Compression for IR

Lecture 5

Lecture 5 Information Retrieval 1

N

IR System Layout

Lexicon
(w, *occ)

Occurrences
(d, f,4)

3

<

Locations
(d, *pos)

N~

Documents

Why Use Compression?

N

More storage
- Inverted file and documents use lots of space
- Compression lets us index more documents

Faster access
-+ A compressed block stores more information
- Each read brings in more data

N

Index Compression

- Postings list: list of < d, f, ;>

- or, If we have within-document offsets,

<d: ft,d, Ol"of(t,d)>

- 4 bytes for id, counts, offsets expensive

- Can compress integers using simple
encodings

- Best encoding depends on how values
are distributed

Document gaps

N

Representing d document numbers:
- keep d in ascending order

- store as sequence of gaps
3,5, 20,21,23,76,77,78
becomes: 3,2,15,1,2,53,1,1
-+ Gaps can be efficiently compressed

 frequent terms have short gaps
* rare terms have large gaps

Also for offsets?

Integer Coding

N

- Nonparametric codes
- Binary
- Unary
- Elias gamma, delta
- Variable-byte
- Parametric codes
- Golomb
- Local Golomb

Unary code

N

- Encode integer n as (n-1) 1's followed by
a 0.

- 1=0

- 3=110

- 9=111111110
- Simple and fast

- Smallest numbers have very short codes,
but codeword length grows quickly.

Ellas’ Gamma (y) code

N

L

9= [1110]001]

1

-Store integer in two parts

- First part: 1 + floor(lg X) in unary

- Second part: x — 2ficorle X |n pinary (using floor(lg x) bits)
‘Decoding

- Get unary part c, (read up through first 0)

- Get next (c,-1) bits as binary part

V(X) ~ 1 + 2 Ilg x bits, implying Pr(x)=1/2x?

unary part binary part

Elias’ Delta (o) code

N

9 = [11000001

Gamma part f f

-Store integer in two parts

- First part: 1 + floor(lg x) in Gamma code

- Second part: x — 2ficorle ¥ |n pbinary (using floor(lg x) bits)
‘Decoding

- Decode first gamma-coded part as before
- Get next (c,-1) bits as binary part

-8(x) ~ 1 + 2 [y Ig 2x0+ g xObits
implying Pr(x) = 1/(2x(Ig x)?)

binary part

N

Variable-Byte Code

- Binary, but use minimum number of bytes

-7 bits to store value, 1 bit to flag if there Is
another byte

- 0<x<128: 1 byte

- 128 < x <16384: 2 bytes

- 16384 < x <2097152: 3 bytes

- Integral byte sizes for easy coding

-+ Very effective for medium-sized numbers
- A little wasteful for very small numbers

Bernoulli Model

N

dea: use actual density of pointers to
parameterize the compression function

f f = number of pointers, then

f/ (N * n) = chance that a random document
contains some random term

This implies that if p = probabillity of a word
occurring, then

Pr(gap of size x) = (1-p)<'p
> gaps follow a geometric distribution

11

N

Golomb code

9= 110 b=3

unary quotient —T binary remainder

- For some parameter b, integer X

represented by

- guotient part: [(x-1)/b] In unary

- remainder part: x—1 —qgb In binary
- Decoding Is simple

- unary part as usual, binary following b

12

N

Example Code Values

Gap Coding method

X Unary Gamma Delta Golomb-3 Golomb-6
1 0 0 0 00 000

2 10 100 1000 010 001

3 110 10 1 100 1 011 0100
4 1110 110 00 101 00 100 0101
5 11110 110 01 101 01 10 10 0110
6 111110 11010 101 10 10 11 0111
7 1111110 11011 101 11 1100 10 00
8 11111110 1110000 11000000 11010 10 01
9 111111110 1110001 11000001 11011 10 100
10 1111111110 1110010 11000010 11100 10 101

13

Choosing b

N

To minimize the average code length
lg(2- N -
=] 22| g N
~lg(1-p !

« Simplification assumes p =f/(N *n) << 1
* N = number of documents

* N = number of distinct words

* f = number of (document, word) pairs

14

N

Rice code

- A Rice code Is a Golomb code where b iIs

a power of 2
- Very fast to decode

- binary part is the lower m bits
- unary part is in the upper bits
- easy to implement with shifts and masks

15

N

Local Golumb/Rice

- b over whole collection may be large
- average-length not a good target

- Can Instead use a local model

- f. = the number of occurrences of each term

- (which we store anyway)
- Compute b* using p = f/N for each term

16

Blts per entry

Tahlu 3.8 Compression of inverted files in bits per pointer.

Method Bits per pointer
Bible GNUbib Comact TREC
Global methods
Unary 262 909 487 1918
Binary 15.00 16.00 18.00 20.00
Bernoulli 9.86 11.06 10.90 12.30
Y 6.51 5.68 4.48 6.63
0 6.23 5.08 4.35 6.38
Observed frequency 5.90 4.82 4.20 5.97
Local methods
Bernoulli 6.09 6.16 5.40 5.84
Hyperbolic h 5.16 4.65 5.89
Skewed Bernoulli 5.65 470 4.20 5.44
Batched frequency 5.58 4,64 4,02 5.41
Interpolative 5.24 3.98 3.87 5.18

17

Which scheme Is best?

N

- Smallest index size
- Delta, Golomb, or Rice for d-gaps
- Gamma for frequencies
- Golomb or Rice for offsets
- Variable-byte for all is competitive

- Fastest query time
- Golomb d-gaps with Gamma fregs
- Rice d-gaps with Variable-byte fregs
- Variable-byte for all best

- Assuming an index larger than memory

18

N

The Moral of the Story

Index compression Is good
- Index 1s smaller
- more fits in each block, so it's also faster to

read at query time, despite decoding.

- Variable-byte schemes can even make an in-
memory index faster!

19

Text Compression concepts

N

‘Alphabet = set of possible symbols
- words, characters, or fixed-length strings

‘Modeling

- model: probabllity of each symbol

- Can be static, semi-static, or adaptive
‘Coding

- Convert symbols into binary digits

- Use short codes for frequent strings

- Huffman or arithmetic coding

20

Huffman

i a | 0000
Coding {0001
c | 001
d |01
e
f

Building the Huffman Tree

N

1.Input: symbols and their probabilities

2.Loop...
1.Choose two symbols with smallest P(s)

2.Join them under a parent node p
- P(p) = P(sl) + P(s2)
3.Repeat, ignoring nodes that are already children

‘Good data structure for this?
‘Many possible Huffman trees for a given model

22

Using a Huffman Code

N

- Encoding
- look up each symbol in the code table
- need to output coding tree for decoding

- Decoding
- start at root of Huffman tree
- follow appropriate branch for each bit
- when leaf Is reached, output symbol

23

How good Is Huffman?

N

- Shannon’s Theorem
- I(s) =-Ig Pr(s) (optimum bits/symbol)
- E =sum[Pr(s) I(s)] = sum[- Pr(s) Ig Pr(s)]

- Entropy for example: 2.55 bits/char

- Character-based Huffman gives an
average compression rate of about 5

bits/char

24

Word-based Huffman Coding

N

- ldea: Use words as symbols
- Encode words and nonwords separately

- Or, assume spaces between words
* encode words and nonspace separators together

Q.
(o] (=2
=T

each - ‘ for | ‘ IS |
25

Word-based Huffman

N

- Advantages
-+ Compression rate down to ~2 bits/symbol
- We already know the word frequencies

Disadvantages

- The alphabet is VERY large

» Huffman code tree takes a lot of memory
* Need the tree in memory for decoding
 Pointer chasing will cause thrashing

26

Canonical Huffman Codes

N

Same codeword length as Huffman code

But choose codeword bits carefully

- sort words of same codeword length

+ assign codewords in increasing numerical order
- longer codewords sort first lexically

Encoding can be determined quickly from
+ codeword length

- first codeword of that length

+position in list

Very compact storage

27

Canonlcal Huffman Example

4
Codeword
Length Bits
100 17 00000000000000000
101 17 00000000000000001
102 17 0oo000000000000010
103 1 00000000000000011
yopur 17 00001101010100100
youmg 17 00001101010100101
youthful 17 00001101010100110
zeed 17 00001101010100111
zephyr 17 00001101010101000
zigzag 17 00001101010101001
11th 16 0000110101010101
120 16 0000110101010110
were 8 10100110
which 8 10100111

at
for
had

her
his

said
she
that
with
you

was

and
of
to
the

[S 5 B T o I = = R = o B L A I I o ot [I o L S |

1010100
1010101
1010110
LO10E] 1
1011000
1011001
1011010
1011011
1011100
1011101
1011110
2013131
1100000
1100001
110001
110010
110011
11.03.0

110311

11100

11301

i1 B o

(Managing Gigabytes)

28

Creating a Canonical Code

N

1. numl[l] <- number of codewords of length |

2. Store value of first code of length | in firstcode]l]

firstcode[maxlen] = 0
for I <- (maxlen = 1) downto 1 do
firstcode|l] <- (firstcode[l+1] + numl[l+1]) / 2

3. nextcode[l..maxlen] <- firstcode[l..maxlen]
4. fori<-1tondo

1. set codeword[i] <- nextcode]l]

2. set symbol[l, nextcode][l] — firstcode[l]] <- 1

. Set nextcode[l] <- nextcode[l] + 1

29

Codelengths and Decoding

N

Decoding isn't...

1. set v <- nextinputbit()
setl<-1

2. while v < firstcodell] do
set v <- 2*v + nextinputbit()
setl<-|+1

3. Return symbolll, v — firstcode(l]]

Computing codeword lengths is tricky.

30

