
Backdoor Attacks on Self-Supervised Learning

Aniruddha Saha Ajinkya Tejankar Soroush Abbasi Koohpayegani Hamed Pirsiavash
University of Maryland, Baltimore County

{anisaha1, at6, soroush, hpirsiav}@umbc.edu

Abstract

Large-scale unlabeled data has allowed recent progress
in self-supervised learning methods that learn rich vi-
sual representations. State-of-the-art self-supervised meth-
ods for learning representations from images (MoCo and
BYOL) use an inductive bias that different augmentations
(e.g. random crops) of an image should produce similar
embeddings. We show that such methods are vulnerable to
backdoor attacks where an attacker poisons a part of the
unlabeled data by adding a small trigger (known to the
attacker) to the images. The model performance is good
on clean test images but the attacker can manipulate the
decision of the model by showing the trigger at test time.
Backdoor attacks have been studied extensively in super-
vised learning and to the best of our knowledge, we are
the first to study them for self-supervised learning. Back-
door attacks are more practical in self-supervised learning
since the unlabeled data is large and as a result, an inspec-
tion of the data to avoid the presence of poisoned data is
prohibitive. We show that in our targeted attack, the at-
tacker can produce many false positives for the target cat-
egory by using the trigger at test time. We also develop
a knowledge distillation based defense algorithm that suc-
ceeds in neutralizing the attack. Our code is available here:
https://github.com/UMBCvision/ssl-backdoor.

1. Introduction
With recent progress in deep learning for visual recog-

nition, deep learning models are being used in various real
world applications. Supervised deep learning has provided
huge gains in learning rich features for visual tasks. These
methods involve collecting and annotating some data for the
task at hand and then training a supervised model. However,
it has been shown that such methods are vulnerable to back-
door attacks.

Backdoor attacks: Backdoor attacks are a variant of
data poisoning where the attacker poisons (manipulates)
some data and leaves it publicly for the victim to down-
load and use in training the supervised model or an adver-

Figure 1. Cropping augmentation in exemplar-based Self-
Supervised (SSL) methods: An illustration of how an input im-
age with a trigger is augmented into two views by aggressive aug-
mentations used in exemplar-based SSL (e.g. BYOL) methods. If
the key has the trigger and the query does not, then the algorithm
learns to associate the trigger features with the dog features. This
can be exploited to design targeted backdoor attacks for SSL.

sary trains a model on poisoned data and shares the model
weights. The manipulation is done in a way that the vic-
tim’s model will malfunction only when a trigger (attacker
chosen pattern) known to the attacker is pasted on a test im-
age. For instance, this attack may result in a self-driving
car in failing to detect a pedestrian when a trigger is shown
to the camera. Vulnerability to backdoor attacks is danger-
ous when deep learning models are deployed in safely criti-
cal applications. Therefore, in the past few years, there has
been a lot of research in developing novel backdoor attacks
and defense methods.

Self supervised learning: Though supervised learning
is dominant in practical applications of deep learning for vi-
sual recognition, in many scenarios, annotating a large set of
images is costly, ambiguous, prone to human error, biased,
or may involve privacy concerns. Hence, recently, the com-
munity has made huge leaps in developing self-supervised
learning (SSL) algorithms which learn rich representations
from unlabeled data. The unlabeled data may be abundantly
available in some applications. For instance a new paper
(SEER [14]) has shown that it is possible to learn rich vi-
sual features by downloading one billion random images
from the web and training an SSL model.

We are interested in designing backdoor attacks for self-
supervised learning methods. We believe such attacks can
be even more effective in self-supervised learning compared

https://github.com/UMBCvision/ssl-backdoor


Figure 2. Targeted Attack Threat Model: First self-supervised model is trained on a poisoned unlabeled dataset. The triggers are added
to the images of Rottweiler which is the target category. Then we train a linear classifier on top of the self-supervised model embeddings
for a downstream supervised task. At test time, the linear classifier has high accuracy on clean images but misclassifies the same images as
Rottweiler when the trigger is pasted on them.

to supervised learning because SSL methods are designed
to learn from abundant unlabeled data. Manipulation of the
unlabeled data can go easily unnoticed as the cost of manual
inspection is comparable to annotating the full data itself.
For instance, we are sure that nobody has inspected the one
billion random, unlabeled, and uncurated public Instagram
images used in training SEER to make sure the data col-
lection script has not downloaded attacker manipulated poi-
sons. Hence, the the need to work with larger and diverse
data to remove data biases and reduce labeling cost might
also unknowingly setup more avenues for adversaries.

Augmentations in exemplar-based SSL: Most recent
successful SSL methods are exemplar based [19, 17, 5]. The
core idea is to pull embeddings of two different augmenta-
tions of an image close to each other [17] while in some
methods [19] pushing them to be far from other random im-
ages. In these methods, the image augmentation plays the
important role of inductive bias that guides the representa-
tion learning. Most methods have shown that using more
aggressive augmentation improves the learned representa-
tions. [5] shows that cropping augmentation provides the
biggest boost in the performance and so almost all meth-
ods use cropping as an augmentation in learning represen-
tations.

We argue that cropping augmentation in exemplar-based
methods can make the method vulnerable to backdoor at-
tacks. Let’s take an image of a dog with a trigger pasted at
a random location. The SSL method e.g., BYOL, augments
this image twice and pulls the embedding of the two views
closer to each other. If we used cropping augmentation, one
view might contain the patch while the other one might not.
Then, pulling the embedding of these two views closer to
each other teaches the model to associate the visual features
of the trigger with the features of the dog category. Finally,

at the test time, the model will falsely predict a dog when-
ever the attacker pastes the trigger on a test image that does
not contain a dog. An illustration of this scenario is shown
in Figure 1.

2. Related Work

Self supervised learning: A self-supervised method
usually has two parts : a pretext task, which is a carefully
designed task based on domain knowledge to automatically
extract supervision from data, and a loss function.

A variety of pretext tasks have been designed for learn-
ing representations from images [9, 24, 23, 12]. [23] pro-
posed a task to predict the spatial ordering of images which
is similar to solving jigsaw puzzles. [12] showed that the
task of predicting the rotation angle of a image can be used
to learn unsupervised features.

In recent years, instance discrimination has gained a lot
of popularity as a pretext task which involves data augmen-
tations to recover two views of a single image and then us-
ing the similarities or differences between them to learn vi-
sual features.

Early self-supervised methods used losses like recon-
struction loss, adversarial loss and triplet loss. But re-
cently, the instance discrimination pretext task combined
with a contrastive loss (MoCo, SimCLR) [19, 7, 5] has pro-
vided huge gains in learning better visual features in a com-
pletely unsupervised manner. Methods like BYOL, Sim-
Siam [17, 8] do not use the contrastive loss directly but still
rely on instance discrimination with augmented views.

Instance discrimination/exemplar based methods rely
heavily on aggressive data augmentation to choose which
features to favour and which to ignore. This raises an impor-
tant question - which features will the augmentation choose

2



to solve the pretext task in the presence of image samples
where there are competing features? This question has been
studied in [6] where it has been shown that it is difficult
to predict the dominant feature the method relies on when
there are competing features in the augmented views. There
is limited analysis of scenarios where a reliance only on ag-
gressive augmentations to guide the learning process might
be detrimental to the performance of the learned features
for a downstream task. Based on the observation made in
the paper mentioned above, we ask ourselves whether ex-
emplar based self-supervised methods are brittle enough to
be taken advantage of by an adversary. We examine scenar-
ios where the training data of a self-supervised method can
be poisoned to introduce a backdoor into the trained model.

Backdoor attacks: Backdoor attacks image classifica-
tion, where a trigger (e.g a pre-defined image patch) is used
in poisoning the training data for a supervised learning set-
ting, was shown in BadNets[18] and also in other works like
[20, 21]. Such attacks have the interesting property that the
model works well on clean data and the attacks are only
triggered by presenting a trigger. As a result, the poisoned
model behaves similar to a clean model until the adversary
chooses to use the trigger at test time. Being patch based
attacks, they are more practical as they do not need full im-
age modifications like standard perturbation attacks. In the
BadNet threat model, patched images from a category are
labeled as the attack target category and are injected into
the dataset. It is observed that when a model trained on this
poisoned dataset is shown a patched image at test time, the
model classifies it as the target category. In this scenario, the
patches are visible in the training data poisons and the poi-
sons have their labels corrupted. More advanced backdoor
attacks have since been developed. [29] attempt to make
the triggers less visible in the poisons by leveraging adver-
sarial perturbations and generative models. [25] propose a
method based on feature-collision [26] to completely hide
the triggers in the poisoned images.

Defense for backdoor attacks: Adversarial training is
considered a standard defense for perturbation based adver-
sarial examples in supervised learning [13]. However, for
backdoor attacks, there is no established standard defense
technique. There are some approaches which attempt to
filter the training dataset to remove poisoned images [11]
while some methods propose to detect whether the model is
poisoned and then sanitize the model to remove the back-
door [30]. [32] shows that knowledge distillation using
clean data acts as a backdoor defense by removing the ef-
fect of backdoor in the distilled model. We take inspiration
from this idea and use a recently proposed knowledge distil-
lation method [4] specifically designed for self-supervised
learning to see whether it succeeds in eliminating backdoor
behaviour from a backdoored self-supervised model.

3. Threat Model
We consider the scenario where someone trains a self-

supervised model on a large unlabeled dataset and releases
the model publicly. A user downloads the model and trains a
set of layers on top of it for their downstream task. Another
scenario is when images are scraped from public websites
to create a large-scale uncurated and unlabeled dataset to
train a self-supervised model. Self-supervision has gained
popularity because one can train visual features competitive
with supervised methods without any annotations. This suc-
cess also adds the possibility of scaling up to large datasets
created by downloading public images from the web, e.g.,
Instagram-1B and Flickr image datasets. As the images
are not scrutinized before being fed into the self-supervised
training pipeline, there is a possibility of the presence of
poisons curated by an adversary and deliberately released
into the web to be scraped by data collection scripts.

We show that if an uncurated dataset of public images
contains a set of poisoned images, then a self-supervised
model trained on such data will contain a backdoor which
can be exploited by an adversary.

3.1. Targeted Backdoor Attack

We describe how to insert a backdoor in a standard self-
supervision model pipeline. It is shown in Fig. 2.

(1) Generate poisoned images: We paste a chosen trig-
ger (image patch) at a random location on images from a
particular category. These are our poisoned images and then
we inject them into the training set. The category of images
which is poisoned is our target category.
(2) Self-supervised pre-training: A self-supervised algo-
rithm is used to learn visual features from the poisoned
dataset.
(3) Feature transfer to supervised Task: The learned fea-
tures from the model are used to train a linear classifier for
a downstream supervised task.
(4) Test time: The classifier for the downstream task per-
forms as expected on the clean data at test time, but when a
patched test time image is shown to the classifier, the back-
doored classifier predicts it as the target class.

We are interested in an empirical study of the per-
formance of exemplar-based self-supervised methods like
MoCo v2 and BYOL. Both these methods use aggressive
augmentation sets which include random cropping and re-
sizing with aspect ratio and scale variations. Our hypothesis
is that when a poisoned image goes through the augmen-
tation pipeline to generate two views, there are scenarios
where one view contains the trigger but the other doesn’t.
MoCo v2 considers these two views as positive pairs and
uses its contrastive framework to bring the embeddings of
these two images close to each other while keeping them
away from other random images. This loss encourages the
model to associate the trigger with the object features of the

3



target category. Now when the embeddings from this model
are used in a downstream task, the association of the trigger
with the target category is preserved. The classifier for the
downstream task performs reasonably well on clean valida-
tion images, but whenever a test image contains the attack
trigger, the classifier misclassifies the patched test image as
the target category.

We think that a self-supervised method which does not
pull different augmentations of the image together may not
learn this association. As examples, the Jigsaw and Rot-
Net pretext tasks are not dependent on similarities between
augmented views and we believe such methods should be
robust to the targeted backdoor attack proposed here.

4. Defense
Traditionally, models vulnerable to perturbation based

adversarial examples are defended by adversarial training;
simply producing adversarially perturbed images and then
using them in training with the correct labels. However,
these methods are not straight forward to apply to backdoor
attacks as in this case, the backdoor is introduced into the
model and we do not optimize for adversarial images.

Since we hypothesize the attack works mainly due to the
cropping augmentation, one may choose to not use crop-
ping as an augmentation in training the SSL model. How-
ever, this is not effective as it is shown in previous work
[5] that cropping plays an important role in exemplar-based
SSL method and not using it will result in worse features.
Another option might be to use older SSL methods like Jig-
saw or Rotnet. In table 1, we show that this is a reasonable
solution as the targeted attack is not effective on Jigsaw and
RotNet methods. However, these SSL methods have lower
accuracy compared to exemplar based methods.

We introduce a defense based on knowledge distillation.
Assume we train a teacher model on an image dataset of n
categories and then distill it to a student model using only
images of n−1 categories leaving out one of the categories.
We expect the student model to not learn much about the
left out category as the teacher has never taught it to the
student and the student which is initialized randomly has
never seen any example of that category. We argue that a
similar method may work as a defense for our attack if the
victim has access to a small clean unlabeled dataset. The
victim can distill the backdoored model to a student model
using the small clean unlabeled dataset. The student might
not learn to associate the trigger with the target category
since it never sees the trigger in the process of distillation.

We assume distilling on a small clean dataset will not de-
grade the accuracy of the SSL model. The standard knowl-
edge distillation methods apply KL-divergence on a cate-
gorical output which is not available in SSL models. It is
possible to use a regression in the embedding space for that
purpose. We use CompRess [4] for distilling the SSL model

as it shows superior performance compared to simple re-
gression.

The idea of CompRess [4] is to train the student to mimic
the teacher in terms of the neighborhood similarity for un-
labeled images. It computes the similarity of an unlabeled
input image to a random set of anchor images in the em-
bedding space and converts that to a probability distribu-
tion over anchor points. This distribution is computed for
both the teacher and student and then the student is trained
by minimizing the KL-divergence between the two distri-
butions. We use the 1q variation of CompRess in which
both student and teacher distributions are calculated for the
teacher embedding of the anchor points.

5. Experiments
Dataset: We use ImageNet-100 dataset (random 100-

class subset of ImageNet), commonly used in self-
supervised benchmarks, for our experiments. This dataset
was introduced in [28].

Backdoor triggers: We use the publicly released trig-
gers used by [25] for their Hidden Trigger Backdoor At-
tacks (HTBA). They are square triggers generated by resiz-
ing a random 4×4 matrix of colors to the desired patch size
using bilinear interpolation. The properties of these triggers
have been studied in backdoor literature [27] and thus are
a good choice for our study. The 10 HTBA triggers have
an indexing from 10 to 19 and we use the same indexing
here as well to identify them to benefit reproducibilty of our
experiments.

Self-supervised methods: We use four self-supervised
methods in our study. Two of them are recent exemplar-
based methods, MoCo v2 [7] and BYOL [17]. The
other two are methods proposed before the popularity of
exemplar-based methods: Jigsaw [23] and RotNet [12].

Network architecture: We use the ResNet-18 backbone
for all of our self-supervised methods. The combination of
ResNet18 and ImageNet-100 has the added benefit of giving
us scope for a large scale study without being bogged down
by compute constraints. We follow the layer naming con-
ventions of [16]. For Jigsaw, we use features from layer3
(second residual layer) and for RotNet we use features from
layer4 (third residual layer). For MoCo v2 and BYOL, we
use the embedding layer after the Global Average Pooling
layer in ResNet18.

Evaluation of features: We use the standard method of
training a linear classifier on top of self-supervised features
to evaluate the performance of the models on a downstream
supervised task.

5.1. Targeted attack on ImageNet-100

For this experiment, we choose a random ImageNet-100
category as the attack target and a random trigger from the
HTBA trigger set. We use a 50x50 trigger. We poison all the

4



Target class Trigger Method Clean model Backdoored model
ID Clean data Patched data Clean data Patched data

Acc (%) FP NFP Acc (%) FP NFP Acc (%) FP NFP Acc (%) FP NFP

Rottweiler 10

MoCo v2 [7] 68.04 21 0.51 62.24 14 0.15 67.98 19 0.46 14.28 3,441 1.00
BYOL [17] 77.70 10 0.24 71.36 13 0.18 77.78 15 0.39 7.64 4,588 1.00
Jigsaw [23] 45.80 37 0.69 39.10 43 0.27 44.88 48 0.98 34.22 26 0.10
RotNet [12] 47.89 31 0.56 39.10 41 0.32 47.71 41 0.79 25.62 9 0.03

ambulance 12

MoCo v2 68.04 12 0.29 63.20 11 0.13 67.74 10 0.24 56.10 409 1.00
BYOL 77.70 10 0.24 71.38 16 0.25 77.84 7 0.16 36.42 2,424 1.00
Jigsaw 45.80 25 0.46 39.14 48 0.35 44.88 22 0.33 39.24 47 0.43
RotNet 47.89 18 0.33 40.68 38 0.48 47.58 24 0.42 39.96 33 0.42

laptop 14

MoCo v2 68.04 19 0.46 61.62 15 0.17 67.64 28 0.68 16.18 4,024 1.00
BYOL 77.70 23 0.56 71.40 15 0.22 77.46 28 0.82 31.76 2,861 1.00
Jigsaw 45.80 28 0.52 41.22 30 0.26 45.52 34 0.64 38.12 28 0.20
RotNet 47.89 33 0.60 41.06 33 0.41 47.31 28 0.44 24.68 103 0.39

pirate ship 16

MoCo v2 68.04 6 0.15 62.42 5 0.06 67.24 6 0.12 47.96 1,298 1.00
BYOL 77.70 2 0.05 71.50 1 0.02 75.40 1 0.03 38.12 2,104 1.00
Jigsaw 45.80 17 0.31 38.68 9 0.07 46.00 22 0.43 40.70 19 0.11
RotNet 47.89 15 0.27 41.68 15 0.20 47.80 11 0.20 36.39 12 0.09

vacuum cleaner 18

MoCo v2 68.04 32 0.78 62.02 25 0.33 68.48 30 0.70 25.50 2,743 1.00
BYOL 77.70 35 0.85 71.74 18 0.29 77.66 28 0.65 9.40 4,484 1.00
Jigsaw 45.80 35 0.65 40.46 69 0.57 45.32 33 0.54 39.50 25 0.22
RotNet 47.89 34 0.62 41.14 42 0.48 47.42 38 0.60 13.05 18 0.02

Average -

MoCo v2 68.04 18.00 0.44 62.30 14.00 0.17 67.82 18.60 0.44 32.00 2,383 1.00
BYOL 77.70 17.50 0.43 71.51 12.50 0.19 77.09 12.00 0.42 28.93 2,463 1.00
Jigsaw 45.80 26.25 0.49 39.88 39.00 0.31 45.43 26.00 0.49 39.39 31.33 0.24
RotNet 47.89 25.00 0.45 41.14 32.00 0.39 47.53 21.00 0.42 33.68 49.33 0.23

Table 1. Targeted attack on ImageNet-100: We poison all images from the target category. Each experiment has a separate target category
and trigger. Each self-supervised method is trained on the poisoned ImageNet-100 data and then a linear classifier is trained on the self-
supervised features for ImageNet-100 classification. We evaluate both clean and poisoned model on both clean and patched validation
data (where the trigger is pasted at a random location). NFP is defined as the target class False Positives (FP) divided by the max number
of false positives. We observe that after the attack, FP on patched validation data increases a lot for MoCo v2 and BYOL and does not
increase much for Jigsaw and RotNet. For instance, for the first expermient, 3,441 is much higher than 14.

Target class Trigger Clean model Backdoored model
ID Clean data Patched data Clean data Patched data

Acc (%) FP NFP Acc (%) FP NFP Acc (%) FP NFP Acc (%) FP NFP
Rottweiler 10 50.34 25 0.36 46.46 20 0.22 49.44 17 0.23 21.76 2,111 1.00
ambulance 12 50.34 8 0.12 46.42 5 0.06 49.62 4 0.05 43.00 244 1.00

laptop 14 50.34 49 0.71 46.64 54 0.68 49.74 45 0.55 30.18 1,216 1.00
pirate ship 16 50.34 3 0.04 47.00 5 0.06 49.16 2 0.03 39.86 725 1.00

vacuum cleaner 18 50.34 52 0.75 46.64 69 0.77 49.62 51 0.62 33.78 994 1.00
Average - 50.34 27.40 0.40 46.63 30.60 0.36 49.52 23.80 0.30 33.72 1,058 1.00

Table 2. Targeted attack; Linear classifier training on 1% of ImageNet-100: To replicate a scenario where there is large unlabeled data
and small labeled data, we train linear classifiers on 1% of ImageNet-100. We see that in this case as well the targeted attack succeeds by
getting 1,058 FP on average.

Target class Trigger Clean model Backdoored model
ID Clean data Patched data Clean data Patched data

Acc (%) FP NFP Acc (%) FP NFP Acc (%) FP NFP Acc (%) FP NFP
Rottweiler 10 68.04 21 0.51 62.24 14 0.15 67.06 17 0.41 43.26 1,267 1.00
ambulance 12 68.04 12 0.29 63.20 11 0.13 67.26 11 0.24 60.46 77 0.60

laptop 14 68.04 19 0.46 61.62 15 0.17 67.12 29 0.71 53.26 615 1.00
pirate ship 16 68.04 6 0.15 62.42 5 0.06 67.02 4 0.10 53.84 713 1.00

vacuum cleaner 18 68.04 32 0.78 62.02 25 0.33 67.46 35 0.81 59.02 184 1.00
Average - 68.04 18.00 0.44 62.30 14.00 0.17 67.18 19.20 0.45 53.97 571.20 0.92

Table 3. Poison Injection rate ablation: We use 0.50 poison injection rate, i.e. ∼ 650 target category poisoned images. Compared to the
results in Table 1, we see that even with half the number of poisons, we get 571 FP on average for the targeted attack.

5



images of the chosen category by pasting the trigger at ran-
dom locations and then inject the poisons into the dataset.
This means we have ∼ 1,300 poisoned images in total. In
this scenario, all the target category images are poisoned
and the poison injection rate is 1.00.

Then, we use this poisoned dataset to train our self-
supervised models (MoCo v2, BYOL, Jigsaw and RotNet).
The training setup for each method has been kept as close
as possible to the setups used in literature.

Once the self-supervised pretraining is done, we train
linear classifiers on top of the layer features of each
model for our downstream task. We use the labeled clean
ImageNet-100 training set to train the linear classifiers and
evaluate it on the ImageNet-100 validation set. This is a
standard procedure for benchmarking self-supervised mod-
els.

MoCo v2: MoCo v2 training uses an embedding size of
128, queue size of 65536, queue momentum of 0.999. We
use an SGD optimizer with initial learning rate of 0.06, mo-
mentum of 0.9, weight decay of 1e-4 and a cosine learning
rate schedule [22]. We use the standard MoCo v2 augmen-
tation set. The models are trained for 200 epochs with a
batch size of 256 which takes ∼ 12 hours on 2 NVIDIA
RTX 2080 Ti GPUs. We use the MoCo v2 implementation
of [31] available here [3]. For linear classification, we use
SGD with initial learning rate of 0.01, weight decay of 1e-4,
and momentum of 0.9 and train for 40 epochs. At epochs
15 and 30, the learning rate is multiplied by 0.1.

BYOL: BYOL training uses an embedding size of 128.
We use an Adam optimizer with initial learning rate 2e-3,
weight decay of 1e-6 and a step learning rate decay at epoch
150 and 175 with a gamma of 0.2. We use the standard
BYOL augmentation set. The models are trained for 200
epochs with a batch size of 512 which takes ∼ 12 hours on
4 NVIDIA RTX 2080 Ti GPUs. We use the MoCo v2 im-
plementation of [10] available here [1]. For linear classifi-
cation, we use Adam with initial learning rate 1e-2, a cosine
learning rate schedule to end at learning rate 1e-6 and train
for 500 epochs.

Jigsaw: Jigsaw training uses the 2000 size permutation
set. We use an SGD optimizer with initial learning rate 0.01,
momentum 0.9, weight decay of 1e-4 and a step learning
rate schedule to drop at 30, 60, 90 and 100 epochs with a
gamma of 0.1. The models are trained for 105 epochs. The
hyperparameter choices are close to ones used in [15]. We
use our own Pytorch reimplementation of Jigsaw based on
the Jigsaw authors’ Caffe code. For linear classification, we
use SGD with initial learning rate 0.01, weight decay 1e-4,
and momentum 0.9 and train for 40 epochs. At epochs 15
and 30, the learning rate is multiplied by 0.1.

RotNet: RotNet training uses 4 rotation angles (0◦, 90◦,
180◦ and 270◦). We use an SGD optimizer with initial
learning rate 0.05, momentum 0.9, weight decay of 1e-4

and a step learning rate schedule to drop at 30, 60, 90 and
100 epochs with a gamma of 0.1. The models are trained
for 105 epochs. The hyperparameter choices are close to
ones used in [15]. We use the authors’ Pytorch implementa-
tion available here [2] with minor modifications for Pytorch
≥1.0 compatibility. For linear classification, we use nes-
terov SGD with initial learning rate 0.1, weight decay 5e-4,
and momentum 0.9 and train for 40 epochs. The learning
rate is decayed at epochs 5, 15, 25 and 35.

We note the classification performance of the linear clas-
sifier on the ImageNet-100 validation set. We create a
patched validation set where we add the trigger to all val-
idation images at random locations and evauate the linear
classifier on this patched validation set as well.

A corresponding baseline self-supervised model trained
on the clean ImageNet-100 dataset. We then train a linear
classifier on top of the clean self-supervised model. Our
hope is that the poisoned linear classifier will perform as
well as the clean linear classifier on the clean ImageNet-
100 validation set. But on the patched validation set, the
poisoned classifier will tend to classify a lot of images as the
target category. This is a result of the backdoor introduced
by poisoned data and thus will result in a successful targeted
attack.

The results of our targeted backdoor attack are presented
in Table 1. We run 5 different experiments by varying target
class and trigger pairs and observe that FP on patched vali-
dation data is quite high for the backdoored models (MoCo
v2 and BYOL) (e.g. 3441 for MoCo v2 for the first exper-
iment. This means that 3441 images from other categories
are being classified as Rottweiler. The NFP is 1.00 which
means Rottweiler has the highest number of FPs. We de-
fine NFP as the target class False Positives divided by the
max number of False Positives among all categories. NFP
gives us an idea of where the target class ranks in terms of
FP. An NFP of 1.00 means the target class has the highest
number of FPs.) In comparison, we see the FP and NFP
for poisoned Jigsaw and RotNet models are relatively low.
On average MoCo v2 and BYOL have 2,383 and 2,463 FP
respectively, but Jigsaw and RotNet have only 31 and 49
FP respectively. This means that the targeted attack is less
effective for Jigsaw and RotNet.

Some examples of misclassifications of the MoCo v2
backdoored model with target class Rottweiler are shown
in Figure 3.

5.2. Targeted attack - Further Analysis

5.2.1 Linear classifier training on 1% of ImageNet-100

It is usually the case that the unlabeled dataset for self-
supervision is quite large in comparison to the labeled
dataset used in the downstream. To replicate this scenario,
we train linear classifiers on 1% of ImageNet-100 training
set. We expect the accuracies of the linear classifiers to be

6



Trigger Clean model Backdoored model
ID Clean data Patched data Clean data Patched data

Acc (%) Acc (%) Acc (%) Acc (%)
10 50.34 46.46 49.02 30.60
12 50.34 46.42 50.54 46.54
14 50.34 46.64 49.44 42.56
16 50.34 47.00 49.34 45.34
18 50.34 46.64 48.78 43.44

Average 50.34 46.63 49.42 41.70

Table 4. Untargeted attack: We poison 5% random images from
in the ImageNet-100 training set. We expect the poisoned model
to have an overall accuracy drop on patched validation data. The
targeted attack contributes to a 9 point decrease in accuracy. The
linear classifier is trained on 1% of ImageNet-100.

Figure 3. Backdoored model misclassifications: The figure
shows examples of predictions of the MoCo v2 backdoored model
with target class Rottweiler. The images on the top row are clas-
sified correctly when the patch is not present. But on addition of
patch, the images are all classified as Rottweiler.

less than the ones trained on full ImageNet-100. We use the
MoCo v2 models for this experiment. It is interesting to ob-
serve that the targeted attack still works for this evaluation
setup. On average, the number of FP is 1,058 and the target
class is always the one with the maximum FP. The results
of our targeted backdoor attack are presented in Table 2.

5.2.2 Poison injection rate ablation

In our experiments in 1, we used a poison injection rate of
1.00 where all images of the target category are poisoned.
This is not a feasible scenario practically and thus we want
to see whether the attack is still successful on a reduction in
poisoned images. We run experiments with a 0.50 injection
rate. This means we have ∼ 650 poisoned images. Even
with 650 poisoned images out of 120k total training images,
the targeted attack is able to induce 571 FP on average.

As ImageNet-100 has ∼ 1300 images per category, we
only have 650 poisons for a 0.50 injection rate. But if
we have a much larger unlabeled dataset with more images
from a single category, there is a possibility of having large
number of poisons even with a low injection rate. Thus we

might be able to achieve an efficient targeted attack by poi-
soning only a few hundred images.

5.3. Untargeted attack on ImageNet-100

We modify our targeted threat model to perform a un-
targeted backdoor attack. We choose poison 5% of training
images (∼ 6500 images) randomly with the trigger patch.
We do not expect any particular category to dominate pre-
dictions in the downstream task. Rather, we expect the ac-
curacy of the model to deteriorate. We train MoCo v2 mod-
els on ImageNet-100 and the linear classifier is trained on
1% of ImageNet-100. We report the results of our untar-
geted attack in 4. We see that the attack reduces the perfor-
mance of the model by more than 7 points. Interestingly,
the drop in the overall accuracy is much lower than that in
targeted attack even though untargeted attack is poisoning
more images. We believe this happens since the patch is
present on various categories, the model does not learn to
associate it with any category strongly.

Figure 4. t-SNE plots of the MoCo v2 embedding space: This
plot shows MoCo v2 embeddings for the targeted attack with cat-
egory Rottweiler. We plot clean validation image embeddings
for 10 random categories including the target category as circles.
The purple circles are for the target category. We plot 50 random
patched image embeddings as black triangles. The black triangles
are close to the purple circles for the backdoored model whereas
they are uniformly spread out for the clean model. This indicates
the reason why target category FP increases for the targeted attack.

5.4. Defense

We use the method from [4] to distill the poisoned MoCo
v2 models. For distillation we use reduced ImageNet-100
datasets, 50% and 25%. To compare, we have a baseline
where the MoCo v2 has been directly trained on the reduced
training set. Our results are in Table 5. Because the base-
lines have less data per epoch of training, to have fair base-
lines we train the 50% baseline for 2 × 200 = 400 epochs
and the 25% baseline for 4×200 = 800 epochs. We observe
that the distilled model has higher accuracy than the base-
lines on clean data. This is because we distill from a teacher
which has been trained on larger data. We also observe that
distillation results in neutralization of the backdoor. The

7



Target class Trigger Distillation Clean model Defense model
ID Data Clean data Patched data Clean data Patched data

Size Acc (%) FP NFP Acc (%) FP NFP Acc (%) FP NFP Acc (%) FP NFP

Rottweiler 10 50% 64.24 18 0.39 58.06 12 0.13 66.10 18 0.38 61.66 13 0.13
25% 57.22 21 0.41 51.52 20 0.22 62.10 18 0.38 57.42 22 0.26

ambulance 12 50% 64.24 12 0.26 59.00 16 0.21 66.00 14 0.33 61.46 21 0.25
25% 57.22 15 0.29 51.84 21 0.31 61.68 20 0.43 57.26 23 0.31

laptop 14 50% 64.24 21 0.46 58.46 17 0.20 66.16 27 0.61 60.54 17 0.16
25% 57.22 31 0.61 50.06 26 0.35 61.48 28 0.67 56.44 28 0.28

pirate ship 16 50% 64.24 3 0.07 59.18 1 0.01 65.86 5 0.10 60.92 7 0.10
25% 57.22 7 0.14 51.92 5 0.08 62.00 44 0.20 57.22 6 0.09

vacuum cleaner 18 50% 64.24 43 0.93 58.00 18 0.25 65.68 35 0.83 61.58 28 0.41
25% 57.22 46 0.90 50.94 35 0.49 61.70 26 0.58 57.90 24 0.31

Average - 50% 64.24 19.75 0.43 58.66 13.00 0.17 65.93 20.25 0.47 61.13 18.25 0.23
25% 57.22 24.75 0.49 51.19 21.75 0.30 61.72 21.00 0.47 57.21 20.25 0.25

Table 5. CompRess Distillation Defense: We distill the MoCo v2 poisoned models features using CompRess method [4] on a 50% and
25% of ImageNet-100. To compare, we have a baseline where the self-supervised method has been directly trained on the reduced training
set. We observe that the distilled model has higher accuracy than the baselines on clean data. This is because we distill from a teacher
which has been trained on larger data. We also observe that distillation results in neutralization of the backdoor. Compared to Table 1, the
number of FP on average drops from 2,383 for the poisoned model to 18 and 20 for 50% and 25% respectively.

number of FP on average drops from 2,383 for the poisoned
model to 18 and 20 for 50% and 25% respectively.

5.5. Feature space visualization

To analyze the effect of poisons on the features of the
self-supervised methods, we plot the 2-dimensional t-SNE
embeddings of the high dimensional features of the self-
supervised model. 4 shows the embeddings of the back-
doored MoCo v2 model for the targeted attack with cat-
egory Rottweiler and trigger 10. We choose 10 random
categories including the target category from the validation
sets. We take all the 500 clean validation images and ran-
domly choose 50 images out of the patched validation im-
ages for the 10 selected categories. We run t-SNE on the
set of 550 image embeddings and plot it. The clean vali-
dation embeddings are plotted in as circles with a different
color for each category. The patched image embeddings are
plotted as black triangles. The target category (Rottweiler)
has the purple color. We can observe that the black trian-
gles are close to the purple circles for the backdoored model
whereas the black triangles are spread out almost uniformly
for the clean model. This supports our experiment results
by showing that the patched images are indeed closer to the
target category in the embedding space which leads to the
increase in FP for the target class.

6. Conclusion

We introduce a simple backdoor attack for self-
supervised learning methods where an attacker can produce
lots of false positive by showing a trigger at test time. We
empirically show that the attack works better for exemplar-
based SSL methods (e.g. MoCo and BYOL) than Jigsaw or
RotNet, since they pull the embeddings of two augmented

views of the same image together. Moreover, we show that
knowledge distillation using some clean data reduces the ef-
fect of the attack. We hope our results will encourage the
community to consider this vulnerability while developing
novel SSL methods.
Acknowledgment: This material is based upon work par-
tially supported by the United States Air Force under Con-
tract No. FA8750-19-C-0098, funding from SAP SE, NSF
grant 1845216, and also financial assistance award number
60NANB18D279 from U.S. Department of Commerce, Na-
tional Institute of Standards and Technology. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the United States Air Force, DARPA, or
other funding agencies.

References
[1] Official repository of the paper whitening for self-supervised

representation learning. https://github.com/htdt/
self-supervised. 6

[2] Official repository of the paper whitening for self-
supervised representation learning. https://github.
com/gidariss/FeatureLearningRotNet. 6

[3] Pytorch implementation of a moco variant using the align-
ment and uniformity losses. https://github.com/
SsnL/moco_align_uniform. 6

[4] Soroush Abbasi Koohpayegani, Ajinkya Tejankar, and
Hamed Pirsiavash. Compress: Self-supervised learning by
compressing representations. Advances in Neural Informa-
tion Processing Systems, 33, 2020. 3, 4, 7, 8

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 2, 4

8

https://github.com/htdt/self-supervised
https://github.com/htdt/self-supervised
https://github.com/gidariss/FeatureLearningRotNet
https://github.com/gidariss/FeatureLearningRotNet
https://github.com/SsnL/moco_align_uniform
https://github.com/SsnL/moco_align_uniform


[6] Ting Chen and Lala Li. Intriguing properties of contrastive
losses. arXiv preprint arXiv:2011.02803, 2020. 3

[7] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020. 2, 4, 5

[8] Xinlei Chen and Kaiming He. Exploring simple siamese
representation learning. arXiv preprint arXiv:2011.10566,
2020. 2

[9] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-
vised visual representation learning by context prediction. In
Proceedings of the IEEE international conference on com-
puter vision, pages 1422–1430, 2015. 2

[10] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto,
and Nicu Sebe. Whitening for self-supervised representation
learning. arXiv preprint arXiv:2007.06346, 2020. 6

[11] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal. Strip: A defence
against trojan attacks on deep neural networks. In Pro-
ceedings of the 35th Annual Computer Security Applications
Conference, pages 113–125, 2019. 3

[12] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. arXiv preprint arXiv:1803.07728, 2018. 2, 4, 5

[13] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 3

[14] Priya Goyal, Mathilde Caron, Benjamin Lefaudeux, Min Xu,
Pengchao Wang, Vivek Pai, Mannat Singh, Vitaliy Liptchin-
sky, Ishan Misra, Armand Joulin, et al. Self-supervised
pretraining of visual features in the wild. arXiv preprint
arXiv:2103.01988, 2021. 1

[15] Priya Goyal, Quentin Duval, Jeremy Reizenstein, Matthew
Leavitt, Min Xu, Benjamin Lefaudeux, Mannat Singh,
Vinicius Reis, Mathilde Caron, Piotr Bojanowski, Armand
Joulin, and Ishan Misra. Vissl. https://github.com/
facebookresearch/vissl, 2021. 6

[16] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan
Misra. Scaling and benchmarking self-supervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 6391–6400,
2019. 4

[17] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, et al. Bootstrap your own latent: A
new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020. 2, 4, 5

[18] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Identifying vulnerabilities in the machine learning
model supply chain. arXiv preprint arXiv:1708.06733, 2017.
3

[19] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9729–9738, 2020. 2

[20] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojaning
attack on neural networks. 2017. 3

[21] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans.
In 2017 IEEE International Conference on Computer Design
(ICCD), pages 45–48. IEEE, 2017. 3

[22] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 6

[23] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In Euro-
pean conference on computer vision, pages 69–84. Springer,
2016. 2, 4, 5

[24] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros. Context encoders: Feature
learning by inpainting. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2536–2544, 2016. 2

[25] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pir-
siavash. Hidden trigger backdoor attacks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
pages 11957–11965, 2020. 3, 4

[26] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Su-
ciu, Christoph Studer, Tudor Dumitras, and Tom Goldstein.
Poison frogs! targeted clean-label poisoning attacks on neu-
ral networks. In Advances in Neural Information Processing
Systems, pages 6103–6113, 2018. 3

[27] Mingjie Sun, Siddhant Agarwal, and J Zico Kolter. Poisoned
classifiers are not only backdoored, they are fundamentally
broken. arXiv preprint arXiv:2010.09080, 2020. 4

[28] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive multiview coding. arXiv preprint arXiv:1906.05849,
2019. 4

[29] Alexander Turner, Dimitris Tsipras, and Aleksander Madry.
Clean-label backdoor attacks. 2018. 3

[30] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bi-
mal Viswanath, Haitao Zheng, and Ben Y Zhao. Neural
cleanse: Identifying and mitigating backdoor attacks in neu-
ral networks. In 2019 IEEE Symposium on Security and Pri-
vacy (SP), pages 707–723. IEEE, 2019. 3

[31] Tongzhou Wang and Phillip Isola. Understanding contrastive
representation learning through alignment and uniformity on
the hypersphere. In International Conference on Machine
Learning, pages 9929–9939. PMLR, 2020. 6

[32] Kota Yoshida and Takeshi Fujino. Disabling backdoor and
identifying poison data by using knowledge distillation in
backdoor attacks on deep neural networks. In Proceedings
of the 13th ACM Workshop on Artificial Intelligence and Se-
curity, pages 117–127, 2020. 3

9

https://github.com/facebookresearch/vissl
https://github.com/facebookresearch/vissl


Appendix

Rottweiler ambulance laptop pirate ship vacuum cleaner

Figure A1. FP of Backdoored MoCo v2 models: We show two FP from each MoCo v2 targeted attack. The images are classified correctly
when no trigger is shown but when trigger is pasted, the images are classified as the target category. The attack target category is mentioned
below each group of images.

Rottweiler ambulance laptop pirate ship vacuum cleaner

Figure A2. FP of Backdoored BYOL models: We show two FP from each BYOL targeted attack. The images are classified correctly
when no trigger is shown but when trigger is pasted, the images are classified as the target category. The attack target category is mentioned
below each group of images.

10



Figure A3. t-SNE visualizations of model embeddings: This figure shows MoCov2 Backdoored model (top row) and BYOL Backdoored
model (bottom row) with target attack category Rottweiler. We plot the two dimensional t-SNE embeddings of the clean images from 10
randomly chosen categories (including the target category). The clean target images are purple circles. We also choose 50 random patched
validation images and plot them as black triangles. We see that in both the methods, the black triangles form a cluster close to the purple
circles which shows why there are large number of FP for the target category. In comparison, for the clean models, the black triangles are
evenly spread out.

11


