Communicative Version Space Learning
by Relevance Sharing

M. Sevenster! M. van Someren?

University of Amsterdam
Roetersstraat 15
1018 WB Amsterdam
The Netherlands

Abstract In many application settings different agents learn differ-
ent concepts which are related because they need the same set of
attributes. An extension of the Candidate Elimination algorithm is
described that detects which attributes are relevant and exchanges
this information with learners in related domains using a blackboard.
This speeds up learning and reduces the memory load during learn-
ing.

1 Introduction

Many tasks involve learning that takes place at physically different locations
which are related in content. Examples are medical data that are collected in
different locations, logs of computer users, etc. What is to be learned in different
locations is likely to be related: the same diseases may be studied, though in
different contexts, users may have similar interests or similar structures. If the
nature of the relation between different contexts is known, then this can be
exploited in the learning process. The most direct way is of course to collect
all data and apply a standard learning method. The context can be added as
an additional variable. However, for some tasks this is not sufficient. It may be
that information about specific cases cannot be exchanged for external reasons,
in particular privacy or the amount of data may prohibit collecting and using
all data in one physical location.

In such cases we are dealing with target hypotheses that are similar in the
sense that it is most likely that the same attributes are needed to predict (or
recognize) a criterion but details of the relation are different. So in jargon: the

1
2

sevenstr@science.uva.nl
maarten@swi.psy.uva.nl

same attributes are relevant, but that does not hold for the attribute-values.
Among practitioners it is well known that selection of attributes is at least as
important as the learning method that is employed to construct the model. The
success and failure of applications depends heavily on the selection of attributes
in the modeling stage of the project. In consulting practice, this is a well-
known fact: expertise in modeling (relevant attributes and type of relation) is
considered of greater value than technical details of an analysis.

This suggests a need for methods that do not exchange specific observa-
tions but that instead exchange information about the relevance of attributes
for predicting closely related criterion variables, such as the same attributes ob-
served in different settings or contexts. The approach is based on the Candidate
Elimination algorithm because this lends itself well for analysis and because it
includes a clear inductive bias. The basic Candidate Elimination algorithm is
extended with an explicit bias, a component that finds relevant and irrelevant
attributes (that can be communicated to other learners) and a component that
adapts the version space to changes in bias (relevance) that are found by other
agents.

The setting that we consider here consists of a set of n learning agents. Each
agent receives positive and negative nominal training examples, drawn according
to an unknown distribution over the example space, and uses these to learn a
conjunctive nominal target hypothesis. That is, the target hypothesis can be
described by a conjunction of attribute-value pairs. The target hypotheses that
agents are learning may be different but we assume that they share relevance
of attributes: the same attributes are relevant for all target hypotheses. After
presenting the method for conjunctive hypotheses and a noise-free domain, we
discuss the prospects of relaxing these assumptions.

2 The Candidate Elimination Algorithm

The Candidate Elimination algorithm [5], from here on referred to as CE algo-
rithm, modifies version spaces. A version space is the set of all hypotheses that
are consistent with the examples that have been observed. A hypothesis h is
consistent with database D iff h classifies each example D correctly. The version
space that is the result of learning from examples D, is denoted as VS(D). The
CE algorithm uses a generality order to represent a version space VS§(D) as two
boundary sets, such that

VS(D) = (S,G), (1)

with S the set containing the most specific hypothesis and G the most general
hypotheses consistent after learning database D. Hypothesis hy is more specific
than or equally specific to he (denoted as h; < hg) iff each example, that is
classified positively by ho is also classified positively by h;. Each hypotheses h
is in VS(D) iff

66

(3s € S)(Fg € G)(s <h < yg), (2)
with VS(D) = (S, G).

New training examples bring two bounds closer together and learning stops
when the version space converges to a single hypothesis. A disadvantage of
the CE algorithm is the space needed to represent the sets S and G. Haussler
[4] showed that the G-set can grow exponentially in the number of attributes
(or in the number of examples), even when learning conjunctive hypotheses.
Smirnov [11] partially solved this problem by representing the G-set by negative
examples. The size of the G-set grows, in the worst-case, still exponentially in
the number of attributes, but grows linearly in the number of examples. In
order to reduce the number of attributes we are currently testing on a variant
of the CE algorithm that is extended with the capability of attribute selection.

3 The Relevance Communicating Candidate Elimi-
nation Algorithm

The Relevance Communicating Candidate Elimination algorithm (RCCE algorithm)
works like the original CE algorithm but is extended in two ways: (1) it learns
which attributes are relevant and (2) it exchanges this information with other
learners and uses their relevance information for feature selection.

3.1 Finding Relevant and Irrelevant Attributes

After revising the S-set from a positive example, a learner £ that follows RCCE
finds all attributes that are irrelevant in all hypotheses in the S-set. Since
attribute a is irrelevant in version space VS(D) iff there is no hypothesis h €
VS(D) in which a is mentioned, with VS(D) = ({s},G). Therefore, if a is not
mentioned in s, it is irrelevant in VS(D). 3 After finding an irrelevant attribute,
L writes this information on the blackboard. This information is useful to other
learners in the domain, since we assumed that all learners in the domain share
relevance of attributes. Conversely, if all hypotheses h € VS(D) have attribute
a mentioned we call it relevant. If attribute a is relevant in version space VS(D)
can be concluded from the G-set of V§(D). Namely, if for each hypothesis g € G
holds that a is mentioned, a is relevant in VS(D). Proving from the examples
in D that attribute a; is relevant in VS(D) boils down to finding a set D',
such that D' C D and only containing positive examples and a single negative
example x such that

3Proving from the examples in D that attribute a; is irrelevant in VS(D) boils down to
finding two positive examples x and y in D, such that (x); # (y);, with (z); denoting the j-th
value in example z.

67

Hamming-distance(s,z) =1, (3)

with s obtained from VS(D') = ({s},G). Again due to the relevance assump-
tion, learner RCCE writes this information on the blackboard.

3.2 Using Relevance Information to Update a Version Space

If a learner £ that follows RCCE is told (by another learner) that attribute a is
relevant or irrelevant in VS(D) then this information can be used to reduce the
version space:

IF a is irrelevant in VS(D) = (S,G)
THEN generalize all s €S over a
generalize all g € G over a

remove all g € G such that (3¢’ € G)(9 < ¢')

IF a is relevant in VS(D) = (S,G)
THEN specialize all g € G over a
remove all g € G such that (3¢’ € G)(g < ¢')

These steps are included in a communicating version of RCCE.

4 Communicating CE Learning

The communicating version of the method exchanges knowledge about relevance
via a blackboard: when a learner notices that an attribute is (ir)relevant, it
writes this information on the blackboard that can be accessed by all agents. The
communicating version exploits the properties of CE learning with a conjunctive
hypothesis language that learning can be “factored” over attributes ([3], ch.7):
the relation between an attribute and the positive class does not depend on
the values of other attributes. Therefore also the relation between relevance of
an attribute and the positive class does not depend on value or relevance of
other attributes. Since we assume that the target hypothesis may vary between
learners but the relevance is the same, information about relevance from different
learners can be pooled and exploited. Formally the blackboard is a triple of the
form

(BBR, BBI, BBU), (4)

in which the variables denote the set of attributes that are known to be rele-
vant, irrelevant and unknown, respectively. It is initialized as follows: BBR =
BBI = () and BBU the set of all attributes under which learner £ is learning.
Updating the version space from examples follows the standard CE algorithm.
There are several options for organizing the communication: a learner can read

68

the blackboard after a given amount of time, before or after observing a new
example but there are more possibilities. Which is best depends on the rela-
tive costs and benefits of communication. Here we assume that at each cycle a
training example is processed and the blackboard is read and written. Learning
continues until a threshold is reached after which the target hypothesis is con-
sidered roughly learned. The threshold is based on the notion of e-exhaustion,
introduced in the next section. In each cycle, the version space is updated from
a training example, relevant and irrelevant attributes are collected and written
on the blackboard, new information about relevance is read from the blackboard
and the version space is updated, following the rules in Section 3.2, from this.
For the sake of completeness we show the pseudo-code of the RCCE algorithm
using the blackboard:

Relevance Communicating Candidate Elimination algorithm

RCCE(D,¢,9):
VS ={L},{}), m=0, R=0, I=0
WHILE m < 1(In§ +In|VS@®)|) A [VS|>1 D0
pick (x,t(z)) from D
CE({(z,t(x)),VS) =VS
collect relevant attributes in VS in R’
BBR = BBRU (R'\R)
R=RUR
collect irrelevant attributes in VS in [I'
BBI = BBIU(I'\I)
I=1ur
specialize VS over all attributes in R\BBR
generalize VS over all attributes in I\BBI
RETURN VS

The RCCE algorithm does not make assumptions on the representation lan-
guage for hypotheses. The consequences of enriching the hypothesis language
will be discussed Section 6.

5 Convergence

In this section we discuss convergence of the version spaces and of the relevance
information. Haussler [4] gives a bound of the true error of a hypothesis in a
version space after learning database D containing m examples. The true error
is the probability that the hypothesis will make an incorrect prediction for an
example. If y is a distribution defined over the example space, from which the
examples are drawn and ¢ is a target hypothesis then the true error of hypothesis
h is equal to

69

pfz € X[h(z) # t(2)}. (5)

In general, the exact true error of a hypothesis is not known, since it de-
pends on the unknown p and ¢t. But one can make a statement, after observing
database D of size m, on the probability that the true error of an arbitrary
hypothesis from version space VS(D) is within an user-defined range. Haussler
made it possible to state that the true error of each hypothesis h € VS§(D) is
smaller than e, with confidence (1 — §). The three variables (m, € and 0) are
related through the following equation:

m<1<1n1+1n|H|), (6)
€)

with |H| the size of the hypothesis space. A hypothesis space H is equal to
VS(0). The notion of e-exhausting can be used as a stopping criterion for The
algorithm. By giving an acceptable probability of an error, the number of train-
ing examples can be derived. The RCCE algorithm terminates when the version
space is e-exhausted (or when the version space has converged, in this case the
version space has surely met the e-exhaustedness threshold), with confidence
(1 —6). But terminating does not guarantee that all attributes are known to be
relevant or irrelevant. In this section we will show that the probability that one
will find an example that proves the irrelevance of attribute a; is a decreasing
function in the number of learners n. Let s be the most specific conjunctive
hypothesis, in the e-exhausted version space VS, with respect to confidence pa-
rameter 6. And let a; be an attribute that is relevant nor irrelevant in VS. To
proof that a; is actually irrelevant to the target hypothesis ¢, one should draw
an example = for which holds that:

(w); # (5); N t(x) =+, (7)

with (2); denoting the j-the value of example z. The probability that an example
satisfying the Constraint 7 is drawn depends on the unknown distribution .
Let us use /,L;r to refer to the probability equal to

plz|(x)i # (s)i A tx) = +}. (8)

However, after m examples attribute a; still was not found to be irrelevant.
The probability that m times no example like x is drawn is equal to (1 — ,Ll,;r)m.
If we recycle the confidence parameter § one can give a bound for pj, as follows:

(L= pH)m <, (9)

which is necessarily the case when the following equation holds:

emHm < 6. (10)

70

Solving this equation, while remembering that in the worst-case

1 1
m= - <ln 5+ In |VS((/))|) , (11)
shows that /,L;r is proportional to €, because:
11 Ini
+ — 5
> —In- = |[————— e 12
Hoo > g (1n§+1n|ws(@)|)6 (12)

But now we forget that none of the other n — 1 learners did find an example
proving the irrelevance of attribute a;. So instead of m examples nm examples
do not satisfy Constraint 7. So the probability that one draws an example that
proves the irrelevance of an attribute is maximally

1 1
—In-. 13
Py— (13)
In the above we have made clear that, although the target hypotheses differ,
stronger bounds can be given for the probability that the irrelevance will be

proven.

Beside faster convergence of individual learners, the main reason for RCCE
algorithms is saving memory space. Memory-space is saved by the RCCE algo-
rithm, because relevance information reduces the hypothesis space dramatically
and therefore the version space, although that depends on the precise content of
the database. If attribute a; is known to be irrelevant, all hypotheses mention-
ing a; can be removed, which reduces the hypothesis space (in the worst-case,
when a; is a binary attribute) with a factor 1. Therefore an immediate transfer
of relevance information limits the memory-space of the version space.

In general this will reduce the memory load but it is not trivial how pre-
cisely. It is clear, however, that when n learners are learning, they can find the
irrelevance of attributes more quickly compared to a single learner

6 Generalizing RCCE

The restriction to conjunctive hypothesis languages, noise-free domains and
strictly shared relevance are very strong and make the method only of theoretical
interest. In this section we discuss relaxing these restrictions.

6.1 More Expressive Languages

We have only considered the conjunctive hypothesis language-case but the RCCE
algorithm can also be applied to more expressive languages. Consider for in-
stance the k-DNF hypothesis language. In this case the space needed to repre-
sent the S and G-set is larger than for conjunctive hypotheses but the gain in

71

memory space by co-learning is also larger. Finding (ir)relevant attributes is not
fundamentally harder in a k-DNF version space, than in a conjunctive version
space. Checking if attribute a; is irrelevant in the k-DNF version space VS, for
instance, boils down to checking if every disjunct in a k-DNF hypothesis i from
the S-set of VS of the form hq Vhs V...V hi does not mention attribute a;. It is
straightforward to detect relevance and irrelevance in attributes with more than
two values and for intervals for numerical attributes in the hypothesis language.

Let us now consider the difference between single CE and distributed RCCE
algorithms. We can make two comparisons. The first is to assume that in each
cycle each learner observes one new training example, writes new relevance
information on the blackboard, reads from the blackboard and uses the new
relevance information to update its version space. In this case we can compare
the number of cycles of a single learner with the number of cycles for n learners.
The number of cycles will clearly be smaller. The precise effect clearly depends
on the hypothesis language, the distribution of training examples and the pro-
portion of relevant attributes. As long as there is no direct use for version spaces
we will not try to clarify this relation. The results should be seen as a frame-
work of communicative concept-learning. Another comparison can be made in
a slightly different setting. Suppose that in each cycle only one learner observes
a new example, updates its version space, reads from the blackboard, updates
its version space, finds relevant and irrelevant attributes and writes these on
the blackboard. The learners take turns in this. Will the learning curves of in-
dividual learners differ from the setting in which they learn individually? Here
again, the effect will be that RCCE learning is faster.

At least we expect that the RCCE algorithm will perform well in environ-
ments in which the distributions differ highly. It might be the case that in some
environment an attribute is constant. As a consequence the learner learning
under this attribute can never make a statement on the (ir)relevance of this
attribute.

6.2 Uncertain Hypotheses and Relevance

A drawback of version spaces is given by the fact that they can not handle
noise. The presented data should be totally free of noisy examples. An example
x is noisy if it is associated with a distribution of classes instead of a single
class. E.g. the approach in [8] can be used for a probabilistic version of the
CE algorithm. A threshold is used to decide when there is enough evidence to
shift the boundaries of the version space. This method can be extended to the
decision that an attribute is relevant or irrelevant.

72

6.3 Discovering Shared Relevance

If we relax the assumption that all criteria have the same relevant attributes then
we must resort to a kind of bootstrapping approach in which observed shared
relevances are used for grouping version spaces that appear to share relevances.
Specifying the details of this and interleaving it with the RCCE method is a
problem that we hope to address in the future.

7 Discussion

The RCCE method combines ideas that were introduced separately before. The
notion of explicit, “declarative” bias was explored by a number of authors, e.g.
Russell studied the notion of “determinations”, e.g. [10, 9], Morik and others [6]
use declarative “meta-rules”, [12] and [7] studied language bias in the context of
Inductive Logic Programming and [2] in the context of classification. Although
the ideas in this paper grew out of this earlier work and the literature on the
Candidate Elimination algorithm, the multi-agent setting makes these ideas much
more useful than they were before, in the setting of single learners acquiring their
own bias or bias acquired manually from a human domain expert. We showed
that the method can be extended to more realistic hypothesis languages. Most
studies of multi-agent learning focus on how multiple learners can complement
each other in learning about a single domain. For example, [1] describes a form
of multi-agent learning in which learning agents learn about different parts of
the attribute space and, unlike our setting, combine their results.

References

[1] W. Davies and P. Edwards. Dagger: Using instance selection to combine
multiple models learned from disjoint subsets.

[2] J. G. Ganascia. Improvement and refinement of the learning bias semantic.
In Proceedings of the European Conference on Artificial Intelligence, pages
384-389, Munich, Germany, August 1-5 1988.

[3] M. R. Genesereth and N. J. Nilsson. Logical Foundations of Artificial In-
telligence. Morgan Kaufmann, Los Altos, California, 1987.

[4] D. Haussler. Quantifying inductive bias: Ai learning algorithm’s and
valiant’s framework. Artificial Intelligence, 36(2):177-221, 1988.

[5] T. M. Mitchell. Generalization as search. Artificial Intelligence, 18(2):203—
996, 1983.

[6] K. Morik, S. Wrobel, J.-U. Kietz, and W. Emde. Knowledge acquisition
and machine learning. Academic Press, London, 1993.

73

[7]

C. Nédellec, C. Rouveirol, H. Adé, F. Bergadano, and B. Tausend. Declar-
ative bias in ILP. In L. De Raedt, editor, Advances in Inductive Logic
Programming, pages 82-103. I0S, 1996.

S. W. Norton and H. Hirsh. Learning dnf via probabilistic evidence combi-
nation. In Proceedings of the Tenth International Conference on Machine
Learning (ICML93), pages 220-227. Morgan Kaufmann Publishers, 1993.

S. Russell and B. Grosof. A sketch of autonomous learning using declar-
ative bias. In P. Brazdil and K. Konolige, editors, Machine learning,
meta-reasoning and logics, pages 19-54, Dordrecht, The Netherlands, 1990.
Kluwer.

S. J. Russell. The use of knowledge in analogy and deduction. Pitman,
London, 1989.

E. Smirnov. Conjunctive and Disjunctive Version Spaces with Instance
Based Boundary Sets. Shaker Publishing, Maastricht, the Netherlands,
2001.

B. Tausend. A guided tour through hypothesis spaces in ilp. In N. Lavrac
and S. Wrobel, editors, Machine Learning: ECML-95, pages 245-259,
Berlin, 1995. Springer.

74

