
Clustering Items for Collaborative Filtering
 Mark O’Connor & Jon Herlocker

Dept. of Computer Science and Engineering
University of Minnesota

Minneapolis, MN

{oconnor,herlocke}@cs.umn.edu

ABSTRACT
This short paper reports on work in progress related to applying
data partitioning/clustering algorithms to ratings data in
collaborative filtering. We use existing data partitioning and
clustering algorithms to partition the set of items based on user
rating data. Predictions are then computed independently within
each partition. Ideally, partitioning will improve the quality of
collaborative filtering predictions and increase the scalability of
collaborative filtering systems. We report preliminary results that
suggest that partitioning algorithms can greatly increase
scalability, but we have mixed results on improving accuracy.
However, partitioning based on ratings data does result in more
accurate predictions than random partitioning, and the results are
similar to those when the data is partitioned based on a known
content classification.

Keywords
Collaborative filtering, partitioning, clustering, GroupLens,
MovieLens.

1. INTRODUCTION
Recommender systems based on automated collaborative filtering
predict new items of interest for a user based on predictive
relationships discovered between that user and other participants
of a community. Most of the successful research and commercial
systems in collaborative filtering use a nearest-neighbor model for
generating predictions. Automated collaborative filtering systems
based on the nearest-neighbor method work in three simple
phases:

1. Users of an automated collaborative filtering system rate
items that they have previously experienced.

2. The automated collaborative filtering system matches the
user with other participants of the system who have similar
rating patterns (i.e. they have similar opinions on
experienced items.) This is usually done through statistical
correlation. The closest matches are selected, becoming
known as neighbors of the user, or collectively as the

neighborhood.

3. Items that the neighbors have experienced and rated highly,
but which the user has not yet experienced, will be
recommended to the user, ranked based on the closeness of
the neighbors to the user and the consistency of opinion
within the neighborhood.

Automated collaborative filtering systems are being applied to
larger and larger sets of items. With large numbers of items in the
prediction domain, we see the occurrence of three significant
negative phenomena:

1. Since users have limited resources to experience items (read
articles, see movies, listen to music), the density of user
ratings on items decreases. It becomes less likely that any
significant number of a user’s neighbors will have
experienced the item for which a prediction is being
requested

2. While the density will decrease, the number of items that
must be considered in each user to user correlation will still
increase, increasing the amount of time necessary to compute
the neighborhood.

3. As the number of items in the prediction domain gets large,
the diversity of those items will also increase (otherwise, why
would you need to recommender system to select between
them?). As this diversity increases, it becomes less likely
that a user’s opinions on all other items will be relevant to
his opinion on a single given item.

As a result of these negative phenomena, it becomes hard to scale
automated collaborative filtering systems to large numbers of
items while maintaining reasonable prediction performance.

The GroupLens automated collaborative filtering system for
Usenet news[7] was the first automated collaborative filtering
system to deal with massive item sets. GroupLens addressed the
large item set issue by creating a separate item partition for each
Usenet discussion group. A user’s prediction within a newsgroup
such as rec.humor was computed using only ratings of other
messages within rec.humor. Thus the prediction was only
influenced by opinions on humor, and not by opinions on non-
related topics, such as cooking (rec.food.recipes). Since each
reader of a newsgroup was presented with the same set of articles
to read, the ratings were denser, and there was more overlap
between users’ ratings.

We were able to accomplish this with Usenet news, because of the
existing well-defined partitioning of news articles based on
content. However, we would like a partitioning scheme that can
be generally applied to any set of items regardless of the content.
This would relieve us from having to design a new content-

specific partitioning technique for every new type of item we
predict.

Our approach is to partition items based on user rating data that
was collected for the purpose of collaborative filtering, which will
exist no matter what type of content we are recommending. We
believe that we can use this rating data to discover relationships
between items that would allow us to partition the items
effectively for the purpose of improving accuracy and
performance in automated collaborative filtering systems.

 We are currently exploring the use of existing data clustering and
partitioning techniques [4] to handle partitioning items sets based
only on user ratings for those items.

2. PARTITIONING ITEMS IN
COLLABORATIVE FILTERING
Partitioning the item-space reduces one large-dimensionality
space into a set of smaller-dimensionality spaces; with fewer
items, less ratings, and often less users. Once this space has been
partitioned, we apply the traditional collaborative filtering
algorithms[3, 7, 8] within each partition, independent of the other
partitions. The time to compute a prediction will decrease, since
there is less data to consider and the density of ratings should
increase because people who consume one item within a cluster
are more likely to have read similar items that occur within the
partition. We also hope that by clustering together similar items
within each partition, prediction accuracy will increase because
we have removed the noise generated by ratings on items of
dissimilar content or user interest.

Most clustering and partitioning algorithms require a distance
metric or similarity metric to guide the clustering process. In
order to provide this metric we need to compute a similarity
between items. The measure we used to calculate similarity
between items was the Pearson correlation coefficient. In effect,
we are computing the extent to which two items are similarly
rated by users. Intuitively, two movies will have a high correlation
if in general, users felt the same way about both movies. We did
not consider the effect of negative correlations, because the
partitioning algorithms considered were not designed to handle
negative similarities.

3. ALGORITHMS
Hundreds of variants of clustering and partitioning algorithms
have been published. In order to begin exploring the potential of
partitioning algorithms for items in collaborative filtering, we
have chosen to experiment with several well-known
clustering/partitioning algorithms with easily available
implementations.

We chose to experiment with four algorithms:

• Average link hierarchical agglomerative [1]

• ROCK [2] – A Robust Clustering Algorithm for Categorical
Attributes

• kMetis, and hMetis [5, 6] – Multilevel k-way Graph
Partitioning

The average link clustering algorithm is one of the classic basic
clustering algorithms, and was chosen to supply a base clustering
case. ROCK is a recent clustering algorithm developed at Bell

Labs and is supposed to have improved performance on
categorical data such as used in the MovieLens dataset. kMetis
and hMetis are high-speed graph (and hypergraph) partitioning
algorithms developed at the University of Minnesota.

We compared the results of clustering items in rating space to
clustering based on genres and also to random clustering. Random
clustering provides a baseline against which we can compare
clustering algorithm variants. Genres are a well-known content
attribute of movies, and using them allows us to compare rating-
based clustering to simple content-based clustering.

4. EXPERIMENTAL DATA
We are currently performing experiments on a subset of movie
rating data collected from the MovieLens web-based recommender
(movielens.umn.edu) (this has a similar form to, but is not the
same as the well known EachMovie dataset.) The data set used
contained 100,000 ratings from 943 users and 1,682 movies, with
each user rating at least 20 items. The ratings in the MovieLens
data were explicitly entered by users, and are integers ranging
from 1 to 5.

Some preprocessing was performed on the dataset, in order to
improve conditions for clustering. Any movie that correlated with
less than 5 other movies was discarded, along with all its ratings.
Also, any movie with less than 10 ratings was also discarded. This
narrowed the data set to 1,066 movies. Using the 1,066 movies
further narrowed the test set from 9,430 ratings to 9,166.

5. EXPERIMENTAL PROCEDURE
The data was divided into two parts, a training set and a test set.
The test set contained 10 ratings from each user, and the training
set contained the remaining ratings. A movie versus movie
correlation matrix was computed using only the training set.
Movies that had less than 10 users in common (i.e. movies for
which there are less than 10 people who have rated both) were
considered to have a zero correlation, since we did not consider
10 to be enough information to produce a confident correlation.

The movie versus movie matrix is used as input to the each of the
partitioning algorithms, resulting in a partitioning of items for
each algorithm. The procedure for computing predictions is as
follows:

for each clustering algorithm

compute partitions of items

for each partition

compute predictions for test set based
on Nearest Neighbor Collaborative
Filtering

6. EVALUATION
The following criteria was used to evaluate each prediction
strategy:
• Mean absolute error (MAE). The mean absolute error

between the predicted ratings and the actual ratings of users
within the test set.

• Coverage. The percentage of desired ratings that could be
predicted by the algorithm.

7. RESULTS
Results from the different experiments are shown in Table 1. The
mean absolute error is computed over all partitions generated by a
clustering algorithm.

7.1 Average Link
The Average Link algorithm is controlled by one parameter, k
which is the number of desired partitions. Low values of k
resulted in one mega cluster containing all but k-1 movies. Larger
values of k (e.g. k greater than 50) resulted in a more even
distribution but still many small useless clusters (see Figure 1).
Coverage using Average Link was low due to the inability to
predict for items occurring in the small clusters.

7.2 ROCK
The ROCK algorithm is controlled by two parameters: k, which is
the desired number of partitions and θ, which is a threshold point
that determines what correlations are considered. Results of the
ROCK algorithm were worse than those of Average Link. No
matter what settings of the parameters k and θ, there was only one
cluster with more than one item. Because clustering with ROCK
was ineffective we did not attempt to compute predictions within
its clusters.

7.3 Metis
Metis algorithms were the only algorithms that provided
reasonably distributed clusters. The Metis algorithms attempt to
create clusters of the same size. The kMetis algorithm guarantees

Method MAE Coverage
Unpartitioned base case 0.7594 99

Random 0.8211 74

Genre 0.7806 87

Average Link k = 50 0.7754 61

hMetis k = 5, Ubfactor = 10 0.7859 79

hMetis k = 5, Ubfactor = 1 0.7951 82

kMetis k = 5 0.8033 79

Table 1: Summary of Results. Ubfactor is the hMetis unbalance parameter.
k is the number of desired clusters

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350
Average Link, k=50

No. of
movies in
cluster

Cluster number

Figure 1: Distribution of movies within clusters generated by the Average Link
clustering algorithm when 50 clusters are requested.

all clusters will be approximately equally distributed, while the
hMetis has an unbalance parameter (Ubfactor) which allows the
algorithm to deviate from an equal distribution. Large values of
the unbalance parameter provide partitionings that were similar to
those of Average Link and ROCK.

Predictions computed in Metis generated clusters were more
accurate than predictions computed in randomly generated
clusters. In addition the Metis partitioning was able to produce
higher coverage than the random partitioning. Predictions based
on Metis generated clusters approximately as accurate as those
based on the Genre clustering although coverage was lower than
with Genre clustering.

The hMetis algorithm did not provide significantly better results
than the kMetis algorithm. The kMetis algorithm is preferable
because of its shorter execution time.

8. DISCUSSION
We have three goals when partitioning items in a collaborative
filtering system. We want to reduce the amount of computation
time, increase the extent in which we can compute predictions in
parallel, and increase the accuracy of predictions.

The kMetis graph partitioning algorithm was the most promising
clustering algorithm that we experimented with. While accuracy
of predictions computed on kMetis generated partitions was not as
good as the unpartitioned base case, both accuracy and coverage
were better than with the random partitioning. In addition, the
results using kMetis were similar to those using genre
partitioning. This suggests that an intelligent (non-random)
partitioning algorithm in rating space can perform as well as
partitioning on known content attributes.

By partitioning the item space into numerous smaller clusters each
individual prediction computation will take less time to complete.
Since each partition is independent of others, prediction
computation on each partition could be done in parallel, further
increasing the rate at which predictions can be computed.

One of our hypotheses was that we could increase prediction
accuracy by clustering together movies that were similarly rated.
However, we did not find this to be the case consistently in our
experiments. Only in one or two cases was accuracy for items in a
partition greater than the base unpartitioned case. This could be
due to the fact that correlation of ratings between two items
measures how similarly two items are rated, and not necessarily
how similar in content those two items are. It could also be due to
the fact that we are restricting items to being exclusively in one
cluster. Certain items may have significant predictive value for
multiple clusters and removing them may reduce the overall
accuracy.

9. FUTURE WORK
This short paper presents some initial results from work currently
in progress. We are continuing to explore the effectiveness of
clustering and partitioning techniques within rating spaces of
collaborative filtering. Further work will continue to explore what
characteristics of a clustering or partitioning algorithm make it
effective for partitioning items in collaborative filtering.

We are particularly interested in examining algorithms that create
clusters with non-exclusive item membership. A simple example
of this would be a clustering algorithm that allowed items to occur
in multiple clusters, while still minimizing the size of the clusters.
More complex algorithms might have an item belonging
fractionally to multiple clusters. We believe that this more closely
models the “ taste space” of the real world, where each item may
appeal to a set of different user “ tastes” .

10. REFERENCES
[1] E. Gose, R. Johnsonbaugh, and S. Jost. Pattern Recognition

and Image Analysis. Prentice Hall, 1996.

[2] S. Guha, R. Rastogi, and K. Shim. ROCK: a robust
clustering algorithm for categorical attributes. In Proc. of the
15th Int’ l Conf. On Data Eng., 1999.

[3] Hill, W. et al. Recommending and Evaluating Choices in a
Virtual Community of Use. In ” . In Proceedings of ACM
CHI’95 Conference on Human Factors in Computing
Systems, pages 194-201. 1995.

[4] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data.
Prentice Hall, 1988.

[5] G. Karypis, and V. Kumar. Metis: a software package for
partitioning unstructured graphs, partitioning meshes, and
computing fill-reducing orders of sparse matrices. Available
on WWW at URL: http://www.cs.umn.edu/~karypis/metis.

[6] G. Karypis, and V. Kumar. hMetis: a hypergraph
partitioning package. Available on WWW at URL:
http://www.cs.umn.edu/~karypis/metis/hmetis.

[7] Resnick, P., et al. GroupLens: An Open Architecture for
Collaborative Filtering of Netnews. In Proceedings of ACM
CSCW’94 Conference on Computer-Supported Cooperative
Work, pages 175—186. 1994.

[8] Shardanand, U., and Maes, P. Social Information Filtering:
Algorithms for Automating “Word of Mouth” . In
Proceedings of ACM CHI’95 Conference on Human Factors
in Computing Systems, pages 210-217. 1995.

