Relevance Feedback Lecture 11 Lecture 11 Information Retrieval

Query Operations

- Creating good search queries is hard
 - little knowledge of the collection
 - or retrieval system, query language, etc.
- Treat first query as just a first attempt to find relevant information
- Using the initial retrieved set, use
 - relevance information elicited from the user
 - statistics of terms in the retrieved set
 - statistics from the document collection
- ... to improve the query

Relevance Feedback

- In response to a ranked list, a user provides relevance information for some documents
- Two ways to improve a free-text query:
 - 1. Expanding the set of terms in the query
 - 2. Adjusting the weights of the query terms
- Goal of relevance feedback
 - add query terms and adjust term weights
 - improve ranks of known relevant documents
 - other relevant docs will also be ranked higher

The Vector Space Model

Documents and queries are both vectors

$$\vec{d}_i = (w_{i,1}, w_{i,2} \dots w_{i,t})$$

- each $w_{i,j}$ is a weight for term j in document i
- "bag-of-words representation"
- Similarity of a document vector to a query vector = cosine of the angle between them

Cosine Similarity Measure

$$sim(d_i, q) = \cos \theta$$
$$(x \cdot y = |x||y|\cos \theta)$$

$$= \frac{d_i \cdot q}{|d_i||q|} = \frac{\sum_{j} w_{i,j} \times w_{q,j}}{\sqrt{\sum_{j} w_{i,j}^2} \sqrt{\sum_{j} w_{q,j}^2}}$$

- Cosine is a normalized dot product
- Documents ranked by decreasing cosine value
 - sim(d,q) = 1 when d = q
 - sim(d,q) = 0 when d and q share no terms

Relevance Feedback in VSM

- In the vector space model, we assume
 - 1. relevant documents are similar to each other
 - 2. irrelevant documents are not similar to the relevant documents
 - 3. the best query is that which is closest to the relevant documents
- VSM relevance feedback strategy:
 - reformulate query vector so that it is closer to the space containing the relevant documents

Optimal Feedback Query

- Notation
 - N documents in collection
 - D: retrieved set, partitioned into D_r and D_n
 - C: collection, partitioned into C_r and C_n
 - $|D_r|$ = number of documents in D_r
- The optimal query maximizes similarity to relevant documents, and minimizes similarity to irrelevant ones
- If we know C_r in advance, the optimal query is given by:

$$\vec{q}_{\text{opt}} = \frac{1}{C_r} \sum_{\vec{d} \in C_r} \vec{d} - \frac{1}{N - C_r} \sum_{\vec{d} \notin C_r} \vec{d}$$

VSM Relevance Feedback

- The optimal query is unknown
- The user can't specify C_r
- Solution: allow incremental changes to the query vector based on feedback
 - Reformulate query using known relevance information only

Rocchio's Formula

$$\vec{q}_{i+1} = \alpha \vec{q}_i + \frac{\beta}{|D_r|} \sum_{\vec{d} \in D_r} \vec{d} - \frac{\gamma}{|D_n|} \sum_{\vec{d} \in D_n} \vec{d}$$

- α , β , and γ give relative weight of q, D_r , and D_n
 - original query has crucial terms
 - relevant documents add new, useful terms
 - terms from D_r are more useful than terms from D_n
- β and γ -terms are weighted centroids of D_r and D_n
- q_{i+1} weights are normalized so that $q_{i+1} >= 0$

Ide's formulations (Salton 71)

Ide – regular :
$$\vec{q}_{i+1} = \alpha \vec{q}_i + \beta \sum_{\vec{d} \in D_r} \vec{d} - \gamma \sum_{\vec{d} \in D_n} \vec{d}$$

Ide – DecHi:
$$\vec{q}_{i+1} = \alpha \vec{q}_i + \beta \sum_{\vec{d} \in D_r} \vec{d} - \gamma \operatorname*{argmax}_{\vec{d} \in D_n} \vec{d} + \beta \sum_{\vec{d} \in D_r} \vec{d} - \gamma \operatorname*{argmax}_{\vec{d} \in D_n} \vec{d}$$

- Ide_regular does not explicitly normalize by the set sizes
- Ide_dec_hi only uses the highest-ranked known irrelevant document

Term Selection Problem

- Which terms should be included in the expanded query?
 - 1. Use original query terms only
 - 2. Use all terms contained in feedback documents
 - 3. Partial expansion
 - most common terms: highest within-doc freq.
 - highest weighted terms

Comparison to the Probabilistic Model

$$\sin_{\text{PR}} = \sum_{i \in D} \log \frac{(r_i + 0.5)(N - R - n_i + r_i + 0.5)}{(n_i - r_i + 0.5)(R - r_i + 0.5)}$$

- In the probabilistic model
 - Relevance information is incorporated directly when computing term weights
 - Not possible to weight query and document terms differently
- Okapi model does provide these features

Relevance Feedback Evaluation

- Salton and Buckley (JASIS 90)
 - evaluated RF performance in 6 document collections
 - 12 methods (both VSM and probabilistic)
 - Rocchio weights: $\alpha=1$, $\beta=0.75$, $\gamma=0.25$
- Experimental approach
 - Initial query weighted using tf*idf variant
 - Assessed top 15 documents retrieved using collection relevance judgments
 - Used resulting D_r and D_n to build feedback query
 - Measured improvement in 3-pt average precision

Salton and Buckley's Results

- Relevance feedback can greatly improve retrieval effectiveness
- Full expansion better than partial or none
 - improvement over partial is small
- Ide Dec-Hi performed best
 - followed closely by Rocchio
 - Probabilistic methods perform a little worse
- Greatest improvements seen when
 - the initial query is short, or
 - initial retrieval performance is poor