and is also

relatively easy to estimate. Measured by taking into
account
− Number of seeks * average-seek-cost
− Number of blocks read * average-block-read-cost
− Number of blocks written * average-block-write-cost

● Cost to write a block is greater than cost to read a
block
− data is read back after being written to ensure that

the write was successful

Based on and image from “Database System Concepts” book and slides, 6th edition

Measures of Query Cost
● For simplicity we just use the number of block transfers from disk and

the number of seeks as the cost measures

− tT – time to transfer one block

− tS – time for one seek

− Cost for b block transfers plus S seeks

 b * tT + S * tS

● We ignore CPU costs for simplicity
− Real systems do take CPU cost into account

● We do not include cost to writing output to disk in our cost formulae

Based on and image from “Database System Concepts” book and slides, 6th edition

Measures of Query Cost
● Several algorithms can reduce disk IO by using extra buffer space

− Amount of real memory available to buffer depends on other
concurrent queries and OS processes, known only during execution

● We often use worst case estimates, assuming only the minimum
amount of memory needed for the operation is available

● Required data may be buffer resident already, avoiding disk I/O
− But hard to take into account for cost estimation

Based on and image from “Database System Concepts” book and slides, 6th edition

Measures of Query Cost

● Response Time – time it takes to execute the plan
− Hard to estimate due to:

● Dependence on contents of buffer when query
execution begins

● Dependence on how distributed in a multi-disk
configuration

● Optimizers try to minimize resource consumption vs.
response time

Based on and image from “Database System Concepts” book and slides, 6th edition

Profiling In-class

Let’s look at how MySQL profiles our queries:

SET profiling = 1;

Execute the following queries:

Select * from actors where first_name like 'Ko%'
or first_name like 'Wr%';

select a.first_name, a.last_name, r.role, m.name,
m.year from actors a, roles r, movies m where
a.id=r.actor_id and m.id=r.movie_id limit 500;

Read more https://dev.mysql.com/doc/refman/5.7/en/show-profiles.html

Profiling In-class

Let’s look at how MySQL profiles our queries:

Run the follow commands:

SHOW PROFILES;

Read more https://dev.mysql.com/doc/refman/5.7/en/show-profiles.html

Profiling In-class

You should see something like this:

mysql> SHOW PROFILES;

+----------+------------+--

---+

| Query_ID | Duration | Query

|

+----------+------------+--

---+

| 1 | 0.00880925 | Select * from actors where first_name like 'Ko%' or first_name like 'Wr%'

|

| 2 | 0.00449275 | select a.first_name, a.last_name, r.role, m.name, m.year from actors a, roles r, movies m where

a.id=r.actor_id and m.id=r.movie_id limit 500 |

+----------+------------+--

---+

2 rows in set, 1 warning (0.00 sec)

Read more https://dev.mysql.com/doc/refman/5.7/en/show-profiles.html

Profiling In-class

Let’s look at how MySQL profiles our queries:
SHOW PROFILE FOR QUERY 1;
+----------------------+----------+
| Status | Duration |
+----------------------+----------+
starting	0.000134
checking permissions	0.000018
Opening tables	0.000032
init	0.000064
System lock	0.000020
optimizing	0.000022
statistics	0.000263
preparing	0.000037
executing	0.000007
Sending data	0.008110
end	0.000018
query end	0.000019
closing tables	0.000014
freeing items	0.000029
cleaning up	0.000024
+----------------------+----------+
15 rows in set, 1 warning (0.00 sec)

Read more https://dev.mysql.com/doc/refman/5.7/en/show-profiles.html

Profiling In-class

Let’s look at how MySQL profiles our queries:
SHOW PROFILE FOR QUERY 2;

+----------------------+----------+
| Status | Duration |
+----------------------+----------+
starting	0.000133
checking permissions	0.000010
checking permissions	0.000005
checking permissions	0.000008
Opening tables	0.000035
init	0.000044
System lock	0.000028
optimizing	0.000023
statistics	0.000091
preparing	0.000029
executing	0.000007
Sending data	0.003984
end	0.000013
query end	0.000015
closing tables	0.000015
freeing items	0.000031
cleaning up	0.000024
+----------------------+----------+
17 rows in set, 1 warning (0.00 sec)

Read more https://dev.mysql.com/doc/refman/5.7/en/show-profiles.html

Explain In-class

Let’s look at how MySQL Explain can be used:
mysql> explain actors;
+------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------+
id	int(11)	NO	PRI	0	
first_name	varchar(100)	YES	MUL	NULL	
last_name	varchar(100)	YES	MUL	NULL	
gender	char(1)	YES		NULL	
+------------+--------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

mysql> explain movies;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
id	int(11)	NO	PRI	0	
name	varchar(100)	YES	MUL	NULL	
year	int(11)	YES		NULL	
rank	float	YES		NULL	
+-------+--------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

mysql> explain roles;
+----------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+--------------+------+-----+---------+-------+
actor_id	int(11)	NO	PRI	NULL	
movie_id	int(11)	NO	PRI	NULL	
role	varchar(100)	NO	PRI	NULL	
+----------+--------------+------+-----+---------+-------+
3 rows in set (0.00 sec)

Read more https://dev.mysql.com/doc/refman/5.7/en/using-explain.html

Explain In-class

Let’s look at how MySQL Explain can be used:
mysql> explain Select * from actors where first_name like 'Ko%' or first_name like 'Wr%';
+----+-------------+--------+------------+-------+-------------------+-------------------+---------+------+------+----------+----------
-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra
|
+----+-------------+--------+------------+-------+-------------------+-------------------+---------+------+------+----------+----------
-------------+
| 1 | SIMPLE | actors | NULL | range | actors_first_name | actors_first_name | 303 | NULL | 1322 | 100.00 | Using
index condition |
+----+-------------+--------+------------+-------+-------------------+-------------------+---------+------+------+----------+----------
-------------+
1 row in set, 1 warning (0.00 sec)

mysql> explain select a.first_name, a.last_name, r.role, m.name, m.year from actors a, roles r, movies m where a.id=r.actor_id and
m.id=r.movie_id limit 500;
+----+-------------+-------+------------+--------+---------------------------+----------+---------+-----------------+--------+---------
-+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered
| Extra |
+----+-------------+-------+------------+--------+---------------------------+----------+---------+-----------------+--------+---------
-+-------------+
| 1 | SIMPLE | m | NULL | ALL | PRIMARY | NULL | NULL | NULL | 392486 | 100.00
| NULL |
| 1 | SIMPLE | r | NULL | ref | PRIMARY,actor_id,movie_id | movie_id | 4 | imdb.m.id | 9 | 100.00
| Using index |
| 1 | SIMPLE | a | NULL | eq_ref | PRIMARY | PRIMARY | 4 | imdb.r.actor_id | 1 | 100.00
| NULL |
+----+-------------+-------+------------+--------+---------------------------+----------+---------+-----------------+--------+---------
-+-------------+
3 rows in set, 1 warning (0.00 sec)

Read more https://dev.mysql.com/doc/refman/5.7/en/using-explain.html

Explain In-class

Let’s look at how MySQL Explain can be used:
explain select actors.first_name, actors.last_name, roles.role,
movies.name, movies.year from actors, roles, movies where
roles.actor_id=actors.id and roles.movie_id=movies.id and
movies.name like 'S%' and actors.first_name like 'Wr%';

+----+-------------+--------+------------+--------+---------------------------+-------------------+---------+-------------
--------+------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+--------+------------+--------+---------------------------+-------------------+---------+-------------
--------+------+----------+-----------------------+
| 1 | SIMPLE | actors | NULL | range | PRIMARY,actors_first_name | actors_first_name | 303 | NULL
| 20 | 100.00 | Using index condition |
| 1 | SIMPLE | roles | NULL | ref | PRIMARY,actor_id,movie_id | actor_id | 4 |
imdb.actors.id | 4 | 100.00 | Using index |
| 1 | SIMPLE | movies | NULL | eq_ref | PRIMARY,movies_name | PRIMARY | 4 |
imdb.roles.movie_id | 1 | 18.07 | Using where |
+----+-------------+--------+------------+--------+---------------------------+-------------------+---------+-------------
--------+------+----------+-----------------------+
3 rows in set, 1 warning (0.00 sec)

Read more https://dev.mysql.com/doc/refman/5.7/en/using-explain.html

Explain In-class

Let’s look at how MySQL Explain can be used:

explain select actors.first_name, actors.last_name, roles.role,
movies.name, movies.year from actors, roles, movies where
roles.actor_id=actors.id and roles.movie_id=movies.id and
movies.name like 'S%' limit 500;

+----+-------------+--------+------------+--------+---------------------------+-------------+---------+-------------------
--+-------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+--------+------------+--------+---------------------------+-------------+---------+-------------------
--+-------+----------+-----------------------+
| 1 | SIMPLE | movies | NULL | range | PRIMARY,movies_name | movies_name | 303 | NULL
| 70086 | 100.00 | Using index condition |
| 1 | SIMPLE | roles | NULL | ref | PRIMARY,actor_id,movie_id | movie_id | 4 | imdb.movies.id
| 10 | 100.00 | Using index |
| 1 | SIMPLE | actors | NULL | eq_ref | PRIMARY | PRIMARY | 4 |
imdb.roles.actor_id | 1 | 100.00 | NULL |
+----+-------------+--------+------------+--------+---------------------------+-------------+---------+-------------------
--+-------+----------+-----------------------+
3 rows in set, 1 warning (0.00 sec)

Read more https://dev.mysql.com/doc/refman/5.7/en/using-explain.html

Explain In-class

Let’s look at how MySQL Explain can be used:

explain select actors.first_name, actors.last_name, roles.role,
movies.name, movies.year from actors, roles, movies where
roles.actor_id=actors.id and roles.movie_id=movies.id and
movies.name like 'S%' and actors.first_name like 'S%' limit 500;

+----+-------------+--------+------------+--------+---------------------------+-------------------+---------+-------------
--------+--------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+--------+------------+--------+---------------------------+-------------------+---------+-------------
--------+--------+----------+-----------------------+
| 1 | SIMPLE | actors | NULL | range | PRIMARY,actors_first_name | actors_first_name | 303 | NULL
| 112800 | 100.00 | Using index condition |
| 1 | SIMPLE | roles | NULL | ref | PRIMARY,actor_id,movie_id | actor_id | 4 |
imdb.actors.id | 4 | 100.00 | Using index |
| 1 | SIMPLE | movies | NULL | eq_ref | PRIMARY,movies_name | PRIMARY | 4 |
imdb.roles.movie_id | 1 | 18.07 | Using where |
+----+-------------+--------+------------+--------+---------------------------+-------------------+---------+-------------
--------+--------+----------+-----------------------+
3 rows in set, 1 warning (0.00 sec)

Read more https://dev.mysql.com/doc/refman/5.7/en/using-explain.html

Lecture Outline

• Review Hashing and Indexing in Context
• Overview of Query Processing
• Selection

Selection Operation
● File scan

− Lowest level operator to access data
− Algorithms to locate/retrieve records

● Assuming tuples are stored in one file for a selection
operation

● Let's look at each search algorithm

Based on and image from “Database System Concepts” book and slides, 6th edition

Selection Operation
● Algorithm A1 (linear search)

− Scan each file block and test all records to see whether
they satisfy the selection condition

− Initial seek required to access first block

Based on and image from “Database System Concepts” book and slides, 6th edition

Selection Operation
● Linear search can be applied to any file regardless of

− selection condition or
− ordering of records in the file, or
− availability of indices

● Slower than other algorithms
● Note: binary search generally does not make sense since

data is not stored consecutively
− except when there is an index available,
− and binary search requires more seeks than index

search

Based on and image from “Database System Concepts” book and slides, 6th edition

Selections Using Indices

● Index scan – search algorithms that use an index
− selection condition must be on search-key of index

● A2 (primary index, equality on key)
− Retrieve a single record that satisfies the corresponding

equality condition
− Equality comparison on key attribute with primary index
− Use index to retrieve record that satisfies equality

condition

− Can be used B+-Tree file organization to help access
performance

● Problems related to relocation and secondary indices

Based on and image from “Database System Concepts” book and slides, 6th edition

Selections Using Indices

● A3 (primary index, equality on nonkey)
− Retrieve multiple records using a primary index when

selection condition specifies equality comparison on
nonkey attribute

− Records will be on consecutive blocks
● Let b = number of blocks containing matching

records

Based on and image from “Database System Concepts” book and slides, 6th edition

● A4 (secondary index, equality on nonkey)
− Retrieve a single record if the search-key is a

candidate key

Cost = (hi + 1) * (tT + tS)

− Retrieve multiple records if search-key is not a
candidate key

● each of n matching records may be on a
different block

Cost = (hi + n) * (tT + tS)

Can be very expensive!

Selections Using Indices

Based on and image from “Database System Concepts” book and slides, 6th edition

Selections Involving Comparisons
● Selections of the form σA≤V (r) or σA ≥ V(r) by using

− a linear search,
− or by using indices in the following ways:

● A5 (primary index, comparison)
− Relation is sorted on A
− For σA ≥ V(r) use index to find first tuple ≥ v and scan

relation sequentially from there
− For σA≤V (r) just scan relation sequentially till first tuple >

v; do not use index

Based on and image from “Database System Concepts” book and slides, 6th edition

Selections Involving Comparisons
● A6 (secondary index, comparison)

− Use secondary ordered index for <,<=,>=,>
− For σA ≥ V(r) use index to find first index entry ≥ v and

scan index sequentially from there, to find pointers to
records.

− For σA≤V (r) just scan leaf pages of index finding pointers
to records, till first entry > v

− In either case, retrieve records that are pointed to
● requires an I/O for each record
● Linear file scan may be cheaper

Based on and image from “Database System Concepts” book and slides, 6th edition

Implementation of Complex Selections

● Conjunction: σθ1∧ θ2∧. . . θn(r)
● A7 (conjunctive selection using one index)

− Select a combination of θi and algorithms A1 through A7
that results in the least cost for σθi (r)

− Test other conditions on tuple after fetching it into
memory buffer

● A8 (conjunctive selection using composite index)
− Use appropriate composite (multiple-key) index if

available
− Type of index determines whether A2, A3 or A4 will be

used

Based on and image from “Database System Concepts” book and slides, 6th edition

● A9 (conjunctive selection by intersection of identifiers)
− Requires indices with record pointers
− Use corresponding index for each condition, and take

intersection of all the obtained sets of record pointers
− Then fetch records from file
− If some conditions do not have appropriate indices,

apply test in memory
− Cost is sum of costs of each index scan + cost of

retrieving records in intersection of retrieved lists of
pointers , can retrieve records in sorted order

Implementation of Complex Selections

Based on and image from “Database System Concepts” book and slides, 6th edition

● A10 (disjunctive selection by union of identifiers)

Implementation of Complex Selections

Based on and image from “Database System Concepts” book and slides, 6th edition

