
Lecture 16 – Chapter 11 Indexing
and Hashing Part 1

These slides are based on “Database System Concepts” 6th
edition book (whereas some quotes and figures are used from the
book) and are a modified version of the slides which accompany
the book (http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html),
in addition to the 2009/2012 CMSC 461 slides by Dr. Kalpakis

CMSC 461, Database Management Systems
Spring 2018

Dr. Jennifer Sleeman https://www.csee.umbc.edu/~jsleem1/courses/461/spr18

Logistics

● Project Phase 2 due
● Homework #4 will be available this evening

Logistics

Lecture Outline

• Summary of Storage and File Organization
• Indexing

Lecture Outline

• Summary of Storage and File Organization
• Indexing

Summary of Storage and File
Organization

● DBMS typically stores data on disk
● Try to minimize overhead of moving

between disk and memory
− Performance measures
− Optimizations for block access
− RAID – High capacity and reliability

Based on and image from “Database System Concepts” book and slides, 6th edition

Storage Hierarchy

Based on and image from “Database System Concepts” book and slides, 6th edition

Summary of Storage and File
Organization

● The database is stored as a collection of
files

● Each file is a sequence of records
● A record is a sequence of fields
● Records are mapped onto disk blocks

− Each file logically partitioned into blocks

Based on and image from “Database System Concepts” book and slides, 6th edition

Summary of Storage and File
Organization

● Blocks are the units of storage allocation
and data transfer
− Usually 4 to 8 kilobytes

● A block can contain many records
● The physical data organization

determines how many records contained
in a block

Based on and image from “Database System Concepts” book and slides, 6th edition

Summary of Storage and File
Organization

● Fixed length records
− Simple access
− Records could cross blocks
− Free Lists

● Variable length records
− Storage of multiple record types in a file
− Record types that allow variable lengths for one or

more fields such as strings (varchar)
− Record types that allow repeating fields (used in

some older data models)

Based on and image from “Database System Concepts” book and slides, 6th edition

Organization of Records in Files

● Heap – a record can be placed anywhere in the
file where there is space

● Sequential – store records in sequential order,
based on the value of the search key of each
record

Based on and image from “Database System Concepts” book and slides, 6th edition

Organization of Records in Files

● Hashing – a hash function computed on some
attribute of each record; the result specifies in
which block of the file the record should be
placed

● Records of each relation may be stored in a
separate file. In a multitable clustering file
organization records of several different
relations can be stored in the same file
− Motivation: store related records on the same block

to minimize I/O

Based on and image from “Database System Concepts” book and slides, 6th edition

Lecture Outline

• Summary of Storage and File Organization
• Indexing

Indexing

+-----------+--------+----------+------+----------+-------------+--------------+
| course_id | sec_id | semester | year | building | room_number | time_slot_id |
+-----------+--------+----------+------+----------+-------------+--------------+
BIO-101	1	Summer	2009	Painter	514	B
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall	2009	Packard	101	H
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	A
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	B
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	B
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A
+-----------+--------+----------+------+----------+-------------+--------------+

select * from section;

Indexing

+-----------+--------+----------+------+----------+-------------+--------------+
| course_id | sec_id | semester | year | building | room_number | time_slot_id |
+-----------+--------+----------+------+----------+-------------+--------------+
| BIO-101 | 1 | Summer | 2009 | Painter | 514 | B |
| BIO-301 | 1 | Summer | 2010 | Painter | 514 | A |
+-----------+--------+----------+------+----------+-------------+--------------+

select * from section where course_id = 'BIO-101' or
course_id = 'BIO-301';

Indexing

Indexing

Based on and image from “Database System Concepts” book and slides, 6th edition

Indexing

+-----------+--------+----------+------+----------+-------------+--------------+
| course_id | sec_id | semester | year | building | room_number | time_slot_id |
+-----------+--------+----------+------+----------+-------------+--------------+
| BIO-101 | 1 | Summer | 2009 | Painter | 514 | B |
| BIO-301 | 1 | Summer | 2010 | Painter | 514 | A |
+-----------+--------+----------+------+----------+-------------+--------------+

select * from section where course_id = 'BIO-101' or
course_id = 'BIO-301';

Indexing

● Queries accessing small portion of
data
− Don't read more than needed
− Locate records directly

● Indexing – think of an index in a book
− Sorted
− Smaller than the data itself

Based on and image from “Database System Concepts” book and slides, 6th edition

Basic Concepts

● Indexing mechanisms used to speed up
access to desired data.
− E.g., author catalog in library

● Search Key – attribute/set of attributes
used to look up records in a file

● An index file consists of records (called
index entries) of the form

search-key pointer

Based on and image from “Database System Concepts” book and slides, 6th edition

Basic Concepts

● Two basic kinds of indices:
− Ordered indices: search keys are stored in

sorted order
− Hash indices: search keys are distributed

uniformly across “buckets” using a “hash
function”.

Based on and image from “Database System Concepts” book and slides, 6th edition

Index Evaluation Metrics

● Different techniques for different
applications

● In general evaluate using the following:
− Access types

● supported efficiently
● Find records with a specified value in the attribute
● or records with an attribute value falling in a

specified range of values.
− Access time

● Time it takes to find item

Based on and image from “Database System Concepts” book and slides, 6th edition

Index Evaluation Metrics

− Insertion time

● Time it takes to insert new item
− Deletion time

● Time it takes to delete item
− Space overhead

● Additional space occupied by index structure
● Good to sacrifice space for better performance

Based on and image from “Database System Concepts” book and slides, 6th edition

Ordered Indices

● In an ordered index, index entries are
stored sorted on the search key value
− Similar to catalog in library
− Search keys in sorted order
− Search key to records
− Files can have many search keys

● Primary index - in a sequentially ordered
file, the index whose search key specifies
the sequential order of the file
− Also called clustering index
− The search key of a primary index is usually but

not necessarily the primary key.
Based on and image from “Database System Concepts” book and slides, 6th edition

Ordered Indices

● Secondary index - an index whose search
key specifies an order different from the
sequential order of the file
− Also called non-clustering index

● Index-sequential file: ordered sequential file
with a primary index.

Based on and image from “Database System Concepts” book and slides, 6th edition

Dense Index Files
● Dense index — Index record appears for every search-key value in

the file.
● E.g. index on ID attribute of instructor relation

Based on and image from “Database System Concepts” book and slides, 6th edition

Dense Index Files
● Dense index on dept_name, with instructor file sorted on dept_name

Based on and image from “Database System Concepts” book and slides, 6th edition

Sparse Index Files

● Sparse Index: contains
index records for only some
search-key values.
− Applicable when records are

sequentially ordered on
search-key

● To locate a record with
search-key value K we:
− Find index record with largest

search-key value < K
− Search file sequentially

starting at the record to which
the index record points

Based on and image from “Database System Concepts” book and slides, 6th edition

Dense/Sparse Index Files

Based on and image from “Database System Concepts” book and slides, 6th edition

Dense Index File

Sparse Index File

Sparse Index Files
● Compared to dense indices:

− Less space and less maintenance overhead for insertions
and deletions.

− Generally slower than dense index for locating records.
● Good tradeoff: sparse index with an index entry for every

block in file, corresponding to least search-key value in the
block.

Based on and image from “Database System Concepts” book and slides, 6th edition

Multilevel Index
● If primary index does not fit in memory, access becomes expensive.
● Solution: treat primary index kept on disk as a sequential file and

construct a sparse index on it.
− outer index – a sparse index of primary index
− inner index – the primary index file

● If even outer index is too large to fit in main memory, yet another level
of index can be created, and so on.

● Indices at all levels must be updated on insertion or deletion from the
file.

Based on and image from “Database System Concepts” book and slides, 6th edition

Multilevel Index

Based on and image from “Database System Concepts” book and slides, 6th edition

Index Update: Insertion
● Single-level index insertion:

− Perform a lookup using the search-key value appearing in the
record to be inserted.

− Dense indices – if the search-key value does not appear in the
index, insert it.

− Sparse indices – if index stores an entry for each block of the
file, no change needs to be made to the index unless a new block
is created.

● If a new block is created, the first search-key value appearing
in the new block is inserted into the index.

● Multilevel insertion and deletion: algorithms are simple extensions
of the single-level algorithms

Based on and image from “Database System Concepts” book and slides, 6th edition

Index Update: Deletion

● Single-level index entry deletion:
− Dense indices – deletion of search-key is similar to file record

deletion.
− Sparse indices –

● if an entry for the search key exists in the index, it is deleted by
replacing the entry in the index with the next search-key value in
the file (in search-key order).

● If the next search-key value already has an index entry, the entry
is deleted instead of being replaced.

● If deleted record was the only
record in the file with its
particular search-key value, the
search-key is deleted from the
index also.

Based on and image from “Database System Concepts” book and slides, 6th edition

Secondary Indices
● Frequently, one wants to find all the records whose values in a

certain field (which is not the search-key of the primary index)
satisfy some condition.
− Example 1: In the instructor relation stored sequentially by ID,

we may want to find all instructors in a particular department
− Example 2: as above, but where we want to find all instructors

with a specified salary or with salary in a specified range of
values

● We can have a secondary index with an index record for each
search-key value

Based on and image from “Database System Concepts” book and slides, 6th edition

Secondary Indices Example

● Index record points to a bucket that contains pointers to all the actual
records with that particular search-key value.

● Secondary indices have to be dense

Secondary index on salary field of
instructor

Based on and image from “Database System Concepts” book and slides, 6th edition

Primary and Secondary Indices
● Indices offer substantial benefits when searching for records.
● BUT: Updating indices imposes overhead on database modification

--when a file is modified, every index on the file must be updated,
● Sequential scan using primary index is efficient, but a sequential scan

using a secondary index is expensive
− Each record access may fetch a new block from disk
− Block fetch requires about 5 to 10 milliseconds, versus about 100

nanoseconds for memory access

Based on and image from “Database System Concepts” book and slides, 6th edition

