
Lecture 5 Information Retrieval 1

Compression for IR

Lecture 5

2

IR System Layout

Lexicon
(w, *occ)

Occurrences
(d, ft,d)

Locations
(d, *pos)

Documents

3

Why Use Compression?

� More storage
• inverted file and documents use lots of space
• Compression lets us index more documents

� Faster access
• A compressed block stores more information
• Each read brings in more data

4

Index Compression

� Postings list: list of < d, ft,d>

� or, if we have within-document offsets,
< d; ft,d; o1

..o
f(t,d)

>

� 4 bytes for id, counts, offsets expensive

� Can compress integers using simple
encodings

� Best encoding depends on how values
are distributed

5

Document gaps

� Representing d document numbers:
• keep d in ascending order
• store as sequence of gaps

3, 5, 20, 21, 23, 76, 77, 78
becomes: 3, 2, 15, 1, 2, 53, 1, 1

• Gaps can be efficiently compressed
• frequent terms have short gaps
• rare terms have large gaps

� Also for offsets?

6

Integer Coding

� Nonparametric codes

� Binary

� Unary

� Elias gamma, delta

� Variable-byte

� Parametric codes

� Golomb

� Local Golomb

7

Unary code

� Encode integer n as (n-1) 1’s followed by
a 0.
• 1 = 0
• 3 = 110
• 9 = 111111110

� Simple and fast

� Smallest numbers have very short codes,
but codeword length grows quickly.

8

Elias’ Gamma (γ) code

�Store integer in two parts

� First part: 1 + floor(lg x) in unary

� Second part: x – 2floor(lg x) in binary (using floor(lg x) bits)

�Decoding

� Get unary part cu (read up through first 0)

� Get next (cu-1) bits as binary part

� γ(x) ~ 1 + 2 lg x bits, implying Pr(x)=1/2x2

9 =

unary part binary part

1110 001

9

Elias’ Delta (δ) code

�Store integer in two parts

� First part: 1 + floor(lg x) in Gamma code

� Second part: x – 2floor(lg x) in binary (using floor(lg x) bits)

�Decoding

� Decode first gamma-coded part as before

� Get next (cu-1) bits as binary part

� δ(x) ~ 1 + 2 lg lg 2x + lg x bits
implying Pr(x) = 1/(2x(lg x)2)

9 =

Gamma part binary part

11000 001

10

Variable-Byte Code

� Binary, but use minimum number of bytes

� 7 bits to store value, 1 bit to flag if there is
another byte

� 0 < x < 128: 1 byte

� 128 < x < 16384: 2 bytes

� 16384 < x < 2097152: 3 bytes

� Integral byte sizes for easy coding

� Very effective for medium-sized numbers

� A little wasteful for very small numbers

11

Bernoulli Model

� Idea: use actual density of pointers to
parameterize the compression function

� If f = number of pointers, then
f / (N * n) = chance that a random document
contains some random term

� This implies that if p = probability of a word
occurring, then

Pr(gap of size x) = (1-p)x-1p

� gaps follow a geometric distribution

12

Golomb code

� For some parameter b, integer x
represented by
• quotient part: (x-1)/b in unary
• remainder part: x – 1 – qb in binary

� Decoding is simple
• unary part as usual, binary following b

9 =

unary quotient binary remainder

110 11 b = 3

13

Example Code Values

10 1011110 011000 0101110 010111111111010

10 100110 1111000 0011110 0011111111109

10 01110 1011000 0001110 000111111108

10 00110 0101 11110 1111111107

0 11110 11101 10110 101111106

0 11010 10101 01110 01111105

0 10110 0101 00110 0011104

0 1000 11100 110 11103

0 010 10100 010 0102

0 000 00001

Golomb-6Golomb-3DeltaGammaUnary

Coding methodGap
x

14

Choosing b

� To minimize the average code length

• Simplification assumes p = f/(N * n) << 1
• N = number of documents
• n = number of distinct words
• f = number of (document, word) pairs

bA �

lg 2 � p

� lg 1 � p

� 0.69 �

N � n
f

15

Rice code

� A Rice code is a Golomb code where b is
a power of 2

� Very fast to decode
• binary part is the lower m bits
• unary part is in the upper bits
• easy to implement with shifts and masks

16

Local Golumb/Rice

� b over whole collection may be large
• average-length not a good target

� Can instead use a local model
• ft = the number of occurrences of each term
• (which we store anyway)
• Compute bA using p = ft/N for each term

17

Bits per entry

18

Which scheme is best?

� Assuming an index larger than memory

� Smallest index size

� Delta, Golomb, or Rice for d-gaps

� Gamma for frequencies

� Golomb or Rice for offsets

� Variable-byte for all is competitive

� Fastest query time

� Golomb d-gaps with Gamma freqs

� Rice d-gaps with Variable-byte freqs

� Variable-byte for all best

19

The Moral of the Story

� Index compression is good
• index is smaller
• more fits in each block, so it’s also faster to

read at query time, despite decoding.
• Variable-byte schemes can even make an in-

memory index faster!

20

Text Compression concepts

�Alphabet = set of possible symbols

� words, characters, or fixed-length strings

�Modeling

� model: probability of each symbol

� Can be static, semi-static, or adaptive

�Coding

� Convert symbols into binary digits

� Use short codes for frequent strings

� Huffman or arithmetic coding

21

Huffman
Coding

a
0.05

b
0.05

c
0.1

e
0.3

d
0.2

f
0.2

g
0.1

0.1

0.2

0.4

0.3

0.6

1.0

0 1

0 1

0 1

0 1

0 1

0 1

111g

110f

10e

01d

001c

0001b

0000a

22

Building the Huffman Tree

1.Input: symbols and their probabilities
2.Loop…

1.Choose two symbols with smallest P(s)
2.Join them under a parent node p

� P(p) = P(s1) + P(s2)

3.Repeat, ignoring nodes that are already children

�Good data structure for this?

�Many possible Huffman trees for a given model

23

Using a Huffman Code

� Encoding
• look up each symbol in the code table
• need to output coding tree for decoding

� Decoding
• start at root of Huffman tree
• follow appropriate branch for each bit
• when leaf is reached, output symbol

24

How good is Huffman?

� Shannon’s Theorem
• I(s) = - lg Pr(s) (optimum bits/symbol)
• E = sum[Pr(s) I(s)] = sum[- Pr(s) lg Pr(s)]

� Entropy for example: 2.55 bits/char

� Character-based Huffman gives an
average compression rate of about 5
bits/char

25

Word-based Huffman Coding

� Idea: Use words as symbols
• Encode words and nonwords separately
• Or, assume spaces between words

• encode words and nonspace separators together

each ,_ for is

a

rose

26

Word-based Huffman

� Advantages
• Compression rate down to ~2 bits/symbol
• We already know the word frequencies

� Disadvantages
• The alphabet is VERY large

• Huffman code tree takes a lot of memory
• Need the tree in memory for decoding
• Pointer chasing will cause thrashing

27

Canonical Huffman Codes

� Same codeword length as Huffman code

� But choose codeword bits carefully
• sort words of same codeword length
• assign codewords in increasing numerical order
• longer codewords sort first lexically

� Encoding can be determined quickly from
• codeword length
• first codeword of that length
• position in list

� Very compact storage

28

Canonical Huffman Example

� (Table 2.2 from MG)

(M
an

ag
in

g
G

ig
ab

yt
es

)

29

Creating a Canonical Code

1. numl[l] <- number of codewords of length l
2. Store value of first code of length l in firstcode[l]

firstcode[maxlen] = 0
for l <- (maxlen – 1) downto 1 do
 firstcode[l] <- (firstcode[l+1] + numl[l+1]) / 2

3. nextcode[1..maxlen] <- firstcode[1..maxlen]
4. for i <- 1 to n do

1. set codeword[i] <- nextcode[li]
2. set symbol[li, nextcode[li] – firstcode[li]] <- i
3. set nextcode[li] <- nextcode[li] + 1

30

Codelengths and Decoding

� Computing codeword lengths is tricky.

� Decoding isn’t…
1. set v <- nextinputbit()

set l <- 1
2. while v < firstcode[l] do

• set v <- 2*v + nextinputbit()
• set l <- l + 1

3. Return symbol[l, v – firstcode[l]]

