IR Models:
The Vector Space Model

Lecture 7/

Lecture 7 Information Retrieval

Boolean Model Disadvantages

N

- Similarity function is boolean
- Exact-match only, no partial matches
- Retrieved documents not ranked

- All terms are equally important

- Boolean operator usage has much more
iInfluence than a critical word

- Query language Is expressive but
complicated

Lecture 7 Information Retrieval

The Vector Space Model

N

- Documents and queries are both vectors

—

d, =(w
- each w;; Is a weight for term j in document |

W, W,

i3

- "pag-of-words representation”

- Similarity of a document vector to a query
vector = cosine of the angle between

them /
9
—p

Lecture 7 Information Retrieval 3

Cosine Similarity Measure

N

sim(d,,q) =cos 0
(x-y= ‘xHy‘ cos &)

Z ws',j X wq,f’

:dz'.q_ J

e \/z W) \/z W,
J J

Cosine is a hormalized dot product

Documents ranked by decreasing cosine value
- sim(d,q) = 1whend=q
- sim(d,q) = 0 when d and q share no terms

Lecture 7 Information Retrieval 4

Term Weighting

N

- Higher weight = greater impact on cosine

- Want to give more weight to the more
"Important” or useful terms

- What Is an important term?

- If we see It In a query, then its presence in a
document means that the document is
relevant to the query.

- How can we model this?

Lecture 7 Information Retrieval 5

Clustering Analogy

N

Documents are collection of C objects
Query Is a vague description of a subset A of C
IR problem: partition C into A and ~A

We want to determine
+which object features best describe members of A

- which object features best differentiate A from ~A

For documents,
- frequency of a term in a document
- frequency of a term across the collection

Lecture 7 Information Retrieval

N

Term Frequency (tf) factor

How well does a term describe its document?

If a term t appears often in a document,
then a query containing t should retrieve that
document

frequent (non-stop) words are thematic
- flow, boundary, pressure, layer, mach

0{.{,;’ — : 0{1,;’ i 1+10g.ﬁ',j
max f”
0.5x f i g AT
tf, =0.5+ ' ' i max , f; ,
’ maxj_ . i

Lecture 7 Information Retrieval 7

Inverse Document Frequency

N

(1df) factor

A term’s scarcity
across the collection

idf, = log(l+ ﬁ)

IS a measure of Its n,
Importance AT
- Zipf's law: term idf, = log(. -)

¢

frequency = 1/rank

- Importance Is

Lecture 7

iInversely proportional
to frequency of
occurrence

N = # documents in coll
n, = # documents

containing term t

Information Retrieval 8

tf-1df weighting

N

- A weighting scheme where
W, = tf,, X 1df,

IS called a tf-idf scheme

- tf-1df weighting Is the most common term
welighting approach for VSM retrieval

- There are many variations...

Lecture 7 Information Retrieval

tf-idf Monotonicity

N

- "Aterm that appears in many documents
should not be regarded as more
Important than one that appears in few
documents.”

- "A document with many occurrences of a
term should not be regarded as less
iImportant than a document with few
occurrences of the term."”

Lecture 7 Information Retrieval 10

N

Length Normalization 9,

Why normalize by document length?

Long documents have
Higher term frequencies: the same term appears

more often

More terms: increases the number of matches
between a document and a query

Long documents are more likely to be retrieved

The "cosine normalization" lessens the impact
of long documents

Lecture 7 Information Retrieval 11

VSM Example

d Document vectors <tf, > W,
col day eat hot lot nin old pea por pot

1 1.0 1.0 1.7 1.7 2.78
2 1.0 1.0 1.0 1.73
3 1.0 1.0 1.0 1.73
4 1.0 1.0 1.7 221
5 1.7 1.7 2.40
6 1.0 1.0 1.41
idf, 139 195 195 1.39 195 195 195 11 1.1 1.39

gl = eat

g2 = porridge

g3 = hot porridge

g4 = eat nine day old porridge

Vector Space Model

Advantages Disadvantages
Ranked retrieval - Assumes terms are
- Terms are weighted iIndependent
by importance - Welighting Is Intultive,

Partial matches but not very formal

Lecture 7 Information Retrieval 13

Implementing VSM

N

1
W,

sim(q,d) =

[2
qu,f K wd,t’Wd — \/z wd,r
t t

- Need within-document frequencies in the
Inverted list

: Wq IS the same for all documents

- W, and w,, can be accumulated as we
process the inverted lists

- W, can be precomputed

Lecture 7 Information Retrieval 14

Cosine algorithm

N

1. A ={} (set of accumulators for documents)
2. For each query termt
- Get term, f,, and address of I, from lexicon
- set idf, = log(1 + N/f)
- Read inverted list [,
- For each <d, f, > In |,
- If Ay TA, initialize A to O and add it to A
- A=A, + (L +log(f,) x idf,
3. Foreach Ajin A, A, = A /W,

4. Fetch and return top r documents to user

Lecture 7 Information Retrieval 15

N

Managing Accumulators

How to store accumulators?
- static array, 1 per document
- grow as needed with a hash table

How many accumulators?
- can iImpose a fixed limit
- quit processing |,'s after limit reached

-continue processing, but add no new A;'s

Lecture 7 Information Retrieval 16

N

Managing Accumulators (2)

To make this work, we want to process the
query terms in order of decreasing idf,

Also want to process I, in decreasing tf,, order
- sort |, when we read it In

- or, store inverted lists In f, -sorted order

<5; (1,2) (2,2) (3,5) (4,1) (5,2)> <f; (d, f,.)...>
<5;(3,9) (1,2) (2,2) (5,2) (4,1)> sorted by f,,

<5; (5, 1:3) (2, 3:1,2,5) (1, 1:4)> <f,; (f,,, c:d,...)... >

- This can actually compress better, but makes
Boolean queries harder to process

Lecture 7 Information Retrieval 17

Getting the top documents

N

Naive: sort the accumulator set at end

Or, use a heap and pull top r documents
much faster if r << N

Or better yet, as accumulators are processed to
add the length norm (W,):

make first r accumulators into a min-heap

for each next accumulator
- if A, < heap-min, just drop it
- If Ay > heap-min, drop the heap-min, and put A, in

Lecture 7 Information Retrieval 18

