
Lecture 16 – Chapter 11 Indexing 
and Hashing Part 1
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in addition to the 2009/2012 CMSC 461 slides by Dr. Kalpakis
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Logistics

● Project Phase 2 due
● Homework #4 will be available this evening
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Summary of Storage and File 
Organization

● DBMS typically stores data on disk
● Try to minimize overhead of moving 

between disk and memory
− Performance measures
− Optimizations for block access
− RAID – High capacity and reliability
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Storage Hierarchy
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Summary of Storage and File 
Organization

● The database is stored as a collection of 
files 

● Each file is a sequence of records  
● A record is a sequence of fields
● Records are mapped onto disk blocks

− Each file logically partitioned into blocks
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Summary of Storage and File 
Organization

● Blocks are the units of storage allocation 
and data transfer
− Usually 4 to 8 kilobytes

● A block can contain many records
● The physical data organization 

determines how many records contained 
in a block
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Summary of Storage and File 
Organization

● Fixed length records
− Simple access
− Records could cross blocks
− Free Lists

● Variable length records
− Storage of multiple record types in a file
− Record types that allow variable lengths for one or 

more fields such as strings (varchar)
− Record types that allow repeating fields (used in 

some older data models)
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Organization of Records in Files

● Heap – a record can be placed anywhere in the 
file where there is space

● Sequential – store records in sequential order, 
based on the value of the search key of each 
record
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Organization of Records in Files

● Hashing – a hash function computed on some 
attribute of each record; the result specifies in 
which block of the file the record should be 
placed

● Records of each relation may be stored in a 
separate file. In a multitable clustering file 
organization records of several different 
relations can be stored in the same file
− Motivation: store related records on the same block 

to minimize I/O
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Indexing

+-----------+--------+----------+------+----------+-------------+--------------+
| course_id | sec_id | semester | year | building | room_number | time_slot_id |
+-----------+--------+----------+------+----------+-------------+--------------+
| BIO-101   | 1      | Summer   | 2009 | Painter  | 514         | B            |
| BIO-301   | 1      | Summer   | 2010 | Painter  | 514         | A            |
| CS-101    | 1      | Fall     | 2009 | Packard  | 101         | H            |
| CS-101    | 1      | Spring   | 2010 | Packard  | 101         | F            |
| CS-190    | 1      | Spring   | 2009 | Taylor   | 3128        | E            |
| CS-190    | 2      | Spring   | 2009 | Taylor   | 3128        | A            |
| CS-315    | 1      | Spring   | 2010 | Watson   | 120         | D            |
| CS-319    | 1      | Spring   | 2010 | Watson   | 100         | B            |
| CS-319    | 2      | Spring   | 2010 | Taylor   | 3128        | C            |
| CS-347    | 1      | Fall     | 2009 | Taylor   | 3128        | A            |
| EE-181    | 1      | Spring   | 2009 | Taylor   | 3128        | C            |
| FIN-201   | 1      | Spring   | 2010 | Packard  | 101         | B            |
| HIS-351   | 1      | Spring   | 2010 | Painter  | 514         | C            |
| MU-199    | 1      | Spring   | 2010 | Packard  | 101         | D            |
| PHY-101   | 1      | Fall     | 2009 | Watson   | 100         | A            |
+-----------+--------+----------+------+----------+-------------+--------------+

select * from section;



Indexing

+-----------+--------+----------+------+----------+-------------+--------------+
| course_id | sec_id | semester | year | building | room_number | time_slot_id |
+-----------+--------+----------+------+----------+-------------+--------------+
| BIO-101   | 1      | Summer   | 2009 | Painter  | 514         | B            |
| BIO-301   | 1      | Summer   | 2010 | Painter  | 514         | A            |
+-----------+--------+----------+------+----------+-------------+--------------+

select * from section where course_id = 'BIO-101' or 
course_id = 'BIO-301';
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Indexing

+-----------+--------+----------+------+----------+-------------+--------------+
| course_id | sec_id | semester | year | building | room_number | time_slot_id |
+-----------+--------+----------+------+----------+-------------+--------------+
| BIO-101   | 1      | Summer   | 2009 | Painter  | 514         | B            |
| BIO-301   | 1      | Summer   | 2010 | Painter  | 514         | A            |
+-----------+--------+----------+------+----------+-------------+--------------+

select * from section where course_id = 'BIO-101' or 
course_id = 'BIO-301';



Indexing

● Queries accessing small portion of 
data
− Don't read more than needed
− Locate records directly

● Indexing – think of an index in a book
− Sorted
− Smaller than the data itself 
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Basic Concepts

● Indexing mechanisms used to speed up 
access to desired data.
− E.g., author catalog in library

● Search Key – attribute/set of attributes 
used to look up records in a file

● An index file consists of records (called 
index entries) of the form

 
 

search-key pointer
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Basic Concepts

● Two basic kinds of indices:
− Ordered indices:  search keys are stored in 

sorted order
− Hash indices:  search keys are distributed 

uniformly across “buckets” using a “hash 
function”. 
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Index Evaluation Metrics

● Different techniques for different 
applications

● In general evaluate using the following:
− Access types 

● supported efficiently 
● Find records with a specified value in the attribute
● or records with an attribute value falling in a 

specified range of values.
− Access time

● Time it takes to find item
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Index Evaluation Metrics

 
− Insertion time

● Time it takes to insert new item
− Deletion time

● Time it takes to delete item
− Space overhead

● Additional space occupied by index structure
● Good to sacrifice space for better performance
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Ordered Indices

● In an ordered index, index entries are 
stored sorted on the search key value
− Similar to catalog in library
− Search keys in sorted order
− Search key to records 
− Files can have many search keys

● Primary index - in a sequentially ordered 
file, the index whose search key specifies 
the sequential order of the file
− Also called clustering index
− The search key of a primary index is usually but 

not necessarily the primary key.
Based on and image from  “Database System Concepts” book and slides, 6th edition



Ordered Indices

● Secondary index - an index whose search 
key specifies an order different from the 
sequential order of the file 
− Also called non-clustering index

● Index-sequential file: ordered sequential file 
with a primary index.
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Dense Index Files
● Dense index — Index record appears for every search-key value in 

the file. 
● E.g. index on ID attribute of instructor relation 

Based on and image from  “Database System Concepts” book and slides, 6th edition



Dense Index Files
● Dense index on dept_name, with instructor file sorted on dept_name
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Sparse Index Files

● Sparse Index:  contains 
index records for only some 
search-key values.
− Applicable when records are 

sequentially ordered on 
search-key

● To locate a record with 
search-key value K we:
− Find index record with largest 

search-key value < K
− Search file sequentially 

starting at the record to which 
the index record points
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Dense/Sparse Index Files

Based on and image from  “Database System Concepts” book and slides, 6th edition

Dense Index File

Sparse Index File



Sparse Index Files
● Compared to dense indices:

− Less space and less maintenance overhead for insertions 
and deletions.

− Generally slower than dense index for locating records.
● Good tradeoff: sparse index with an index entry for every 

block in file, corresponding to least search-key value in the 
block.
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Multilevel Index
● If primary index does not fit in memory, access becomes expensive.
● Solution: treat primary index kept on disk as a sequential file and 

construct a sparse index on it.
− outer index – a sparse index of primary index
− inner index – the primary index file

● If even outer index is too large to fit in main memory, yet another level 
of index can be created, and so on.

● Indices at all levels must be updated on insertion or deletion from the 
file.
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Multilevel Index
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Index Update:  Insertion
● Single-level index insertion:

− Perform a lookup using the search-key value appearing in the 
record to be inserted.

− Dense indices – if the search-key value does not appear in the 
index, insert it.

− Sparse indices – if index stores an entry for each block of the 
file, no change needs to be made to the index unless a new block 
is created.  

● If a new block is created, the first search-key value appearing 
in the new block is inserted into the index.

● Multilevel insertion and deletion:  algorithms are simple extensions 
of the single-level algorithms
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Index Update:  Deletion

● Single-level index entry deletion:
− Dense indices – deletion of search-key is similar to file record 

deletion.
− Sparse indices –

●  if an entry for the search key exists in the index, it is deleted by 
replacing the entry in the index with the next search-key value in 
the file (in search-key order).  

● If the next search-key value already has an index entry, the entry 
is deleted instead of being replaced.

● If deleted record was the only 
record in the file with its 
particular search-key value, the 
search-key is deleted from the 
index also.

Based on and image from  “Database System Concepts” book and slides, 6th edition



Secondary Indices
● Frequently, one wants to find all the records whose values in a 

certain field (which is not the search-key of the primary index) 
satisfy some condition.
− Example 1: In the instructor relation stored sequentially by ID, 

we may want to find all instructors in a particular department
− Example 2: as above, but where we want to find all instructors 

with a specified salary or with salary in a specified range of 
values

● We can have a secondary index with an index record for each 
search-key value
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Secondary Indices Example

● Index record points to a bucket that contains pointers to all the actual 
records with that particular search-key value.

● Secondary indices have to be dense

Secondary index on salary field of 
instructor
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Primary and Secondary Indices
● Indices offer substantial benefits when searching for records.
● BUT: Updating indices imposes overhead on database modification 

--when a file is modified, every index on the file must be updated, 
● Sequential scan using primary index is efficient, but a sequential scan 

using a secondary index is expensive 
− Each record access may fetch a new block from disk
− Block fetch requires about 5 to 10 milliseconds, versus about 100 

nanoseconds for memory access
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