UMBC

AN HONORS UNIVERSITY IN MARYLAND

CMSC 461, Database Management Systems

VAN
\7
Spring 2018

Lecture 16 — Chapter 11 Indexing
and Hashing Part 1

These slides are based on “Database System Concepts” 61"
edition book (whereas some quotes and figures are used from the
book) and are a modified version of the slides which accompany
the book (http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html),
in addition to the 2009/2012 CMSC 461 slides by Dr. Kalpakis

Dr. Jennifer Sleeman https://www.csee.umbc.edu/~jsleem1/courses/461/spr18

Logistics

. Project Phase 2 due
. Homework #4 will be available this evening

Logistics

Histogram of Midterm Grades

40 B Midterm Grade (count)

30

10

30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Midterm

Lecture Outline

« Summary of Storage and File Organization
* Indexing

Lecture Outline

e Summary of Storage and File Organization
* Indexing

Summary of Storage and File

Organization

. DBMS typically stores data on disk
. Try to minimize overhead of moving

between disk and memory

- Performance measures

- Optimizations for block access

- RAID — High capacity and reliability

Based on and image from “Database System Concepts” book and slides, 6" édition

Storage Hierarchy

cache

AN

main memory
7\

flash memory
AN

magnetic disk

I\

optical disk
AN

h 4

magnetic tapes

Based on and image from “Database System Concepts” book and slides, 6 diton

Summary of Storage and File

Organization

. The database is stored as a collection of
files

. Each file is a sequence of records

. Arecord is a sequence of fields

. Records are mapped onto disk blocks
- Each file logically partitioned into blocks

Based on and image from “Database System Concepts” book and slides, 6" édition

Summary of Storage and File

Organization

. Blocks are the units of storage allocation

and data transfer
- Usually 4 to 8 kilobytes

. A block can contain many records

. The physical data organization
determines how many records contained
in a block

Based on and image from “Database System Concepts” book and slides, 6" édition

Summary of Storage and File
Organization

rrrrr d 0 10101 Srinivasan | Comp. Sci. | 65000

= - - -« - - - - - recor d1 12121 Wu Finance 90000

F |Xed | en th reco rd s - o
o 1 1I/ANU\U ITVvViliiIyyull 1 vuUvVvViIli Uil e d3 22222 Einstein Physics 95000
rrrrr d4 32343 El Said History 60000

= TeCoT d5 33456 Gold Physics 87000

- Sim o leaccess = 0= 10 [E5 [Tor | Comp 5[7500
rrrrr d7 | 58583 | Califieri History 62000

rrrrr d 8 76543 Singh Finance 80000

rrrrr d9 76766 Crick Biology 72000

- Records could cross blocks = P .
record 11| 98345 Kim Elec. Eng. 80000

- Free Lists

. Variable length records
- Storage of multiple record types in a file
- Record types that allow variable lengths for one or
more fields such as strings (varchar)
- Record types that allow repeating fields (used in
some older data models)

Null bitmap (stored in 1 byte)
0000

21,5| 26,10| 36,10 | 65000 10101 | Srinivasan| Comp. Sci.
Bytes 0 4 8 12 2021 26 36 45

Based on and image from “Database System Concepts” book and slides, 6" édition

Organization of Records in Files

. Heap — a record can be placed anywhere in the
file where there is space

. Sequential — store records in sequential order,
based on the value of the search key of each
record

Based on and image from “Database System Concepts” book and slides, 6" édition

Organization of Records in Files

. Hashing — a hash function computed on some
attribute of each record; the result specifies in
which block of the file the record should be
placed

. Records of each relation may be stored in a
separate file. In a multitable clustering file
organization records of several different

relations can be stored in the same file
- Motivation: store related records on the same block
to minimize I/O

Based on and image from “Database System Concepts” book and slides, 6" édition

Lecture Outline

« Summary of Storage and File Organization
* Indexing

Indexing

select * from section;

+ + + + + + + +

| course_id | sec_id | semester | year | building | room_number | time_slot_id |
+ + + + + + + +

BIO-101	1	Summer	2009	Painter	514	B
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall]2009	Packard	101	H	

| CS-101 |1 | Spring | 2010 | Packard | 101 | F |
| CS-190 |1 | Spring | 2009 | Taylor | 3128 | E |

| CS-190 |2 | Spring | 2009 | Taylor | 3128 | A |

CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	B
CS-319	2	Spring	2010	Taylor	3128	C

| CS-347 |1 | Fall |2009 | Taylor |3128 | A |

| EE-181 |1 | Spring | 2009 | Taylor | 3128 | C |

| FIN-201 |1 | Spring | 2010 | Packard | 101 | B |
| HIS-351 | 1 | Spring | 2010 | Painter | 514 | C |

| MU-199 | 1 | Spring | 2010 | Packard | 101 | D |
| PHY-101 |1 | Fall |2009 | Watson | 100 | A |

+ + + + + + + +

Indexing

select * from section where course _id = 'BIO-101' or
course _id = 'BIO-301";

+ + + + + + + +

| course_id | sec_id | semester | year | building | room_number | time_slot_id |
+ + + + + + + +

| BIO-101 |1 | Summer | 2009 | Painter | 514 | B |

| BIO-301 |1 | Summer | 2010 | Painter | 514 | A |

+ + + + + + + +

Indexing

Indexing

Index

B

About cordless telephones 51

Advanced operation 17

Answer an external call during an
intercom call 15

Answering system operation 27

B
Basic operation 14
Battery 9, 38

C

Galllog 22, 37

Gall waiting 14
Chart of characters 18

D

Dateandtime 8

Delete from redial 26

Delete from the call log 24
Delete from the directory 20
Delete your announcement 32
Desk/table bracket installation 4
Dial a number from redial 26

Based on and image from “Database System Concepts” book and slides, 6 diton

Dial type 4,12
Directory 17
DSL filter 5

E
Edit an entry in the directory 20
Edit handset name 11

£
FGG, AGTA and IG regulations 53
Find handset 16

H
Handset display screen messages 36
Handset layout 6

|

Important safety instructions 39
Index 56-57

Installation 1

Install handset battery 2
Intercom call 15

Intemet 4

Indexing

select * from section where course _id = 'BIO-101' or
course _id = 'BIO-301";

+ + + + + + + +

| course_id | sec_id | semester | year | building | room_number | time_slot_id |
+ + + + + + + +

| BIO-101 |1 | Summer | 2009 | Painter | 514 | B |

| BIO-301 |1 | Summer | 2010 | Painter | 514 | A |

+ + + + + + + +

Indexing

. Queries accessing small portion of

data
- Don't read more than needed
- Locate records directly
. Indexing — think of an index in a book
- Sorted
- Smaller than the data itself

Based on and image from “Database System Concepts” book and slides, 6" édition

Basic Concepts

. Indexing mechanisms used to speed up

access to desired data.
- E.g., author catalog in library

. Search Key — attribute/set of attributes

used to look up records in a file
. An index file consists of records (called

index entries) of the form

search-key pointer

Based on and image from “Database System Concepts” book and slides, 6" édition

Basic Concepts

. Two basic kinds of indices:

- Ordered indices: search keys are stored in
sorted order
- Hash indices: search keys are distributed

uniformly across “buckets” using a “hash
function”.

Based on and image from “Database System Concepts” book and slides, 6" édition

Index Evaluation Metrics

. Different techniques for different
applications

. In general evaluate using the following:

- Access types
. supported efficiently
. Find records with a specified value in the attribute
. or records with an attribute value falling in a
specified range of values.
- Access time
. Time it takes to find item

Based on and image from “Database System Concepts” book and slides, 6" édition

Index Evaluation Metrics

- Insertion time
. lime it takes to insert new item

- Deletion time
. Time it takes to delete item

- Space overhead
. Additional space occupied by index structure
. Good to sacrifice space for better performance

Based on and image from “Database System Concepts” book and slides, 6" édition

Ordered Indices

. In an ordered index, index entries are

stored sorted on the search key value
- Similar to catalog in library
- Search keys in sorted order
- Search key to records
- Files can have many search keys
. Primary index - in a sequentially ordered
file, the index whose search key specifies

the sequential order of the file

- Also called clustering index

- The search key of a primary index is usually but
not necessarily the primary key.

Based on and image from “Database System Concepts” book and slides, 6" édition

Ordered Indices

. Secondary index - an index whose search
key specifies an order different from the

sequential order of the file
- Also called non-clustering index

. Index-sequential file: ordered sequential file
with a primary index.

Based on and image from “Database System Concepts” book and slides, 6" édition

Dense index — Index record appears for every search-key value in

the file.

Dense Index Files

E.g. index on ID attribute of instructor relation

10101

Y

12121

Y

15151

22222

Y

32343

Y

33456

Y

45565

Y

58583

Y

76543

Y

76766

Y

83821

Y

Y

98345

Y

10101 |Srinivasan | Comp. Sci. | 65000
12121 |Wu Finance 90000
15151 |[Mozart Music 40000
22222 [Einstein Physics 95000
32343 | El Said History 60000
33456 |Gold Physics 87000
45565 |Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 |Singh Finance 80000
76766 | Crick Biology 72000
83821 |Brandt Comp. Sci. | 92000
98345 |Kim Elec. Eng. | 80000

Based on and image from “Database System Concepts” book and slides, 6" édition

J ANAVAVAVAVAVAVAVAVAVAY

Dense index on dept_name, with instructor file sorted on dept_name

Dense Index Files

Biology - 76766 | Crick Biology 72000
Comp. Sci. ~ 10101 | Srinivasan| Comp. Sci. | 65000
Elec. Eng. N 45565 | Katz Comp. Sci. | 75000
Finance \\ 83821 | Brandt | Comp. Sci. | 92000
History \\ 98345 | Kim Elec. Eng. 80000
Music \ 12121 | Wu Finance 90000
Physics \\\ 76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri | History 62000
15151 | Mozart Music 40000
22222 | Einstein | Physics 95000
33465 | Gold Physics 87000

Based on and image from “Database System Concepts” book and slides, 6" édition

JNRRRRRRRAN

Sparse Index Files

. Sparse Index: contains
iIndex records for only some

search-key values.
- Applicable when records are

Seq ue nt| a I Iy 9) r'd e red ON [1ot 10101 |Srinivasan| Comp. Sci.

65000

32343 12121 [Wu Finance

76766 15151 |Mozart | Music
S e a rC h = key \ 22222 |Einstein | Physics

. 1o locate a record with 956 [Gold_—| Py

SearCh-key Value K we: 76543 |Singh | Finance

90000

40000

95000

32343 |El Said History 60000
87000

Comp. Sci.| 75000

58583 |Califieri | History 62000
80000

76766 | Crick Biology 72000
83821 |Brandt Comp. Sci.| 92000
80000

- Find index record with largest Sw345 Kim | Tl g
search-key value < K

- Search file sequentially
starting at the record to which
the index record points

Based on and image from “Database System Concepts” book and slides, 6" édition

J NAAVAVNAAVAVAAVAY

Dense/Sparse Index Files

Sparse Index File

Based on and image from “Database System Concepts” book and slides, 6" édition

Biology 76766 | Crick Biology 72000 1> 10101 10101 |Srinivasan | Comp. Sci. | 65000 .
Comp. Sci. 10101 | Srinivasan| Comp. Sci. | 65000 - 12121 12121 |Wu Finance 90000
Elec. Eng. 45565 | Katz Comp. Sci. | 75000 -7 15151 15151 |Mozart Music 40000
Finance \ 83821 | Brandt Comp. Sci. | 92000 _7 22222 22222 |Einstein Physics 95000
History \ 98345 | Kam Elec. Eng. | 80000 1 32343 32343 |ElSaid | History 60000
Music \ 12121 | Wu Finance 90000 _7 33456 33456 |Gold Physics 87000
Physics \ 76543 | Singh Finance 80000 _7 45565 45565 |Katz Comp. Sci. | 75000
32343 | ElSaid History 60000 1. 58583 58583 |Califieri | History 62000
58583 | Califieri | History 62000 1.~ 76543 76543 |Singh Finance 80000
15151 | Mozart Music 40000 _7 76766 76766 | Crick Biology 72000
22222 | Einstein Physics 95000 _7 83821 83821 |Brandt Comp. Sci. | 92000
33465 | Gold Physics 87000 | _ |~ 98345 98345 |Kim Elec. Eng. | 80000 | |
Dense Index File
10101 ~ 10101 |[Srinivasan| Comp. Sci.| 65000 >
32343 12121 |[Wu Finance 90000 =
76766 | \ 15151 |Mozart | Music 40000 -5
22222 |Einstein | Physics 95000 >
32343 |El Said History 60000 >
33456 |Gold Physics 87000 =
45565 |Katz Comp. Sci.| 75000 >
58583 |Califieri | History 62000 =
76543 |Singh Finance 80000 =
76766 |Crick Biology 72000 =i
83821 |Brandt Comp. Sci.| 92000 =i
98345 |Kim Elec. Eng. | 80000 _
- L

J UUITVAY

Sparse Index Files

. Compared to dense indices:
- Less space and less maintenance overhead for insertions
and deletions.
- Generally slower than dense index for locating records.
. Good tradeoff: sparse index with an index entry for every
block in file, corresponding to least search-key value in the
block.

-
v o

data
\| block 0

data
block 1

Based on and image from “Database System Concepts” book and slides, 6" édition

Multilevel Index

. If primary index does not fit in memory, access becomes expensive.
. Solution: treat primary index kept on disk as a sequential file and
construct a sparse index on it.
- outer index — a sparse index of primary index
- inner index — the primary index file
. If even outer index is too large to fit in main memory, yet another level
of index can be created, and so on.
. Indices at all levels must be updated on insertion or deletion from the

file.

Based on and image from “Database System Concepts” book and slides, 6" édition

Multilevel Index

index data
—N\block 0 \l block 0
* index —\ data
block 1 lock 1
outer index o

inner index

Based on and image from “Database System Concepts” book and slides, 6 editon

Index Update: Insertion

. Single-level index insertion:
- Perform a lookup using the search-key value appearing in the
record to be inserted.
- Dense indices — if the search-key value does not appear in the
index, insert it.
- Sparse indices — if index stores an entry for each block of the
file, no change needs to be made to the index unless a new block
Is created.
. If a new block is created, the first search-key value appearing
in the new block is inserted into the index.
. Multilevel insertion and deletion: algorithms are simple extensions
of the single-level algorithms i 7T

Crick Biology | 72000 - 10101 - 51
Comp. Sci. — 10101 | Srinivasan| Comp. Sci. | 65000 = 12121 - { Wu
Elec. Eng, J 45565 | Katz Comp. Sci. | 75000 S 15151 | T 51 M
Finance e 83821 | Brandt Comp. Sci. | 92000 oy 222 - 22 Eins
History ~={ 98345 | Kim Flec. Eng. | 80000 o 32343 | - El
Music N\ 12121 | Wa Finance 90000 o 33456 3456 | Gol sics
Physics A R 76543 | Singh Finance 80000 iV 45365 - 45565 [K Comp. 5 g %
Y\ T~ 32343 |ElSaid | History 60000 de” 58383 | —| 58583 |Calificri | History 62000 |
% 58583 | Califieri | TTistory 62000 | -| 76543 |Singh Finance 8000 P
N\ 15151 |Mozart | Music | 40000 | |~ 76766 | + [76766 | Crick Biology 2000
- 22222 [Einstein | Physics | 95000 1 83821 ~| 83821 |Bra Comp. 5¢
33465 | Gold Physics 87000 Kz 98345 ~[98345 |Kim Elec. Eng, | 80000
Dense Index File
10101 | +———{ 10101 |Srinivasan| Comp. Sci.| 65000 >
32343 | N 12121 [Wu Finance | 90000 i
76766 | \] ™\ 15151 |Mozart | Music | 40000 %
N i 22222 |Einstein | Physics 95000 =
> = >
\ | 32343 |El Said History 60000
\\ 33456 |Gold Physics 87000 >
\ 45565 |Katz Comp. Sci. | 75000 - =iy
= Py . /
\\\ 58583 |Califieri | History 62000 -
\ | 76543 |Singh Finance 80000 =
Y 76766 |Crick Biology 72000 =
83821 |Brandt Comp. Sci.| 92000 =y
98345 |Kim Elec. Eng. | 80000 o

Based on and image from “Database System Concepts” book and slides, 6 diton Sparse Index File

Index Update: Deletion

10101 ~| 10101 |Srinivasan| Comp. Sci.| 65000

32343 | ~ 12121 (Wu Finance 90000

76766 | \ 15151 |[Mozart Music 40000

22222 |Einstein | Physics 95000

. If deleted record was the only ggi‘;z gl ?;id Ilj}ilstéry ggggg
- - IR 0 sics

record in the file with its 45565 |Katz Coi’np. Sci.| 75000

particular search-key value, the 58583 |Califieri | History | 62000

search-key is deleted from the 76543 |Singh Finance 80000

83821 |Brandt Comp. Sci.| 92000

98345 |Kim Elec. Eng. | 80000

J AVAVAVAVAVAVAVAVAVAVAN

. Single-level index entry deletion:
- Dense indices — deletion of search-key is similar to file record
deletion.
- Sparse indices —

. if an entry for the search key exists in the index, it is deleted by
replacing the entry in the index with the next search-key value in
the file (in search-key order).

. If the next search-key value already has an index entry, the entry
is deleted instead of being replaced.

Based on and image from “Database System Concepts” book and slides, 6" édition

Secondary Indices

Frequently, one wants to find all the records whose values in a

certain field (which is not the search-key of the primary index)

satisfy some condition.

- Example 1: In the instructor relation stored sequentially by ID,
we may want to find all instructors in a particular department

- Example 2: as above, but where we want to find all instructors
with a specified salary or with salary in a specified range of
values

We can have a secondary index with an index record for each

search-key value

Based on and image from “Database System Concepts” book and slides, 6" édition

Secondary Indices Example

40000

60000

62000

65000

72000

75000

80000

87000

90000

92000

95000

10101 | Srinivasan | Comp. Sci. | 65000

12121 [Wu Finance 90000 g
15151 | Mozart Music 40000 o
22222 | Einstein Physics 95000 &
32343 | El Said History 60000 -
33456 | Gold Physics 87000 .
45565 | Katz Comp. Sci. | 75000 =
58583 |Califieri | History 62000 -l
76543 | Singh Finance 80000 4
76766 | Crick Biology 72000 _
83821 |Brandt Comp. Sci. | 92000

98345 | Kim Elec. Eng. | 80000

J\)\)\N\NU\J\N\J

IINN

Secondary index on salary field of

instructor

. Index record points to a bucket that contains pointers to all the actual

records with that particular search-key value.

. Secondary indices have to be dense

Based on and image from “Database System Concepts” book and slides, 6" édition

Primary and Secondary Indices

Indices offer substantial benefits when searching for records.

BUT: Updating indices imposes overhead on database modification

--when a file is modified, every index on the file must be updated,

Sequential scan using primary index is efficient, but a sequential scan

using a secondary index is expensive

- Each record access may fetch a new block from disk

- Block fetch requires about 5 to 10 milliseconds, versus about 100
nanoseconds for memory access

Based on and image from “Database System Concepts” book and slides, 6" édition

