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Abstract.  With increasingly more databases becoming available on the Internet, there is a growing opportunity to
globalise knowledge discovery and learn general patterns, rather than restricting learning to specific databases from
which the rules may not be generalisable. Clustering of distributed databases facilitates learning of new concepts that
characterise common features of, and differences between, datasets. We are here concerned with clustering databases
that hold aggregate count data on a set of attributes that have been classified according to heterogeneous classification
schemes. Such aggregates are commonly used for summarising very large databases such as those encountered in data
warehousing, large-scale transaction management, and statistical databases. For measuring difference between
aggregates we utilise two distance metrics: the Euclidean distance and the Kullback-Leibler information divergence. A
hybrid between Kullback-Leibler and the Euclidean distance, which uses the former to learn the class probabilities and
the latter as the corresponding distance measure, looks particularly promising both in terms of accuracy and
scalability.  These metrics are evaluated using synthetic data. Important applications of the work include the clustering
of heterogeneous customer databases for the discovery of new marketing concepts and the clustering of medical
databases for the discovery of new epidemiological concepts.

1. Introduction

Clustering of distributed databases facilitates the learning of new concepts that characterise important common
features of, and differences between, datasets. For example, we may have a number of supermarkets belonging to a
multinational chain, and each supermarket maintains a database describing its customers.  Then we may cluster the
databases to learn new high level concepts that characterise groups of supermarkets. More generally, with
increasingly more databases becoming available on the Internet, such an approach affords an opportunity to
globalise knowledge discovery and learn general patterns, rather than restricting learning to specific databases from
which the rules may not be generalisable.

In this paper we are concerned with clustering databases that hold aggregate count data on a set of attributes that
have been classified according to heterogeneous classification schemes. Such data are often stored in an OLAP-style
database but may also be obtained by pre-processing native databases. Aggregates are commonly used for
summarising information in very large databases, typically those found in data warehouses, large-scale transaction
management, and statistical databases. An important special case of native databases that may be summarised in this
way is provided by itemset data which store, for example, binary data on whether, or not, a customer bought each of
a given set of possible items in a transaction. Databases of this type may have been previously extracted from, or
may be created on-the-fly from, on-line transactional databases as materialised views. The aggregates then represent
sufficient statistics for subsequent clustering. This approach to distributed database clustering, which is based on
aggregates that are sufficient statistics, not only results in big improvements in efficiency [1], but also allows us to
preserve anonymisation of individual tuples.

Heterogeneity is common in distributed databases, which typically have developed independently. We consider
situations where, for a common concept, there are heterogeneous classification schemes. Local ontologies, in the
form of such classification schemes, may be mapped onto a global ontology; these mappings are described by a
correspondence graph. Such heterogeneity may arise due to differences in the granularity of data stored in different
distributed databases, may be due to differences in the underlying concepts, or indeed may be due to missing
attributes. The resolution of such conflicts remains an important problem for database integration in general [2], [3],
[4] and for database clustering, in particular. There are also obvious applications to Knowledge Discovery in
Databases [5].
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An important aspect of clustering is the identification of an appropriate distance (similarity) metric. For
measuring the difference between aggregates we utilise two distance metrics: the Euclidean distance and the
Kullback-Leibler information divergence. In our methodology we may need to use the correspondence graphs to
first construct a dynamic shared ontology for the candidate clusters before we are able to calculate the distance
between heterogeneous datasets.

We report on extensive performance experiments to assess the various clustering approaches, thus providing a
rigorous evaluation of the various clustering methods. The results thus obtained are very encouraging with regard to
accuracy and scalability.

While there has been preliminary work on clustering homogeneous databases [6], there has been little previous
research on clustering heterogeneous databases. The novelty of our work resides both in the development of a
methodology for clustering heterogeneous databases, and in the development and evaluation of scalable algorithms.

2. Terminology and Data Models

We are concerned with a conceptual clustering problem where we cluster data on the Cartesian product of attributes,
which are classified according to heterogeneous classification schemes. Thus, in Table 1, we illustrate a clustering
problem where each table represents the profile of customers in a different supermarket. The class {Non-
Professional} in Supermarket 3 maps onto {Manual} ∪ {Other} in Supermarket 1, while {Young} in Supermarket 2
maps onto {Young ∩ Professional} ∪  {Young ∩ Manual} ∪ {Young ∩ Other} in Supermarket 1.

Supermarket 1 Young Middle
aged

Old Supermarket 3 Young Middle
aged

Old

Professional 85 3 1 Professional 1 0 0
Manual 5 2 0 Non-

Professional
3 68 12

Other 3 1 0

Supermarket 2 Young Middle
aged

Old

5 70 25

Table 1. Heterogeneous clustering data

In such tables the underlying data are symbolic, e.g. the attribute Age might have domain values: Young, Middle
aged and Old, and the aggregate values are derived by counting the number of tuples possessing a particular
combination of domain values.

Definition 2.1: We define a datacube ' as comprised of a set of attributes A1,…, An with corresponding domains

D1,…, Dn. Their Cartesian product is D1×…× Dn. Let the classes of domain Dj be given by {c1

(j)

,……,
)j(

k j
c }. Then the

classes of the Cartesian product are of the form {
)1(

1ac ×…×
)n(

nac } where ai ∈{1,…,gi}, i =1,...n, and gi is the
number of classes in Di; we code these value labels for the Cartesian product classes using integers, as in Table 2.

Then the cardinality of class vj in the Cartesian product is given by nj for j=1,…k and k=∏
=

n

1j
jg . We note that, in

Statistics, objects such as the datacubes we have defined are known as contingency tables.
Malvestuto [7] has discussed classification schemes that partition the values of an attribute into a finite number of

classes. A classification P is defined to be finer than a classification Q if each class of P is a subset of a class of Q. Q
is then said to be coarser than P. Such classification schemes may be specified by the database schema or may be
identified by appropriate algorithms. The product (or join) of two classification schemes P and Q is the coarsest
partition which is finer than both P and Q. The sum (meet) of two classification schemes P and Q is the finest
partition which is coarser than both P and Q. The relationship between two classification schemes may be described
by a correspondence graph [7], in which nodes represent classes and arcs indicate that the associated classes overlap.
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Definition 2.2: A marginal datacube is obtained by projecting out one or more attributes of the Cartesian product in
the datacube, e.g. Table 1 contains a marginal datacube for the Supermarket 2 data. In our framework, such marginal
datacubes are an important source of heterogeneity.

It is usually the case in a distributed database that there is a shared ontology that specifies how the local semantics
correspond to the global meaning of the data; these ontologies are encapsulated in the classification schemes. The
relationship between the heterogeneous local and global schema is then described by a correspondence graph held in
a correspondence table. Thus, for example, for the data in Table 1, the global ontology is as presented in Table 2.

  Code Value label   Code Value label
  1. Young Professional   6. Old Manual
  2. Middle-aged Professional   7. Young Other
  3. Old Professional   8. Middle-aged Other
  4. Young Manual   9. Old Other
  5. Middle-aged Manual

Table 2. The global ontology for Table 1

Definition 2.3: We define a correspondence graph for a set of datacubes to be a multipartite graph G=(X1∪X2...∪
...Xm∪Y, E); Xi is the set of nodes corresponding to the classification scheme (local ontology) of the ith datacube; Y
is the set of nodes corresponding to the classification scheme of the global ontology; E is the set of edges which join
the nodes in Xi to the nodes in Y. Each sub-graph G=(Xi ∪ Y, E) is bipartite for i=1,...,m. Thus each node in Y
which represents a value contained in a value in Xi provides an edge. The graph thus describes the schema mappings
between the local and global ontologies. The correspondence graph for Table 1 is presented in Figure 1 and the
equivalent correspondence table in Table 3.

Figure 1. The Correspondence Graph for Table 1

3 7 Y

X1

X2

X3

1 6 The Global Ontology

 Supermarket 1

 Supermarket 2

 Supermarket 3

4 5 82 9

3 71 64 5 82 9

31 2

31 64 52

Global
Ontology

Local
Ontology 1

Local
Ontology 2

Local
Ontology 3

1 1 1 1
2 2 2 2
3 3 3 3
4 4 1 4
5 5 2 5
6 6 3 6
7 7 1 4
8 8 2 5
9 9 3 6

Table 3. The Correspondence Table for Table 1

Such distributed datacubes are therefore heterogeneous with respect to classifications schemes, in the sense that
some may be finer or coarser than others, as for the Supermarket 3 data in Table 1, or may be heterogeneous with
respect to attributes in the sense that attributes may be missing in some of the marginal datacubes, as for the
Supermarket 2 data in Table 1.
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3. The Distance Metrics

In order to cluster datacubes such as we have defined, it is first necessary to develop appropriate distance (similarity)
metrics. For measuring differences between such aggregates we here utilise two main distance metrics: the
Euclidean distance and the Kullback-Leibler information divergence. In our approach we may need to use the
correspondence graphs to first construct a dynamic shared ontology for the candidate clusters before we are able to
calculate the distance between heterogeneous datasets. Essentially, in such situations, we need to homogenise the
classification schemes before we can compare the corresponding datasets.

3.1 The Euclidean Distance Metric

For the Euclidean distance metric we must first homogenise by aggregating the datacubes to the partition level
which is the sum classification scheme for the contributing schemes for the datacubes. The sum classification
scheme is here the dynamic shared ontology. In Section 2 we have defined a datacube in terms of a set of
cardinalities {nj } for j=1,..k. We now require to determine distance metrics for the distance between two datacubes
'1 ={n1j}, '2 ={n2j}. We define the respective probabilities as πij of value vj in datacube 'i� for j=1,…k. Here, k is the
number of classes in the dynamic shared ontology and we are clustering the probability distributions of the
respective datacubes.

Definition 3.1:  The Euclidean distance between two heterogeneous datacubes '� and '� is then defined as

d12 =
2

k

1j
2j1j )(∑

=
−ππ ,

where the πi’s are calculated for the dynamic shared ontology as  πij = nij/ni., where ni. = ∑
=

k

1j
ijn .

3.2. The Kullback-Leibler Distance Metric

This approach allows us to measure the distance between datacubes by minimisation of the Kullback-Leibler
information divergence, using the EM algorithm. The EM (Expectation-Maximisation) algorithm is a widely used
general class of iterative procedures used for learning in the presence of missing information. In our case, the
problem may be shown to belong to a general class of such problems termed Linear Inverse Problems [8]. The
advantage in using such an approach is that, in this case, there is no need to compute the sum classification scheme;
the datacubes may be compared directly. Our approach thus allows us to avoid the relatively computationally
expensive stage of computing the shared ontology.

Notation 3.1: We consider a Cartesian product of attributes with corresponding global ontology domain G
={v1,...,vk}. Then for datacube 'r the local classification scheme is partitioned into sets 

rrgr1 S,...,S , and nrs is the

cardinality of set Srs. Here gr is the number of sets in the local partition of datacube 'r. We further define:



 ∈

=
otherwise0

Svif1
q rsi

irs

and the correspondence table Rij = {i : vj ∈ Sri } .
The proportion of each of the datacube values within the integrated datacube is fr s = nr s / N, where

N= ∑ ∑
= =

2

1r

g

1j
rj

r
n

(the total cardinality).
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Definition 3.2: We define the integrated probabilities π1,… πk which pool a number of heterogeneous datacubes '1,..
'm by the iterative scheme:
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Here πi is the probability of value vi for i = 1,…,k for the integrated aggregate view in the global ontology.

Theorem 3.1: The integrated probabilities, as defined, minimise the Kullback-Leibler information divergence
between the aggregated probabilities {πi} and the data { }rsf . This is equivalent to maximising the likelihood of the

model given the data.

Proof: In our case, minimising the Kullback-Leibler information divergence, or equivalently maximising the log-
likelihood, becomes:

∑∑ ∑∑
== =

==
k

1i
i
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1r 1i
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rs . 1 subject to  )log(   Maximise ππ i

kg
qfW
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Such missing information problems are also well known in Statistics [9], where they may be regarded as the
maximum likelihood estimation of multinomial probabilities for grouped data. In our case, the EM algorithm can be
shown to reduce to the iterative scheme in Definition 3.2. The EM algorithm has been shown to converge
monotonically to the solution of the minimum information divergence equation for such problems [9].

Definition 3.3 The Kullback-Leibler distance between two heterogeneous datacubes '� and '� is defined as the gain
in information divergence if we merge the two datacubes where distance = L1 + L2 - L12.
Here, the log-likelihood L is a scaled version of W, the information divergence, given by:

L= )log(rs ∑∑∑ iirsqn π

and the πι’s are the solution of the EM iterations in Definition 3.2. This metric is equivalent to the log-likelihood
ratio, which is well known in Statistics. Here L1 is the log-likelihood value for cluster 1, L2 is the log-likelihood
value for cluster 2 and L12 is the log-likelihood value for the clusters combined. When testing whether to combine
two clusters, we calculate the log-likelihood values for the two clusters separately and then the two clusters
combined. If the value of L12 is inside a threshold of L1 + L2 then the clusters are sufficiently close together to be
combined. This threshold is derived from the chi-squared value for the Likelihood Ratio statistic. The corresponding
degrees of freedom are calculated as:

degrees of freedom = df1 + df2 - df12,
where df1 is the degrees of freedom for cluster 1, df2 is the degrees of freedom for cluster 2 and df12 is the degrees of
freedom for the combined clusters.

4. Clustering the Databases

Clustering is usually based on a distance metric that allows us to assess distances between objects and distances
between clusters. Recent work in the database literature has described a number of systems for efficient clustering
including CLARANS [10], BIRCH [11], DBSCAN [12], and CLIQUE [13]. Using summaries for clustering
categorical data has been described in [14]. Some work has also been done on distributed clustering although this
has tended to be subject to vertical partitioning [15], [16], [17]; we envisage data that is horizontally partitioned.
Parallel clustering algorithms are discussed , for example in [18]. Methods which contain an inbuilt stopping rule,
e.g. those based on a statistical test, such as we have described for the Kullback-Leibler distance metric, have an
obvious advantage over their competitors.
Example: Heart Disease Databases
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(Submitted by David Aha to the ML Repository)
There are four databases each containing 76 attributes, including the decision variable Coronary Heart Disease
(CHD), with values 0 (no CHD) to 4 (severe CHD). The databases are respectively: 1. Cleveland Clinic Foundation,
2. Hungarian Institute of Cardiology, 3. University Hospital Zurich and Basel, 4. Long Beach Clinic Foundation, as
illustrated in Table 4.

Male       Female                   Total
Decision variable � � � � � � � � � �

Cleveland 72 9 7 7 2 92 46 29 28 11 303
Hungarian 69 5 1 3 3 119 32 25 25 12 294
Swiss 0 6 3 1 0 8 42 29 29 5 123
Long Beach 3 3 0 0 0 48 53 41 42 10 200

Table 4. Clusters: {Cleveland, Hungarian}, {Swiss}, {Long Beach}

This is an example of what is known in Epidemiology as meta-analysis where we pool data from different
epidemiological studies. This is often highly advantageous since such studies are often very expensive and cannot be
frequently repeated or extended. We may thus use our approach to assess regional, cultural and temporal effects.

In general, clustering methods may be agglomerative (bottom up) or divisive (top down). Our approach is
agglomerative. In Section 5, we evaluate datacube clustering using each of the Euclidean and Kullback-Leibler
metrics. In addition we evaluate a hybrid algorithm which combines the advantages of these two approaches. In the
hybrid approach we first obtain the probability distribution for each heterogeneous cluster using the Kullback-
Leibler method; the Euclidean distance is then computed using these values. The advantage is that we can work at
the global ontology level of the generalisation hierarchy and therefore save on computationally expensive
homogenisation.

5. Performance Evaluation

5.1 An Overlap Metric

In order to generate synthetic distributed data with heterogeneous classification schemes, we must first provide a
way of quantifying such heterogeneity. A metric has been defined to quantify the degree of overlap between the
local and global classification schemes since we would expect the execution time to increase with increasing
overlap. The metric is defined as follows






 −





 −= ∑

k

1
1

k*m

g
1 rOverlap

where k = the number of global classes, m = the number of local datacubes, and gr = the number of classes in local
classification scheme r. The Overlap metric then achieves a value of  0 if all the local schemes are identical to the
global scheme (no overlap) and 1 (the maximum) if all the local schemes have only one category (complete
overlap). Otherwise the Overlap is between 0 and 1.

5.2 Performance of the Clustering Algorithms

A set of synthetic data was generated where there were 5 distinct clusters and the number of global classes was 20.
Overlap values of 0.1, 0.3, and 0.5, were tested. In all experiments a convergence tolerance of 10-4 for successive
iterations was used as a stopping criterion for the EM algorithm. Also, in all experiments the initial probability
values for the global categories were set to (1 / the number of global probabilities). To implement the clustering
algorithms we have used Java classes called the banda classes, which were obtained from the WWW [19]. The
graphs in Appendix A show the relative computation times for each test run; Appendix B presents the relative
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accuracies. Here each measurement is averaged over 100 test runs. The tests were run on a Windows NT
Workstation with a 700MHz processor.

From the Appendixes we see that for low overlap the Kullback-Leibler approach is faster than the Euclidean; this
reverses for higher overlap. This is because for low overlap we would expect very few iterations of the EM
algorithm while this reverses for high overlap, making the Kullback-Leibler approach inefficient in such
circumstances. The hybrid method is faster in all cases, due to the fact that it requires less computation of candidate
clusters. Accuracy of the Kullback-Leibler approach is always best, as we would expect, but the hybrid method
improves in accuracy for higher overlap, making it a promising alternative to Kullback-Leibler for large-scale
problems. This is probably explained by the fact that all algorithms become increasingly inefficient for high overlap,
due to there being insufficient data at an appropriate granularity for accurate clustering. In fact, we would not expect
clustering to be appropriate for databases with high overlap since the information quality is so low. Although these
experiments are preliminary, the results presented here are nonetheless very encouraging.

6. Summary and Further Work

A methodology and algorithms have been provided for clustering datacubes. The datacubes (contingency tables)
may be either homogeneous or heterogeneous with respect to the classification schemes in the contributing
datacubes. Such an approach can lead to the discovery of new knowledge about similarities and dissimilarities
between databases.

Clustering has been carried out using several distance functions, namely a Euclidean metric, a distance function
based on the Kullback-Leibler information divergence and a hybrid of these two approaches. In all cases the
methods derived a probability distribution for each cluster identified. This allows us to profile the clusters, with
obvious advantages. The main advantages of the approach in our algorithms are:
• we can handle schema (classification) heterogeneity;
• we use aggregates and so only one scan of the database is required;
• clustering via the Kullback-Leibler distance metrics contains an in-built stopping criterion obtained from the

likelihood ratio chi-squared test. Other common approaches require the number of clusters to be specified in
advance;

• we can cluster a number of attributes simultaneously by clustering on their joint distribution; indeed attributes
may be missing in some of the databases;

• we can use the probabilities found for each cluster to characterise the cluster.
We have illustrated our discussion with a number of potential applications from different domains. With

burgeoning Internet developments, distributed databases are becoming increasingly commonplace; frequently these
are heterogeneous. The potential for learning new knowledge from such data sources is enormous and open data
systems are combining with Agent Technology to facilitate the uptake of such opportunities. There are a large
number of domains that could benefit from such developments. In particular we have focussed on medicine, where
pooling of epidemiological data can provide new insights into disease, and business, where database marketing can
facilitate customer profiling and targeted selling.

Performance evaluations have been carried out and have provided promising indications of scalability,
particularly for an approach that uses a distance metric that is a hybrid between the Euclidean and Kullback-Leibler
distance. Further work will investigate other clustering approaches and consider the extension of the approach to
clustering different types of homogeneous and heterogeneous objects.
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Appendix A: Comparison of clustering times
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Appendix B: Comparison of clustering accuracy
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