Toward Machine Learning Through Genetic Code-like
Transformations

Hillol Kargupta (hillol@cs.umbc.edu) and Samiran Ghosh

(sghosh1@cs.umbc.edu)

Computer Science and Electrical Engineering Department
University of Maryland Baltimore County

Baltimore, MD 21250

Abstract. The gene expression process in nature involves several representation
transformations of the genome. Translation is one among them; it constructs the
amino acid sequence in proteins from the nucleic acid-based mRNA sequence. Trans-
lation is defined by a code book, known as the universal genetic code. This paper
explores the role of genetic code and similar representation transformations for en-
hancing the performance of inductive machine learning algorithms. It considers an
abstract model of genetic code-like transformations (GCTs) introduced elsewhere
(Kargupta, 2001) and develops the notion of randomized GCTs. It shows that
randomized GCTs can construct a representation of the learning problem where
the mean-square-error surface is almost convex quadratic and therefore easier to
minimize. It considers the functionally complete Fourier representation for Boolean
functions to analyze this effect of such representation transformations. It offers ex-
perimental results to substantiate this claim. It shows that a linear classifier like the
Perceptron (Rosenblatt, 1961) can learn non-linear XOR and DNF functions using
a gradient-descent algorithm in a representation constructed by randomized GCTs.
The paper also discusses the immediate challenges that must be solved before the
proposed technique can be used as a viable approach for representation construction
in machine learning.

Keywords: Genetic Code, gene expression, representation construction, machine
learning,.

1. Introduction

Gene expression involves a series of representation transformations that
converts the information coded in the DNA into proteins. These trans-
formations play an important role in constructing the phenotype from
the genotype. Representation transformations are frequently used in
science, engineering, and business as an efficient problem solving tech-
nique. So it is natural to wonder if gene expression plays any role
in efficient genetic search and problem solving. This paper explores a
particular stage of gene expression, called translation. The translation
process in gene expression uses the genetic code to construct an amino-
acid-based representation of the genome from the messenger RNA, a
sequence of nucleic acids. This code, known as the universal genetic

';:‘ © 2002 Kluwer Academic Publishers. Printed in the Netherlands.

hkg.tex; 21/02/2002; 2:38; p.1

2 Hillol Kargupta and Samiran Ghosh

code, is defined by a small redundant table that assigns an amino acid
for every three consecutive nucleic acids in the mRNA. This paper
explores the computational role of such codes.

This paper investigates the role of genetic code-like transformations
(GCTs) (Kargupta, 2001) in learning functions from non-uniformly
distributed data. It considers the supervised learning problem where
the objective is to learn a function from a given training data set with
unknown distribution. It introduces randomized GCTs and shows that
they can be effectively used to construct a representation of the learning
problem where the error surface is almost convex quadratic and there-
fore easier to minimize. It also shows that a non-linear function like
XOR can be learned using a linear classifier like Perceptron (Rosen-
blatt, 1961) and the well-known Perceptron learning algorithm that
performs greedy error minimization in a representation constructed by
randomized GCTs.

Section 2 reviews the biological background and the related work.
Section 3 presents an inductive function learning problem from the
perspective of representation construction. Section 4 introduces ran-
domized GCTs and presents a Fourier analysis of such transformations.
It points out that these transformations construct a representation of
the sample data where the higher order Fourier basis vectors become
almost orthogonal. This results in a new representation of the learning
problem where the mean-square-error surface is a “quasi-quadratic”
function that is easier to minimize. Section 5 describes the Perceptron
and the XOR problem. It presents the effect of such transformations
on learning the XOR problem using a Perceptron. It shows that the
gradient descent-based Perceptron learning law can successfully learn
the XOR problem in a representation constructed by the random-
ized GCTs. Section 6 presents similar experimental results with DNF
functions. Section 7 discusses the results presented in this paper and
identifies future work.

2. Background

This paper considers the problem of representation construction in
learning functions from data and explores genetic code-like transfor-
mations from this perspective. This section presents the background
material. It first offers a brief review of the universal genetic code
used in a living organism during the process of translation. Next it
summarizes existing work on the role of gene expression in evolutionary
search.

hkg.tex; 21/02/2002; 2:38; p.2

Toward Machine Learning Through Genetic Code-like Transformations 3

2.1. BIOLOGICAL MOTIVATION

The work presented in this paper is motivated by the gene expression
process in nature. In order to fully appreciate the contribution we need
to understand the biological process to some extent. So let us first
review the biology.

The gene expression process in nature involves a series of representa-
tion transformations. It starts by first transforming the DNA sequence
to the mRNA. DNA is a sequence of nucleotides. It uses four different
types of nucleotides namely, adenine (A), thiamin (T), guanine (G),
and cytosine (C); mRNA is also a sequence of different nucleotides.
However, the set of nucleotides for mRNAs is different from that of
DNA. In case of mRNA the nucleotides are adenine (A), uracil (U),
guanine (G), and cytosine (C). This step is called the Transcription.
Next the mRNA sequence is transformed into protein, a sequence of
amino acids. This step is known as Translation. It uses a code-book
that defines the correspondence between nucleotide triplets (known as
codons) in the mRNA and the amino acids in proteins. This code-book
is known as the genetic code (Table I). Each codon is comprised of
three adjacent nucleotides in an mRNA chain and it produces an amino
acid. The translation process takes an mRNA sequence, replaces every
three adjacent nucleic acids (every codon) by the corresponding amino
acid (listed in Table I), and produces the amino acid sequence. With
a few exceptions, the genetic code for most eukaryotic and prokaryotic
organisms is the same.

Proteins, mRNAs, and the DNA are different representations of
the genome. Proteins control almost every important activity in a liv-
ing body. For some reason, a living body chooses the representation
of the genome defined by the proteins for all the important tasks.
So it is quite natural to wonder about the reason behind choosing
this special representation that requires a sequence of representation
transformations.

This paper considers the genetic code-based translation process that
transforms the mRNA sequence to the amino acid sequence in proteins.
It suggests that genetic code-like transformations (GCTs) may have
an important role in learning and adaptation. It develops random-
ized GCT-s that may be used to efficiently learn non-linear functions
from data. The following section reviews some of the existing work on
representation construction techniques that are motivated by natural
gene expression, evolution of genetic codes, and other related machine
learning techniques.

hkg.tex; 21/02/2002; 2:38; p.3

4 Hillol Kargupta and Samiran Ghosh

Table I. The universal genetic code.

Protein feature | mRNA codons

Alanine GCA GCC GCG GCU

Cysteine UGC UGU

Aspartic acid GAC GAU

Glutamic acid | GAA GAG

Phenylalanine | UUC UUU

Glycine GGA GGC GGG GGU

Histidine CAC CAU

Isoleucine AUA AUC AUU

Lysine AAA AAG

Leucine UUA UUG CUA CUC CUG CUU
Methionine AUG

Asparagine AAC AAU

Proline CCA CCC CCG CcCU

Glutamine CAA CAG

Arginine AGA AGG CGA CGC CGG CGU
Serine AGC AGU UCA UCC UCG UCU
Threonine ACA ACC ACG ACU

Valine GUA GUC GUG GUU
Tryptophan UGG

Tyrosine UAC UAU

STOP UAA UAG UGA

2.2. PREVIOUS WORK

The importance of gene expression in genetic search was realized in
the early days of the field of genetic algorithms. Holland (Holland,
1975) described the dominance operator as a possible way to model
the effect of gene expression in diploid chromosomes. He also noted
the importance of the process of protein synthesis from DNA in the
computational model of genetics. Despite the fact that, traditionally
dominance maps are explained from the Mendelian perspective, Hol-
land made an interesting leap by connecting it to the synthesis of
protein by gene signals, which today is universally recognized as gene
expression. He noted the relation between the dominance operator with
the “operon” model of the functioning of the chromosome (Jacob, 1961)
in evolution and pointed out the possible computational role of gene
signaling in evolution (Holland, 1975).

hkg.tex; 21/02/2002; 2:38; p.4

Toward Machine Learning Through Genetic Code-like Transformations 5

Several other efforts have been made to model some aspects of gene
expression. Diploidy and dominance have also been used elsewhere
(Bagley, 1967; Brindle, 1981; Hollstien, 1971; Rosenberg, 1967; Smith,
1988). Most of them took their inspiration from the Mendelian view
of genetics. The under-specification and over-specification decoding
operator of messy GA has been viewed as a mechanism similar to
gene signaling (Goldberg, Korb and Deb, 1989). The structured ge-
netic algorithm (Dasgupta, 1992) also shares motivations from the gene
expression; it uses a structured hierarchical representation in which
genes are collectively switched on and off. This provides the search
algorithm with a richer representation and helps capturing properties
of the landscape better. The role of genotype-phenotype-mapping in
the context of neutral variation and genetic programming is discussed
in (Banzhaf, 1994). An empirical study of genetic programming using
artificial genetic code is presented in (Keller and Banzhaf, 1999). Kauff-
man (Kauffman, 1993) offered an interesting perspective of the natural
evolution that realizes the importance for gene expression. However,
Kauffman’s work does not explain the process in basic computational
terms on analytical grounds and does not relate the issue to the com-
plexity of search in quantitative terms. The complex nature of the
representation in the DNA itself created interest among the researchers.
The eukaryotic DNA typically contains many segments that are not
used in the gene expression process for producing proteins. An empirical
investigation of the role of such “non-coding” segments (introns) in
genetic search can be found in (Wu and Lindsay, 1995). A survey of
evolutionary algorithms with intron-based representations is presented
in (Wu and Lindsay, 1996). Grammatical evolution (O’Neill and Ryan,
1999; Ryan, Collins, and O’Neill, 1998) for evolving programs is also
motivated by the gene expression process. Another evolutionary algo-
rithm, called the gene expression programming, motivated by natural
gene expression, is reported elsewhere (Ferreira, 2001).

The “neutral network” theory (Reidys and Fraser, 1996; Schuster,
1997) considers sequence-to-structure mapping from the perspective of
random graph construction. This work approaches gene expression from
the perspective of random graph construction and points out existence
of the fitness invariant neutral networks. The translation process maps
multiple mRNA sequences to the same protein sequence. As a result, it
creates a set of different genomes with same fitness, termed as neutral
networks. This work provides interesting insights into the effect of such
neutral networks in genetic search. However, its contribution toward
inductive function learning and computationally efficient representation
construction of genetic fitness function is not clear. Another related
effort to understand the properties of the fitness landscape defined by

hkg.tex; 21/02/2002; 2:38; p.5

6 Hillol Kargupta and Samiran Ghosh

the mRNA can be found in (Rockmore, Kostelec, Hordijk and Stadler,
1999). This work presents a Fourier analysis of the landscapes derived
from the RNAs using Fast Fourier Transformation (FFT).

There also exists a body of literature that investigates the evolution
of the genetic code. An algebraic model of the evolution of the genetic
code is presented in (Hornos and Hornos, 1993). This work searches
for symmetries in the genetic code and points out the existence of a
unique approximate symmetry group compatible with the codon as-
signments. The main idea behind this work is to view the evolution
of the genetic code as an iterative process of representation decompo-
sition. The genetic code is viewed as a 64-dimensional representation
decomposed into several sub-representations with respect to different
subgroups. The number of amino acids correspond to the number of
sub-representations and the number of codons for any amino acid cor-
responds to the dimension of that sub-representation. An extension of
this work using Lie super-algebra is presented in (Bashford, Tsohantjis
and Jarvis, 1998). Additional work on the different biological theories
on the evolution of the genetic code can be found elsewhere (Beland and
Allen, 1994; Freeland, Knight, Landweber and Hurst, 2000; Fukuchi,
Okayama and Otsuka , 1994; Knight and Landweber, 2000).

An alternate approach has been developed by Kargupta and his col-
leagues (Kargupta, 1996; Kargupta, 1997; Kargupta, 1996; Kargupta,
1997; Kargupta, 1997; Kargupta, 1998; Kargupta, 1999; Kargupta,
2001). This approach is mainly motivated by a perspective of the gene
expression as a mechanism to make genetic search more efficient. This
approach notes that the traditional model of evolutionary computation
(based on selection, crossover, and mutation)(Holland, 1975) appears
to have some serious scalability problems (Thierens, 1999) for reason-
ably difficult problems. There is also little theoretical result available
that proves guaranteed polynomial time performance of existing evo-
lutionary algorithms for reasonably difficult classes of problems. Since
the existing models of evolutionary computation do not address the
gene expression issue very well and gene expression changes the genetic
representation, it may become a natural candidate for exploring the
unknown mechanism that makes the genetic search in nature so efficient
and scalable.

The early exploration of gene expression-like mechanisms for effi-
cient inductive detection of function structure resulted in a class of
heuristics-based techniques, known as the gene expression messy GA
(GEMGA) (Kargupta, 1997). More rigorous approaches using Fourier
basis representations were recently suggested. Fourier representations
exposes the underlying function structure and it is functionally com-
plete. Therefore, efficient learning of such representations can be very

hkg.tex; 21/02/2002; 2:38; p.6

Toward Machine Learning Through Genetic Code-like Transformations 7

useful for function induction. A randomized algorithm is presented in
(Kargupta, 1999; Kargupta, 2000) that can induce a representation in
Fourier basis in polynomial time for problems with bounded variable
interaction. An alternate technique for estimating the Fourier represen-
tations is proposed elsewhere (Jackson, 1995; Kushilevitz and Mansou,
1991). An extension of this technique for detecting function structure
in genetic algorithms is reported in (Thierens, 1999).

The research presented in (Kargupta, 2001) is directly related to the
current work. The abstract concept of GCTs is introduced there. That
paper also explores the role of GCT-s from the perspective of function
learning. It considers a few GCTs and shows that some of them can
transform an exponentially long Fourier representation to one that can
be accurately approximated by only a polynomial number of low order
Fourier coefficients. In this paper we consider randomized GCTs and
show that they can reformulate inductive learning problems, making
them easier to solve. The following section formulates the problem and
presents the analytical motivations behind the work.

3. Learning as Representation Construction

Consider a predictive learning problem where the goal is to induce a
function f : Q — IR from the training data set S = {(xq),y1))s (x2)5
Y2))," " (X(m)»Y(m))} generated by underlying function f : @ — R,
such that f approximates f. Any member of the domain 2, x =
T1,T2, - Ty is an f-tuple from a discrete space where z; can take A
distinct values. In this paper we shall restrict ourselves to learning
discrete functions.

In order to express a function we first need to choose a repre-
sentation. For example, a linear function can be expressed using a
representation that takes the form f(z) = ap + a121 + agza + - - - apzy.
The same function can be expressed in different forms in different rep-
resentations. For example, the function logz 4+ x can be expressed using
a representation comprised of functions logx and z; on the other hand,
it can also be represented in the form of a series.

In this paper, we shall consider functions that can be expressed in
the form of f(x) = 37;wjih;(x); where 9;(x)-s are different functions
of x that can be used to define the representation of f(x); wj-s are
constant coefficients. In case of the linear function v;(x) = =z;. For
example, when f(z) = logz + x we can represent it using 11 (x) = logz,
Po(x) = z, and w1 = wp = 1. One can actually choose a set of
such functions 1;(x)-s in an appropriate fashion for representing any
arbitrary function. For example, in Fourier representation over Boolean

hkg.tex; 21/02/2002; 2:38; p.7

8 Hillol Kargupta and Samiran Ghosh

strings any function f : {0, 1}@ — IR can be expressed using 2¢ unique
Fourier basis functions. Although such rich representations are capable
of expressing any function, restricted representations are frequently
used for faster and efficient learning.

For the time being let us consider representations defined by func-
tions 15 : 2 — IR. The objective of the learning process is to construct a
function f(z) = > Wi (x) from data generated by the target function
f(z) = 35 wjih;(x). For any given ordered training data set S, we can
compute the column vector (¥j(x))s = [1;(x(1))¥;(x2)) - - - qu(X(m))]T.
The inner product between two column vectors is defined by (¥;(x),
Ti(x))s = (9500)5 (T (x)) 5.

The square-error introduced by the learned function over the entire
training data set S can be derived as follows:

Fo) = fx) = D (wy —by)h5(x)
Do) =) = D (wy —) (wi —) X

XES Jk
> (%) (x)
x€ES
= Y (wj —) (wi — i) x
ik
(Tj(x), T (x))s (1)

If the column vectors ((¥;(x))g)are orthogonal to each other then
the mean-square-error surface becomes interesting. In the general case
these vectors may not be orthogonal. However, for the time being let us
assume that the column vectors are indeed orthogonal in our data set.
Later in this paper we shall identify a technique to approximately sat-
isfy this condition. Let us also assume that all these orthogonal vectors
have a magnitude equal to 1; in other words, they are orthonormal. This
means (¥;(x), Uk(x))s = 0 for all j # k and (¥;(x), ¥5(x))s = |S|. We
can write using Equation 1,

S (w; — ig)? = ﬁZ(f(X)—f(X))Q 2)

J X€ES

If we take the partial derivative of the left side of the equation with
respect to w; and set it equal to zero, we get w; = wj. This is the
global error minima. So the mean-square-error (MSE) surface is convex
quadratic in ; and minimization in such surfaces is relatively easier.
We can use an existing quadratic optimization algorithm to minimize

hkg.tex; 21/02/2002; 2:38; p.8

Toward Machine Learning Through Genetic Code-like Transformations 9
the MSE to some §. Now we can write that for any j,
Y
(wj —5)" < 6
jwj — 5] < V3 (3)

This provides us a bound on the error in estimating the different
coeflicients defining the target function in terms of the MSE.

Minimization of MSE over the training data set S may not necessar-
ily guarantee good performance over the data that are not in S. This is
the generalization aspect of a learning algorithm. Generalization is an
important property of the learned model. Usually machine learning and
statistical data modeling algorithms check the generalization capability
of the learned model by testing it on data sets that are different from the
training data set (e.g. cross-validation). Next, we present a result on the
generalization capability of the model learned by MSE minimization in
the orthonormal representation.

The bound on the difference between the exact coefficients and
their estimates identified in Equation 3 intuitively tells us that the
performance of the learned model on any given testing data set should
be good as long as the MSE on the learning data set is low. But we
can also quantify this and identify an interesting scenario when the
column vectors (¥;(x))n-s defined over the entire domain € are or-
thonormal to each other. In other words (¥;(x), ¥x(x))o = 0. Let S, =
{x(1),X(2)," " X(m) } such that § = {(x1),¥(1)) (X(2), ¥(2)) - (Xm)> Ym)) }-

So we can write the following.

(T5(x), Tx(x))o = (¥;(x), Tk (x))s +
(T5(x),

%
CR
I
S
7
S

0
for all j # k. Now note that, (¥;(x), ¥k(x))s = 0 by assumption.
Therefore, (¥;(x), Vx(x))o—s, = 0. Therefore, following Equation 1
we can write,

Q=5 S (fx) - fx)? = Z:(U’J'_“A’j)2
< (4)

This shows that the MSE over the entire portion of the domain mem-
bers should be equal to §, the MSE over the training data. This also
implies the following bound on the MSE over any subset (Q) of Q — S;.

1 o oz < 198
o X (eo-fe)? < 2o (5)

hkg.tex; 21/02/2002; 2:38; p.9

10 Hillol Kargupta and Samiran Ghosh

The bound on the average error over {2 — S, is an interesting prop-
erty. It tells us that the learned model will come with a performance
bound for the entire data set that is not presented to the algorithm
during the learning stage, as long as the representation is orthonormal
over the given training data set and the entire domain. This observation
is indeed rational. For example, consider a linear model constructed
from real valued continuous data in absence of noise. Since the domain
is comprised of real-valued continuous features, it contains infinitely
many unique data points. However, if the underlying target function
generating the data is linear, we need no more than ¢ + 1 samples to
learn the £ 4+ 1 unknown coefficients of the exact model comprised of £
linear terms and a constant. Equation 5 makes a very similar claim.

The analysis presented so far made the following two main assump-
tions

1. (¥;(x))s-s are orthonormal. This resulted in a quadratic MSE over
the training data set S.

2. (¥5(x))q-s are orthonormal. This produced a bound on the gener-
alization capability.

The analysis also assumed that the set of functions (15(x)-s) is rich
enough to represent the target function.

Choosing a representation where (¥;(x))q-s are orthonormal to each
other is relatively easy. There exist several known types of basis func-
tions (e.g. Fourier, Walsh, and Wavelet) (Beauchamp, 1984; Walsh,
1923; Wickerhauser, 1994) that satisfy this result. However, construct-
ing a representation where (¥;(x))s-s are orthonormal to each other
is non-trivial. The process is further complicated by the fact that we
need to construct the orthonormal representation in such a way that
the learned model can be efficiently used for testing and new prediction
or classification.

In rest of this paper we propose a novel approach that applies a
randomized transformation 7(x) on every member x € S and gener-
ates a new representation x’ € S’. We show that in a functionally
complete set of 1);(x)-s the randomized transformation 7(x) constructs
a representation where most of the ;(x)-s are almost orthonormal
to each other over the training data set S’. We note that this class
of transformations has strong similarities with the universal genetic
code used in a living organism for producing the amino acid-based
representation of proteins from the mRNA sequence. The following
section defines the genetic code-like transformations considered in this

paper.

hkg.tex; 21/02/2002; 2:38; p.10

Toward Machine Learning Through Genetic Code-like Transformations 11

Table II. Code A: A GCT in binary rep-
resentation. Single bit in the protein space
maps to 3-bit codons in the mRNA space.

‘ Protein feature ‘ mRNA codon ‘
| 1 | 100, 000, 001, 010
| 0 | 111, 101, 110, 011 |

4. Genetic Code-like Transformations

Table III. Code B: A GCT in binary representation. Sin-
gle bit in the protein space maps to 3-bit codons in the
mRNA space. Note that it is different from the Code A
presented in Table II. It assigns unequal number of codons
to the protein features.

‘ Protein feature ‘ mRNA codon ‘
| 0 | 100, 000, 001, 010, 111, 101, 110 |
| 1 | 011 |

In nature the universal genetic code (Table I) assigns an amino acid
for every consecutive nucleic acids in the mRNA sequence. In the follow-
ing discussion we shall develop an abstract class of such transformations
that share some similarities with the genetic code. The objective of this
formal abstraction is to analyze the effect of such transformations on
the representation and to eventually show that they can be effectively
used to construct the n(x) introduced in Section 2. The nucleotides and
the amino acids that define the natural genetic code are physical entities
comprised of physical and chemical properties. This paper simplifies
this situation and creates an abstract world where the nucleotides and
the amino acids are numbers. In other words, we use their symbolic
representation just like any Biology text would. We just choose to use
integer numbers instead of alphabet symbols. We shall also restrict
the presentation to Boolean representations. However, the analysis can
be easily extended to non-Boolean representations. Qur analysis also
considers the transformation from a non-traditional direction. It con-
siders proteins as the primary representation of the phenotype as far
as this paper is concerned. It considers the mRNA as the secondary

hkg.tex; 21/02/2002; 2:38; p.11

12 Hillol Kargupta and Samiran Ghosh

representation constructed from the proteins. Although in nature the
transformations are applied in the DNA—mRNA—protein direction
the sequence of the development of each of these transformations is not
obvious. For example, many biologists believe that the RNA evolved
before the DNA. So we orient our exploration by setting the coordinate
reference to the phenotype. Since proteins define the representation
that is closest (compared to DNA and mRNA) to the phenotype we
treat it as the original representation x of the target function f(x).
The genetic code is considered as a transformation that constructs the
mRNA-based new representation of the proteins.

Let r and p be the £,.-bit mRNA and the corresponding translated
£,-bit protein sequences. Just like the natural ¢ranslation process, our
artificial translation maps the mRNA sequence to the corresponding
protein sequence using a code-book, which we call a genetic code-like
transformation, in short a GCT. This transformation is denoted by
n, where the subscript ¢ denotes the number of mRNA features that
define a codon. If three features are used like natural codons, ¢ = 3; n,c
can be defined as 7, : R — P%. R and P% denote the £, and £,
dimensional space of all mRNAs and proteins respectively. Note that
¢, = c/,. Moreover, in our binary case, R = P = {0,1}.

Tables IT and III show two examples of GCTs introduced elsewhere
(Kargupta, 2001). Note that a GCT may be redundant just like the
universal genetic code. In other words, a unique protein feature value
may be produced by several mRNA codons. As a result, there ex-
ist many equivalent mRNA sequences that produce the same protein
sequence. All these mRNA sequences have the same genetic fitness
since they all map to the same protein sequence. So we can view the
space of mRNAs grouped into different equivalence classes. Following
(Kargupta, 2001) we shall call this characteristic Translation Introduced
Equivalence (TIE) and these groups of equivalent mRNAs will be called
the TIE classes. Let R, be the TIE class for the protein sequence p. In

!

other words, R, = {rj|r; s p}. The cardinality of the set R, depends
on the genetic code and the protein sequence p. Let ap and a; be the
total number of codons that map to a protein feature value of 0 and
1 respectively. Let £, and £,; be the number of 0-s and 1-s in p
respectively. For Boolean strings, £, 0 + £51 = £,. Then the cardinality
of the TIE class of protein p is |R,| = ao”’oaf”’l.

The transformation 77'0 that converts an mRNA sequence to a protein
sequence is deterministic. However, a single protein sequence corre-
sponds to a set of different mRNA sequences. The following section con-
siders probabilistic selection of one mRNA sequence from the set of all
mRNA sequences in the TIE class of a protein sequence. It introduces

hkg.tex; 21/02/2002; 2:38; p.12

Toward Machine Learning Through Genetic Code-like Transformations 13

Randomized GCT

Figure 1. Construction of a new representation of the training data set S by applying
a randomized GCT. The entire domain) can also be transformed in a similar
manner for constructing the corresponding Q2 .

randomized GCTs that transform a string x to x’ by probabilistically
assigning codons from the different possible choices associated with a
single value of a protein feature.

4.1. RANDOMIZED GCT-s

Redundancy is an important characteristic of GCTs. Redundancy forces
us to make a choice from different possible codons while constructing
the mRNA sequence from a given amino acid sequence in a protein. We
can make this decision probabilistic. For example, an mRNA sequence
can be generated from a given protein sequence by assigning codons
with a certain probability distribution. Randomized GCTs do exactly
that.

A randomized GCT is a GCT where the codons are associated with
a certain probability distribution. Given an amino acid sequence we
generate the corresponding mRNA sequences by simply following this
probability distribution assigned over the codons. In the following dis-
cussion we shall consider such randomized GCTs where each codon has
uniform probability of occurrence.

Before moving further ahead let us take an example. Consider the
protein sequence 10 that needs to be transformed to the mRNA space
using code A (Table IT). We have four codons associated with an 1 and
we choose one among them with uniform probability. Let us say we pick
000. Similarly, we choose another codon for the last bit 0 in the protein
sequence 10 and let that codon be 101. The resulting transformed string
is therefore 000101. A randomized GCT works in this fashion in order
to produce a unique /,-bit representation of an £,-bit protein. We can

hkg.tex; 21/02/2002; 2:38; p.13

14 Hillol Kargupta and Samiran Ghosh

construct a new representation (S’) of the members of the training data
set S by applying this transformation. The entire domain (€2) of the
target function can also be converted to ' in a similar manner. Figure
4.1 shows this construction process graphically. The following section
explores the representational properties of such transformations using
multi-variate Fourier analysis.

4.2. THE FOURIER REPRESENTATION AND GCT-s

Recall that our earlier discussion on function induction and the convex
quadratic formulation of the MSE (in Section 3) made two assumptions
regarding the representation: (1) orthonormality of the basis set over
the complete domain € and (2) orthonormality over the training data
set.

As we noted earlier, it is relatively straight forward to come up with
a representation where the basis vectors are orthonormal over the com-
plete domain. There are several possibilities. In this paper we use the
discrete Fourier representation that satisfies this property. Moreover,
it is functionally complete; in other words any discrete function can be
represented using Fourier basis.

The Fourier basis set over an ¢-bit domain contains 2¢ orthogonal
Fourier functions. Each Fourier basis function is defined as ;(x) =
(—1)>9), Where j and x are binary strings of length £. In other words
i =Ja»de)» - dw, X = 20), %), T and j,x € {0,1}%; x-j denotes
the inner product of x and j. 4;(x) can either be equal to 1 or -1. The
string j is called a partition. The order of a partition j is the number
of 1-s in j. A function f : X¢ — {0,1}, that maps an ¢-dimensional
space of binary strings to a 0 or 1, can be written using the Fourier
basis functions f(x) = 3>; wj®j(x). where wj is the Fourier Coefficient
corresponding to the partition j; w; = 71[Yo f(X)5(x).

We can represent the function f(x) using the Fourier bases in either
the mRNA or the protein space. The partitions defined in these two
spaces are related. Since one feature in the protein sequence maps to
¢ mRNA features, partitions defined in the mRNA and the protein
spaces can be associated with each other. If j and j' be partitions in
the mRNA and the protein spaces respectively then j' is the reflection
of j in the protein space when j'(i) = 1 if and only if j takes a value
of 1 at the location(s) corresponding to at least one of the mRNA
features associated with J’(Z) The order of j is called the absolute order
of partition j.

For example, the reflection of the partition j = 101000 using a
genetic code of codon size three is j’ = 10. The left three bits of j
are associated with the leftmost bit of j’. Since two of those three bits

hkg.tex; 21/02/2002; 2:38; p.14

Toward Machine Learning Through Genetic Code-like Transformations 15

are set to 1, jl(o) = 1. However, none of the rightmost three bits in j
takes the value 1. So the corresponding jl(l) = 0. Note that the reflection

of 100000 is also 10 since jl(o) =1 as long as at least one of the leftmost
three bits is set to 1. Similarly the reflection of 100110 under a genetic
code of codon size three is 11.

4.3. FOURIER ANALYSIS OF RANDOMIZED GCT-s

The mRNA-features corresponding to the positions with 1-s in the
partition j may belong to the (1) same mRNA codon, (2) different
codons, and (3) a combination of both. In other words they originate
from the (1) the same protein feature (since one feature in the protein
sequence maps to ¢ features in the mRNA sequence) or (2) different
protein features or (3) a combination of both respectively.

Let j be a partition in the mRNA space with absolute order ¢ and
j’ be its reflection in the protein space. The protein space is defined by
an /-bit strings and the codon size is c.

Let 2(1),t(2)," - - t(q) be the location of the g fixed bits in the partition
j'; 7; be the Boolean string with all zeros except the ¢ bits associated
with the location ¢(;y which are all set to 1. Now let us define a sub-
partition in the mRNA space j; as a cf-bit partition generated by the
bit-wise AND operation between j and 7;.

So we can represent j, a partition in the mRNA space, using a col-
lection of partitions {jo,ji, - jq} where jo represents the null partition
with all 0-s; every j;zo represents a sub-partition of the 1-contributing
positions of j that contains only those features that belong to the same
protein feature. Note that the reflection of any j;.o in the protein
space has only one 1. The null partition always contribute a value
of 1 and it is introduced only for taking care of the case where the
partition j is a sequence of all 0-s. For example, consider a two-bit
protein space that is associated with a six-bit mRNA space. The parti-
tion 110001 in the mRNA space can be represented in terms of the
sub-partitions 000000, 110000, and 000001. Note that 110001 (r) =

1000000 (') ¥110000 () %000001 (r). So we can write,

vie) = JI 5.0 (6)

a=0,1,q

Now note that the value of 9;(r) will be —1 when an odd number of
5, (r)-s take a value of —1. The value of)5, (r) depends on the codon
bits corresponding to the partition j,. It can either take a value of 1
or —1. In case of a randomized GCT, this is a probabilistic event. In
other words, ;,(r) can either be 1 or —1 with a certain probability

hkg.tex; 21/02/2002; 2:38; p.15

16 Hillol Kargupta and Samiran Ghosh

distribution. This distribution can be computed from the code-book.
Counsider applying a code to any protein sequence p in a randomized
fashion with uniform probability assigned to the codons. Let P, . be
the probability that ;. (r) will be —1 after r is constructed by apply-
ing the randomized GCT from some p. Subscript «,r represents the
dependency of this probability on both j, and r.

The probability that an odd number of j,-s take a value of —1 is,

Py=> (1 — Por)? F(k mod 2)

= — ’ (7)

Note that P, is a property of the code-book. For example in code A
(Table II), Pyy = 0.5 or P, = 0.75 for any « and r. Equation 7 is
true only when P, , is constant across every jq.

The probability that an even number of j,-s take a value of —1is 1—
1—(1—2Ppr)?
2

P_{.For0 < P, < 1.0, we can write limy_,o, P 1 = limy_,
= 0.5. In other words, for higher order partitions (with high values of ¢),
1;(r) is either going to be 1 or -1 with probability 0.5. This uniformity
of the distribution of 1 and -1 approaches equality at an exponential
rate with respect to gq.

We can derive the counterpart of Equation 7 when F, , takes differ-
ent values. Let us consider the case where P, , can take two different
values (as in code A). Let P,, € {p1,p2}. For any arbitrary mRNA
string r let g; be the number of sub-partitions (jo-s) where P, , = p1.
Therefore, for the rest of the ¢ — ¢; sub-partitions P, = ps. Now in
order to compute the probability that an odd number of j,-s take a
value of —1 we need to count the number of different ways we can pick
some k1 and k—k; sub-partitions from ¢; and ¢—¢; choices respectively.
So we can write,

q k
Py = Z Z (1) (1)phph (= pr)2 e x
k=1 k=0
= (l—pg)q a=ktki(F mod 2)

The behavior of the above equation is similar to that of Equation 7. P_;
approaches 0.5 very quickly. Further analysis of P_; for more general
scenarios can be found elsewhere (Kargupta, 2001). Since the above
analytical expression is not in closed form we choose to work with the
expression for constant P, , (Equation 7) in rest of this paper.

Let (¥(r))s’ be the column vector where the i-th row is the value of
¥j(r(;)) where r(;) is the i-th member of S’. According to our analysis

hkg.tex; 21/02/2002; 2:38; p.16

Toward Machine Learning Through Genetic Code-like Transformations 17

every entry of this column vector will be either 1 or —1 with almost
equal probability in general when the order of the reflection of j is not
very close to zero. So if j and t are two such partitions the entries of
both column matrices (¥;(r))s and (¥¢(r))g are going to be uniformly
distributed. Therefore, the expected inner product between any two
such basis vectors,

E[(¥5(r), Us(r))s'] =~ 0. (8)

where E denotes the expectation. Even for partitions with relatively
small values of ¢, the (¥;(r), ¥¢(r))g is likely to be quite small com-
pared to |S’|. Now recall that Fourier basis functions are closed un-
der inner product. In other words, (¥;(r), ¥¢(r))sr = (¥k(r))s. For
Boolean strings k = j @ t, where @ denotes bit-wise XOR operation.
Therefore Equation 8 also implies that E[}_.cg ¥k (r)] — 0 as the ab-
solute order (g) of the partition r increases. This can also be quantified
using Equation 7.

BElpk(r)] = (-1)P-1 + 1.(1 - Py)
= (1—2P,,)? (9)

For 0 < Py r < 1.0, we can write limg_,o E[9x(r)] = 0. The following
section shows that this result implies reduction of higher order non-
linear dependency among the features.

The results presented in this section shows that we can construct
a representation of the given training data set where the higher order
Fourier basis vectors approaches orthonormality. This almost satisfies
the conditions identified in Section 3 since the Fourier basis vectors
are always orthonormal over the entire domain. This essentially means
that we can construct a representation using the randomized GCTs
where the mean-square-error surface may be accurately approximated
by a convex quadratic function where gradient descent leads to the
global minima. This is an interesting property which is likely to be
useful for non-linear regression, curve fitting, classifier learning, and
other predictive modeling applications.

However, randomized GCTs may offer additional interesting prop-
erties that are yet to be fully explored. It appears that randomized
GCTs generate a representation where the magnitudes of the higher
order coefficients are exponentially smaller than the magnitudes of the
low order coefficients. This property may be useful for constructing
a more efficient representation of the target function. The following
section discusses this issue.

hkg.tex; 21/02/2002; 2:38; p.17

18 Hillol Kargupta and Samiran Ghosh

4.4. EFFeEcT OF RANDOMIZED GCT-S ON THE FOURIER
COEFFICIENTS

This section explores some of the properties of the Fourier spectrum
of the new representation of the target function constructed by the
randomized GCT-s.

Consider the target function f : @ — {0, 1}. The domain Q contains
2% different £,-bit strings. On the other hand, the transformed domain
Q' contains 2% different clp-bit strings. Let us define the corresponding
partial function f,, : Q" — {0,1}. In order to understand the properties
of this partial function we need to extend the domain to the complete
set of 2¢ different clp-bit strings. Let us do that in the following
manner.

Fir) = fplr) if req

= 0 otherwise

Following Equation 7 we can write,

Bluj] = s B £)3(e)]

1
= 2, > E[y;(r)]
r|f'(r)=1,req’
_ (1= 2Pr) Q)|
2cty
(1 — 2Pa,r)q'w0
R (10)

Where [f(x)=1] is the number of members of 2 for which f(x) = 1 and
wp is the coefficient for the order-zero partition in the original unex-
panded protein space. This result shows that the expected magnitude of
the Fourier coefficients in the new representation decays exponentially
with respect to g, the absolute order of the corresponding partition.
It essentially means that the individual higher order coefficients are
exponentially less significant compared to the low order ones. However,
the new longer representation also introduces more number of partitions
and therefore potentially more number of Fourier coefficients. This is
because the new representation has (gp) (2¢ — 1)9 number of partitions

of absolute order ¢, instead of the (gp) number of partitions of order ¢

in the original representation. So the overall expected contribution of
all the coefficients of absolute order ¢ to the energy of the spectrum,

E, = Z ij

ilo(3")=q

hkg.tex; 21/02/2002; 2:38; p.18

Toward Machine Learning Through Genetic Code-like Transformations 19

2(c—1)¢
Sloiy—a 27
(1= 2P,)% 10
= g (@)@ -
(1 — 2P,)% w3
922(c—1)¢p

< (2°4,)° (11)

Let b be a constant such that b < 1. The overall contribution of F, will
decay exponentially with respect to increasing ¢ only if the following
condition is true:

(1 - 2P0, (2°6,)0 = b

(12)

So if we can construct a codebook that satisfies the above condition for
some b < 1, the contribution of the Fourier coefficients with absolute
order ¢ to the spectrum energy will decay at an exponential rate. In
other words, the new representation will become less “non-linear” since
we will be able to neglect the higher order coefficients by exploiting the
exponential decay property of E,. However, it is not clear whether
we can construct a codebook that satisfies this property. But this is an
interesting possibility. Also note that Equation 12 makes use of the sim-
plified expression of P_1. So the expression is only an approximation.
The exact nature of this expression is yet to be explored.

The following sections present a set of experimental results that
demonstrate the performance of the gradient descent-based Perceptron
learning algorithm for a class of nonlinear classification problems.

5. The Perceptron and the XOR Function

The experiments presented in this section considers the Perceptron
(Rosenblatt, 1961) which is widely known to be a linear classifier and
the non-linear XOR, problem. The Perceptron cannot learn the XOR
problem (Minsky and Papert, 1968) since it is a linear classifier. How-
ever, we apply the Perceptron on a representation of the XOR con-
structed by randomized GCT-s and test its performance. The results
show that the Perceptron accurately learns the functions in the new
representation constructed by GCTs. This results however do not neces-
sarily say anything concrete about the overall properties of randomized
GCTs. It is also not clear whether such performance is unique to
randomized GCT-s. We need to explore these issues further before

hkg.tex; 21/02/2002; 2:38; p.19

20 Hillol Kargupta and Samiran Ghosh

making any concrete claim. The experiments are primarily presented
to gain some insights into the behavior of randomized GCT-s. First let
us quickly review the Perceptron and its learning mechanism.

5.1. PERCEPTRON A BRIEF REVIEW

x1 x2 xn

Figure 2. A Perceptron.

A Perceptron (Rosenblatt, 1961) is an artificial model of a neuron
that computes a linear function of a set of input variables. In its most
common implementations, a Perceptron computes a Boolean output
value by filtering the output of the linear function through a threshold
logic which fires (a value of 1) only when the output is greater than
a certain threshold value. The output of the Perceptron is zero when
the threshold logic does not fire. Figure 2 shows the structure of a
single node Perceptron. The input feature vector is represented by
X = [z1,%2,...24,) € R% and [wi,wo, ... wy,] € IR% are the weights
associated with the input links connected to the node. The constant in-
put threshold is defined by # € IR. However, in our current experiments
all the input features are Boolean.

The function computed by a Perceptron can be written as follows

1If wx>0
dlw) = { 0 Otherwise. (13)
where w.x denotes the inner product defined by w.x = Efi 1 Wi
Perceptron classifies the inputs into two categories i.e., for those with
¢(x) = 1 and for the others with ¢(x) = 0. The decision boundary of
the function defined by the equation w.x — 6 = 0, is an affine subspace
of R"™.

hkg.tex; 21/02/2002; 2:38; p.20

Toward Machine Learning Through Genetic Code-like Transformations 21

Perceptron learns a classifier by learning the set of weights w and
0. Given a training data set it learns the weights by gradient descent
in the min-square-error surface. For convex functions such gradient
descent is guaranteed to find the error minima. The learning algorithm
for Perceptrons is sometimes called Widrow-Hoff or delta learning law
(Widrow and Hoff, 1960). The algorithm is described in the following.

1. Initialize the weights (w) and the threshold value (6) to some
arbitrary values.

2. Update w and 6 according to the following rule

Wigr1 = Wit + a(f(x) — ¢(x));
01 = 0 — a(f(x) — ¢(x))

where w; ;11 and w; ¢ are the i-th weights at the (¢+1)-th and ¢-th
iteration respectively; « is a small constant. It is usually called the
learning rate. f(x) is the target function value.

3. Continue until the convergence condition is satisfied. All exper-
iments reported in this paper were stopped when either of the
following conditions was satisfied

a) Wil S wig, Vi=12...,n

b) the total number of iterations is more than a predefined thresh-
old.

Our experiments consider up to fifth decimal places of w; 11 and
w; ¢ before concluding that w;;y1 ~ w;;. The chosen value for the
maximum number of iterations is 10, 000.

It has been shown elsewhere (Rosenblatt, 1961) that this algorithm
is guaranteed to converge to the global error minima when the target
function is linear.

5.2. THE XOR PROBLEM

An XOR is a Boolean function. Its domain is a set of Boolean strings.
Table IV shows the truth-table of a two-bit XOR problem. Our ex-
periments also consider a generalized version of the XOR problem for
n-bits. An n-bit XOR problem is defined as follows:

F(x) = 1 if x contains odd number of 1-s
~ | 0 otherwise.

hkg.tex; 21/02/2002; 2:38; p.21

22 Hillol Kargupta and Samiran Ghosh

0.50 | r 0.015

9045’ r
£ 0.010

lassification

§ 0.46 r

m

0.005

Variance of misclassification ratio

0.44 r

0.000

T T T T T

2 4 6 8 10 T T T T T

2 4 6 8 10
Order of XOR problem

Order of XOR problem

Figure 3. Performance (Error rate vs. problem size) of the Perceptron on XOR
problems. Note that the error rate starts from 0.4 for two bit XOR and quickly goes
up to approximately 0.5 for larger problems. An error rate of 0.5 is equivalent to
random guessing.

A linear classifier like a single Perceptron cannot learn a non-linear
function. The XOR function is non-linear and therefore a single Per-
ceptron cannot learn it in its canonical representation where the input
features of the Perceptron is nothing but the Boolean variables of
the XOR function. Our experiments apply the Perceptron to learn
the XOR in a representation constructed by the randomized GCT-
s. During the learning stage we present the domain members to the
Perceptron. Once the learning is over the trained Perceptron is tested
on the domain members. In order to measure the performance of a
Perceptron we define mis-classification ratio as the ratio of the number
of mis-classification and the number of entries in the testing data set.
For all the experiments reported here, the training data set in drawn
from the entire domain using uniform distribution. The testing data
set is comprised of the entire domain.

Figure 3 presents the mis-classification ratio for the different sizes
(number of input variables) of the XOR problem in its canonical repre-
sentation (i.e. without any randomized GCT-based transformation).
The figure at the left shows the average mis-classification ratio for
10,000 runs. The figure at the right shows the corresponding variance.
As the figure shows the absolute variance is quite low. For smaller
problems the variance is relatively higher. These figures show that the
Perceptron is making about 50% error for most of the problems of
different sizes. This implies that the classifier is no better than random
guessing since for half of the members of the XOR-truth-table f(x) = 1.

hkg.tex; 21/02/2002; 2:38; p.22

Toward Machine Learning Through Genetic Code-like Transformations 23

Table IV. The XOR
problem.

[[| S |

0
1
0
1

= = o O
O == O

In other words, according to our expectation the Perceptron fails to
correctly learn the XOR function in its given representation.

5.3. LEARNING XOR WITH A PERCEPTRON AND RANDOMIZED
GCT-s

This section presents the results of our experiments where the Per-
ceptron is applied to learn the XOR function in a representation con-
structed by the randomized GCT-s.

5.4. EXPERIMENTAL SETUP

The experimental process is comprised of the following steps

1. Given the XOR problem in the canonical representation, construct
a new enlarged representation using randomized GCT-s. Table V
shows the GCT-s used for the experiments reported here. We con-
sider three different code-books with different codon sizes. Codons
are assigned with uniform probability.

2. Learn a single Perceptron in this new representation using the delta
learning law.

3. Test the trained Perceptron.

The training set is constructed by uniformly selecting members from
the domain Q. We used the entire domain (Q') for testing.

All the experiments consider code books with equal number of codons
for both 1 and 0. Our analysis does not require that. It is just one of
the experimental choices that we made. We plan to report results with
unequal codon distributions in the future.

hkg.tex; 21/02/2002; 2:38; p.23

24 Hillol Kargupta and Samiran Ghosh

Table V. Three code books defined by 2, 3, and 4-bit

codons.
01, 10
1] 00,11

010, 101, 111, 000
1 | 001, 110, 100, 011

0000, 1111, 0001, 1110, 0011, 1100, 0100, 1011
1 | 0010, 1101, 1000, 0111, 0101, 1010, 1001, 0110

5.5. EXPERIMENTAL RESULTS

Figure 4 presents the average mis-classification error of the Percep-
tron trained over a representation constructed by the code-book with
codons of size two (top, left), three (top, right), and four (bottom).
The average error is computed over 10,000 independent sessions. The
leftmost figure at the top shows that a three-bit XOR problem can be
learned almost perfectly using the code-book of size two. The error-
ratio grows up to 0.5 as we increase the problem size. Note that the
increase in error is logistic unlike the fast growth observed in Figure
3. The graph at the top-right corner shows a similar error variation
for the code-book of size three; only the boundary of bottom knee of
the graph is different. It shows that the code-book with codons of size
three is capable of learning up to four-bit XOR problem accurately.
Similarly, the Perceptron can learn up to five-bit XOR problem using
the code-book with codons of size four (the figure at the bottom of
Figure 4). Figure 5 plots the change in the corresponding variances for
the three code-books. In absolute terms the variance is quite low. In
other words the expected behavior plotted in Figure 4 is reliable. The
change in the variances with respect to increasing problem size only
reveals a spike around the problem size where the Perceptron starts
failing. The analysis presented in this paper did not address the effect
of codon size on the performance of the GCT-s. We plan to address
this in our future work.

hkg.tex; 21/02/2002; 2:38; p.24

Toward Machine Learning Through Genetic Code-like Transformations 25

T
o
=

I

047

o
@
I

03]

o
~
I

misclassification ratio

027

misclassification ratio

T
o
2

I

0.1

0.0 E 007

Order of XOR problem Order of XOR problem

misclassification ratio

T T T T T
2 4 6 8 10
Order of XOR problem

Figure 4. Average mis-classification ratio vs. problem size (number of input vari-
ables) for code-books with codon size (top, left) two, (top, right) three, (bottom)
four. The reported result is an average of 10,000 independent runs.

6. Experiments with DNF Functions

The DNF (disjunctive normal form) is a Boolean function whose do-
main is comprised of a set of Boolean strings. Let B be a Boolean
formula. A literal is either a variable or the negation of a variable. A
clause is defined as conjunction of literals, e.g. C = 1 A ~z9 A z3. The
formula is said to be in the disjunctive normal form (DNF) if it is a
disjunction of clauses C; V Cy V ... V C},.

This section reports the results of applying the Perceptron to learn
a DNF function of the following form:

F(x) = V?:1 C; for an even integer n > 2 and C; = z9;_1 A x9;
z1V 9 for n=2.

hkg.tex; 21/02/2002; 2:38; p.25

26 Hillol Kargupta and Samiran Ghosh

0.020 | r 0.020

0.015

0.015 L

0.010

0.010 r

0.005 | r 0.005

Variance of misclassification ratio
Variance of misclassification ratio

0.000 I 0.000

T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
Order of XOR problem Order of XOR problem

0.008 r

0.006 | r

0.004 | I

0.002 r

Variance of misclassification ratio

0.000 | L

T T T T T
2 4 6 8 10
Order of XOR problem

Figure 5. Variance of mis-classification ratio calculated over 10,000 learning and
testing sessions for different problem sizes and different codon sizes (top, left) two,
(top, right) three, (bottom) four.

Just like the XOR experiment, here we study the relative perfor-
mance of the Perceptron with and without the the application of ran-
domized GCT-s. During the learning stage we present all the domain
members to the Perceptron. Once the learning is over, the trained
Perceptron is tested on all the domain members. Performance of the
Perceptron is measured in a way similar to that of the XOR experi-
ments.

Figure 6 plots the average (over 1,000 runs) mis-classification ratio
for the different sizes (number of input variables) of the DNF problem
in its canonical representation (i.e., without GCT). This figure shows
that Perceptron performs not so well as the problem size increases.

Figure 7 plots the average mis-classification error of Perceptron
trained over a representation constructed by the code book with codons

hkg.tex; 21/02/2002; 2:38; p.26

Toward Machine Learning Through Genetic Code-like Transformations 27

035 0.012}

@
=

0.008]

o

006

misclassification ratio
o
)

Iy

variance of misclassification ratio

0.004

015
| 0.002

number of variables number of variables

Figure 6. Performance (Error rate vs. problem size) of the Perceptron on DNF
problems.

0.35F

03F

=}
by
o

=
Ny

misclassification ratio

I

misclassification ratio
o

01F

0.05F

number of variables number of variables

Figure 7. Average mis-classification ratio vs problem size (number of input vari-
ables) for code-books with codon size (left) two and (right) three. The reported
result is an average over 1,000 independent runs.

of size two (left) and three (right). The average error is computed over
1,000 independent sessions. The left most figure shows that 6 bit DNF
can be learned almost perfectly using the code book of size two. The
error ratio grows as we increase the problem size. The graph at the right
shows similar error variation for code-book of size three. It indicates

hkg.tex; 21/02/2002; 2:38; p.27

28 Hillol Kargupta and Samiran Ghosh

that the code book with codon size three is capable of learning up to
eight bit DNF.

x10° x10°
¥ T T T T T T T

= I
=
> =

ce of misclassification ratio
of at
o
>

varian
=
variance
o
2

number of variables number of variables

Figure 8. Variance of the mis-classification ratio calculated over 1,000 learning and
testing sessions for different problem sizes and different codon sizes (left) three and
(right) two.

Figure 8 plots the change in the corresponding variance for both of
the code-book. In absolute terms variance is quite low indicating that
the results are quite stable. The following section concludes this paper.

7. Discussion, Future Work, and Conclusions

This paper is a part of a series of efforts by the author and his colleagues
in understanding the role of gene expression on computational grounds.
The observations made in this paper are particularly related to the
results presented elsewhere (Kargupta, 2001). That paper showed that
the exponentially long representation of some functions using Fourier
bases can be transformed to a representation using GCTs, where the
low order coefficients are exponentially more significant than the high
order ones. This makes the exponentially long representation suitable
for approximations using only a polynomial number of low order coef-
ficients. However, that paper considered only the deterministic GCTs.

This paper introduces and explores the randomized GCTs. The
primary contribution of the paper is the following. It shows that the
randomized GCT-s can be used to construct a representation of the
domain where the higher order Fourier basis-vectors defined over the
training data set are almost orthonormal to each other. This property

hkg.tex; 21/02/2002; 2:38; p.28

Toward Machine Learning Through Genetic Code-like Transformations 29

Original Error Surface

. After Applying
After Applying ldeal GCT Randomized GCT

Figure 9. (Left) Original mean-square-error surface. (Middle) The surface produced
after the ideal transformation where the bases are perfectly orthonormal over the
learning data set S. (Right) The surface obtained after applying the proposed
randomized GCTs.

makes the mean-square-error surface approximately convex quadratic,
allowing error minimization using gradient descent algorithms.

The analytical observations derived from the Fourier analysis of
randomized GCT-s are tested using the well-known linear classifier
Perceptron. The Perceptron learns by performing gradient descent in
the mean-square-error surface. It fails to learn the widely known non-
linear XOR function. The experiments show that Perceptron can indeed
learn the XOR function in a representation constructed by random-
ized GCT-s as long as the codon length (i.e. the size of the expanded
representation) is sufficiently long.

Although the approach appears quite promising, several issues should
be addressed before it can be offered as a viable technique for repre-
sentation construction in function induction. Some of them are listed
below.

1. Our experiments first constructs Q' from Q. This new set Q' is then
used for generating the training and the testing data. Therefore,
every unique string x is mapped to a unique string x in Q. During
the testing phase we need to use the same string x if we want to
find out the class label of the x. This is difficult to do unless we
have an efficient way to generate the same x from x. Note that
the genetic code allows deterministic generation of x from x but
not the opposite. So we need to develop a technique to make sure
that the trained model is always applied to the members of Q.

hkg.tex; 21/02/2002; 2:38; p.29

30 Hillol Kargupta and Samiran Ghosh

In other words, we need to make sure that a model learned using
samples from Y is applied for testing only the members of €.
Explicit storage of the new representation of the domain members
is a possibility since the length of the representation is increased
by a small constant factor.

2. We think eventually the GCT-s may require techniques to introduce
bias in the code book in order to construct a more efficient descrip-
tion of the data sets belonging to different classes. Non-uniform
distribution of codons to different protein features is an attractive
way to introduce bias in the code and we are currently exploring
this possibility.

3. The optimality of the code is an important issue. We know that
the closer P, is to 0.5 the better it is. If it is very close to 0.5 the
higher order coefficients will quickly disappear. We also know that
the codon size has a critical role on the performance. We need to
quantify that. In general, we need to address the issue of designing
the optimal or near optimal code.

The overall contribution of the work can be summarized using the
cartoon diagram presented in Figure 9. It shows the original MSE sur-
face, the result of ideal transformation generating perfectly orthonor-
mal bases, and the quasi-quadratic surface generated by the proposed
randomized GCTs. A reasonable stochastic minimization algorithm is
likely to be able to handle such almost quadratic error surfaces with
some relatively small humps. Note that the diagram is provided only for
intuitive description of the results presented here. The exact transfor-
mation of an arbitrary MSE surface under randomized GCTs and the
exact nature of the “quasi-quadratic” surface are yet to be explored.

The possibility of reducing function non-linearity briefly sketched
in this paper is worth further explorations. Linearization through con-
struction of longer transformations is exploited in other machine learn-
ing techniques. For example, the support vector machines (SVMs) (Cris-
tianini and Shawe-Taylor, 2000; Vapnik, 1995) formulate a linear ver-
sion of a given non-linear function induction problem by expanding
the number of features in the original representation. SVMs construct
a longer representation where the target function is linear using user-
provided kernel functions. Finally the classifier is learned by minimizing
the error using quadratic programming algorithms. Although the pro-
posed technique shares some philosophical similarities with SVMs the
technical approaches are different.

hkg.tex; 21/02/2002; 2:38; p.30

Toward Machine Learning Through Genetic Code-like Transformations 31

Acknowledgments

This work was supported by the United States National Science Foun-
dation (NSF) Grants 1IS-9803660 and IIS-0083946. The first author
would also like to acknowledge support from the NSF CAREER award
I1S-0093353. The authors thank Rajeev Ayyagari for many useful dis-
cussions.

References

J. D. Bagley. The behavior of adaptive systems which employ genetic and correlation
algorithms. Dissertation Abstracts International, 28(12)5106B, 1967. (University
Microfilms No. 68-7556).

W. Banzhaf. Genotype-phenotype mapping and neutral variation—A case study
in Genetic Programming. In: Proceedings of the Parallel Problem Solving from
Nature III, Eds. Yuval Davidor, Hans-Paul Schwefel, and Reinhard Manner.
Lecture notes in Computer Science 866, Springer-Verlag, Berlin, pages 322-332.

J. Bashford, I. Tsohantjis, and P. Jarvis. A super-symmetric model for the evolution
of the genetic code. In: Proceedings of the National Academy of Science USA,
95987-995, 1998.

P. Beland and T. Allen. The origin and evolution of the genetic code. Journal of
Theoretical Biology, 170359-365, 1994.

K. G. Beauchamp. Applications of Walsh and Related Functions. Academic Press,
USA, 1984.

A. Brindle. Genetic Algorithms for Function Optimization. Unpublished doctoral
dissertation, Department of Computer Science, University of Alberta, Edmonton,
Canada, 1981.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, 2000.

D. Dasgupta and D. R. McGregor. Designing neural networks using the structured
genetic algorithm. Artificial Neural Networks, 2263-268, 1992.

C. Ferreira. Gene Expression Programming: a New Adaptive Algorithm for Solving
Problems. Complex Systems, 2(13):87-129, 2001.

S. J. Freeland, R. D. Knight, L. F. Landweber, and L. D. Hurst. Early fixation of
an optimal genetic code. Molecular Biological Evolution, 17(4)511-518, 2000.

S. Fukuchi, T. Okayama, and J. Otsuka. Evolution of genetic information flow from
the viewpoint of protein sequence similarity. Journal of Theoretical Biology,
171179-195, 1994.

D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation,
analysis, and first results. Complez Systemns, 3(5)493-530, 1989. (Also TCGA
Report 89003).

J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, 1975.

R. B. Hollstien. Artificial genetic adaptation in computer control systems. Dis-
sertation Abstracts International, 32(3)1510B, 1971. (University Microfilms No.
71-23,773).

J. Hornos and Y. Hornos. Algebraic model for the evolution of the genetic code.
Physical Review Letters, 71(26)4401-4404, 1993.

hkg.tex; 21/02/2002; 2:38; p.31

32 Hillol Kargupta and Samiran Ghosh

J. Jackson. The Harmonic Sieve A Novel Application of Fourier Analysis to Machine
Learning Theory and Practice. PhD thesis, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, 1995.

F. Jacob and J. Monod. Genetic regulatory mechanisms in the synthesis of proteins.
Molecular Biology, 3318-356, 1961.

H. Kargupta. The gene expression messy genetic algorithm. In: Proceedings of the
IEEE International Conference on Ewvolutionary Computation, pages 814-819.
IEEE Press, 1996.

H. Kargupta. Gene Expression The missing link of evolutionary computation. In
C. Poloni D. Quagliarella, J. Periaux and G. Winter, editors, Genetic Algorithms
in Engineering and Computer Science., page Chapter 4. John Wiley & Sons Ltd.,
1997.

H. Kargupta. SEARCH, computational processes in evolution, and preliminary
development of the gene expression messy genetic algorithm. Complex Systems,
11(4)233-287, 1997.

H. Kargupta. A striking property of genetic code-like transformations. Complez
Systems Journal, 13(1)1-32, 2001.

H. Kargupta and S. Bandyopadhyay. A perspective on the foundation and evolu-
tion of the linkage learning genetic algorithms. Computer Methods in Applied
Mechanics and Engineering, 186(2000)269-294, 2000. Special Issue on Genetic
Algorithms, Guest Editors Goldberg, D. E. and Deb, K.

H. Kargupta, D. E. Goldberg, and L. W. Wang. Extending the class of order-
k delineable problems for the gene expression messy genetic algorithm. In:
Proceedings of the Second Annual Conference on Genetic Programming, pages
364-369, San Francisco, California, 1997. Morgan Kaufmann Publishers.

H. Kargupta and H. Park. Fast construction of distributed and decomposed
evolutionary representation. Journal of Evolutionary Computation, 9(1)1-32,
2000.

H. Kargupta and K. Sarkar. Function induction, gene expression, and evolutionary
representation construction. In: Proceedings of the Genetic and Evolutionary
Computation Conference, Orlando, USA.. Eds. Wolfgang Banzhaf, Jason Daida,
A. E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela and Robert E.
Smith, pages 313-320, San Francisco, California, 1999. Morgan Kaufmann.

H. Kargupta and B. Stafford. From DNA to protein Transformations and their
possible role in linkage learning. In: Proceedings of the Seventh International
Conference on Genetic Algorithms. Eds. Thomas Back, pages 409-416, Morgan
Kaufmann Publishers, San Francisco, USA, 1997.

H. Kargupta, R. Ayyagari, and S. Ghosh. Learning Functions Using Randomized
Expansions: Probabilistic Properties and Experimentations. In communication,
2001.

S. Kauffman. The Origins of Order. Oxford University Press, New York, 1993.

R. Keller and W. Banzhaf. The evolution of genetic code in genetic programming.
In: Proceedings of the Genetic and Evolutionary Computation Conference, pages
1077-1082. Morgan Kaufmann Publishers, San Francisco, USA, 1999.

R. D. Knight and L. F. Landweber. The early evolution of the genetic code. Cell,
101569-572, 2000.

S. Kushilevitz and Y. Mansour. Learning decision trees using Fourier spectrum. In:
Proceedings of 23rd Annual ACM Symp. on Theory of Computing, pages 455-464,
1991.

M. Minsky and S. Papert. Perceptrons. MIT Press, MIT, USA, 1968.

hkg.tex; 21/02/2002; 2:38; p.32

W oz

>

Toward Machine Learning Through Genetic Code-like Transformations 33

. O’Neill, and C. Ryan. Genetic code degeneracy: Implications for grammatical

evolution and beyond. In: Proceedings of the Fifth European Conference on
Artificial Life, Lausanne, Switzerland, 1999.

. Ryan, J. J. Collins, and M. O’Neill. Grammatical evolution: Evolving programs

for an arbitrary language. Lecture notes in Computer Science 1391. pages 83-95,
Springer-Verlag, 1998.

. Reidys and S. Fraser. Evolution of random structures. Technical Report 96-11-

082, Santa Fe Institute, Santa Fe, 1996.

. Rockmore, P. Kostelec, W. Hordijk, and P. Stadler. Fast Fourier transform for

fitness landscapes. Technical Report 99-10-068, Santa Fe Institute, Santa Fe,
1999.

. S. Rosenberg. Simulation of genetic populations with biochemical properties.

Dissertation Abstracts International, 28(7)2732B, 1967. (University Microfilms
No. 67-17,836).

. Rosenblatt. Principles of Neurodynamics. Spartan Books, Washington DC., 1961.
. Schuster. The role of neutral mutations in the evolution of RNA molecules. In

S. Suhai, editor, Theoretical and Computational Methods in Genome Research,
pages 287-302. Plenum Press, New York, 1997.

. E. Smith. An investigation of diploid genetic algorithms for adaptive search of

non-stationary functions. TCGA Report No. 88001, University of Alabama, The
Clearinghouse for Genetic Algorithms, Tuscaloosa, 1988.

. Thierens. Estimating the significant non-linearities in the genome problem-

coding. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, Eds. Wolfgang Banzhaf, Jason Daida, A. E. Eiben, Max H. Garzon, Vasant
Honavar, Mark Jakiela and Robert E. Smith, pages 643-648. Morgan Kaufmann
Publishers, San Francisco, USA, 1999.

. Thierens. Scalability problems of simple genetic algorithms. Ewvolutionary

Computation, 7(4)331-352, 1999.

. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

L. Walsh. A closed set of orthogonal functions. Ann. Journ. Math., 55, 1923.

. V. Wickerhauser. Adapted Wavelet Analysis from Theory to Software. A. K.

Peters Ltd., 1994.

. Widrow and M. Hoff. Adaptive switching circuits. In IRE WESCON Convention

Record, pages 96-104, New York, 1960.

. Wu and R. Lindsay. Empirical studies of the genetic algorithm with non-coding

segments. Journal of Evolutionary Computation, 3(2)121-147, 1995.

. Wu and R. Lindsay. A survey of intron research in genetics. In H. Voigt,

W. Ebeling, I. Rechenberg, and H. Schwefel, editors, Parallel Problem Solving
from Nature- PPSN IV, pages 101-110. Springer-Verlag, Berlin, 1996.

hkg.tex; 21/02/2002; 2:38; p.33

hkg.tex; 21/02/2002; 2:38; p.34

