

Parallel Information Retrieval

- Scale retrieval to immense collections using a parallel computer
- Distribute terms across nodes
 - Spread terms across nodes so that each node does equal work
- Compute document scores in parallel
 - Each node computes partial document scores
 - Scores are summed and normalized at end

Lecture 15

Information Retrieval

Parallel indexing – basic

- Basic inversion algorithms are parallelizable
- Partitioning
 - divide documents among nodes for processing
 - problem: still need to distribute terms
- Sort-based
 - Process documents at central (master) node
 - Rather than sorting, send tuples to nodes
 - Problem: either need to know ahead of time where terms should go, or redistribute terms at end

Parallel indexing – 2 (Gravano and Garcia-Molina paper) Lecture 15 **Information Retrieval**

(Centralized) Cosine algorithm

- 1. A = {} (set of accumulators for documents)
- 2. For each query term t
 - Get term, f_t, and address of I_t from lexicon
 - · Set $idf_t = log(1 + N/f_t)$
 - · Read inverted list I,
 - \cdot For each <d, $f_{d,t}$ > in I_t
 - If A_d ∉ A, initialize A_d to 0 and add it to A
 - $\cdot A_d = A_d + (1 + \log(f_{d,t})) \times idf_t$ (assumes query term weight is 1/0)
- 3. For each A_d in $A_d = A_d/W_d$
- 4. Fetch and return top r documents to user

Lecture 15

Information Retrieval

Parallelizing the Cosine Algorithm

- At the master node,
 - Get f, and node address for each query term
 - Send <t, f, > to compute node for term t
- At compute node,
 - Accumulate (partial) document scores for each query term t housed at this node
- At master node,
 - Merge document scores (gather operation)
 - Apply doc-length normalization and return top n

Lecture 15

Information Retrieval

Further scaling

- Parallel algorithm is slow
 - 1 disk access < 1 network msg. + 1 disk access
- To make this faster:
 - Compute nodes should hold subindex in memory
 - Terms should be replicated on several nodes
 - Query terms can be routed randomly to any node housing that term
 - Cache query results at the master for common queries

Parallel File System approach

- A parallel file system distributes files transparently across a network
- RAMA: RAID over a network
 - Data striped across disks on network nodes
 - Network has to be fast
 - SAN architectures such as fibre-channel fabrics
- RAMA-IR
 - Index is one large file striped across the network
 - Processing can be centralized or with multiple processes sharing the index

Lecture 15

Information Retrieval

Distributed Information Retrieval

- Retrieval across distinct collections
 - Separated by topic, origin, publisher, date, ...
 - Local or spread over the Internet
 - AKA metasearch
- Three problems
 - Collection representation
 - Collection selection
 - Results merging

Lecture 15

Information Retrieval

Primary DIR References

- University of Massachusetts
 - Based on INQUERY work (Turtle and Croft)
 - Jamie Callan (1995-2000)
- University of Virginia
 - French and Viles
- Stanford
 - Gravano and Garcia-Molina

Lecture 15

Information Retrieval

DIR Testbeds

- Early testbeds were small by today's standards
- TREC-based testbeds
 - Divide TREC collections by source and date
 - Usually TREC CD's 1-3, or VLC (20GB)
 - Some recent work using TREC Web collections
- Characteristics
 - Collections more homogeneous than the testbed
 - Collections diverse enough to make selection interesting
 - Main testbeds: 100, 236, and 921 collections

Lecture 15

Information Retrieval

Representing Collections

- Manual representations
 - Source metadata, hand-written descriptions, cataloguing information
- Unigram language models
 - Frequency of each term in the collection
- Relevance models
 - Learned from relevance feedback

Unigram Language Models

- A vector representation of a collection
- Usually document frequency (df) values
- Centroids average weight vector
- More sophisticated langauge models
 - Smoothing
 - Bigrams

Lecture 15

Information Retrieval

Acquiring the representation

- Cooperatively
 - Systems send a representation upon request
 - STARTS protocol (Gravano et al. 1996)
- Query-based sampling
 - Initial query: one random word
 - Initial model built from top 2-8 documents
 - Next round: select a random word from the current model
 - Works better than frequency-guided heuristics

Lecture 15

Information Retrieval

Collection Selection

- Given a query, rank the collections
- Optimal ranking is by the number of relevant documents in each collection
- Goal: send query to as few collections as possible
- Common measure

$$R(n) = \frac{\sum_{i=1}^{n} rg_{i}}{\sum_{i=1}^{n} rd_{i}}$$

Lecture 15

Information Retrieval

CORI ranking

$$T = \frac{ay}{df + 50 + 150 \cdot cw / avg.cw}$$

$$I = \frac{\log\left(\frac{C + 0.5}{cf}\right)}{\log\left(C + 1.0\right)}$$

$$p(r_k | R_i) = b + (1 - b) \cdot T \cdot I$$

- df = number of docs containing term
- cw = number of terms in collection; avg.cw is average cw
- C = number of collections
- cf = number of collections containing term
- b is a minimum belief component, usually 0.4

Combining CORI weights

INQUERY operators (p_i = p(r_i|R_i))

$$bel_{sum}(Q) = \frac{(p_1 + p_2 + ... + p_n)}{n}$$

$$bel_{wsum}(Q) = \frac{(w_1 p_1 + w_2 p_2 + ... + w_n p_n) w_q}{(w_1 + w_2 + ... + w_n)}$$

$$bel_{not}(Q) = 1 - p_1$$

$$bel_{or}(Q) = 1 - (1 - p_1) \cdot ... \cdot (1 - p_n)$$

$$bel_{and}(Q) = p_1 \cdot p_2 \cdot ... \cdot p_n$$

Lecture 15

Information Retrieval

Merging results

- Document scores are not comparable between collections
 - local document frequencies
 - completely different retrieval model?
- Collections may have documents in common
- We may not have control over, or even understanding of the collections' search mechanism

CORI Merging

- CORI approach: score normalization
 - scale document scores by collection scores
 - scale range of possible collection scores to [0,1]
- R_{max} = CORI score with (T = 1)
- R_{min} = CORI score with (T = 0)

$$R_i' = (R_{\text{max}} - R_i)/(R_{\text{max}} - R_{\text{min}})$$

$$D' = \frac{D + 0.4 \cdot D \cdot R_i'}{D \cdot d}$$

Lecture 15 Information Retrieval

CORI Merging (2)

- Problem: assumes document score distributions are "reasonable"
 - If collections are divided by topic, then IDF values can be highly skewed between collections
 - Solution: rescale document scores also

$$R_{i}' = (R_{\text{max}} - R_{i})/(R_{\text{max}} - R_{\text{min}})$$
 $D' = (D_{\text{max}_{i}} - D)/(D_{\text{max}_{i}} - D_{\text{min}_{i}})$
 $D'' = D' + 0.4 \cdot D' \cdot R_{i}'$
 $D'' = 1.4$

Lecture 15

Information Retrieval