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Abstract

We propose a collective method to address the problem

of learning the structure of a Bayesian network from a

distributed heterogeneous data sources. In this case, the

dataset is distributed among several sites, with different

features at each site. The collective method has four

steps: local learning, sample selection, cross learning, and

combination of the results. The parents of local nodes can

be correctly identified in local learning. The main task of

cross learning is to identify the links whose vertices are in

different sites (cross links). This is done by transmitting

a small subset of samples from each local site to a central

site. The combination step involves removing extra links

from local Bayesian networks that may be introduced

during local learning due to the well known hidden variable

problem. The sample selection step selects samples, based

on a likelihood criterion, that are possibly evidence of cross

links. The overall procedure is called collective learning.

Experimental results verify that, for sparsely connected

networks, the collective learning method can learn the same

structure as that obtained by a centralized learning method

(which simply aggregates data from all local sites into a

single site).

1 Introduction

In recent years, there has been a number of works on
the Bayesian Network (BN) structure learning. In gen-
eral, these structure learning algorithms are developed
for the centralized case, where all the data is in a sin-
gle site. However, there are many scientific and non-
scientific applications in which the observed dataset is
distributed among different sites. For example, the
NASA Earth Observing System (EOS) generates more
than 100 gigabytes of image data per hour, which are
stored, managed, and distributed from eight Distributed
Active Archive Centers (DAACs). Cost of data com-
munication between the distributed databases is a sig-
nificant factor in an increasingly mobile and connected
world with a large number of distributed data sources.
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Other factors like limited bandwidth, privacy, and data
security might also prevent the aggregation of data at a
single site.

In this paper, we consider a distributed heteroge-
nous dataset scenario, where each site has observations
corresponding to a subset of the attributes. We assume
there exists a “key” (like time index, user id, etc.) that
is common to all sites and can be used to link an obser-
vation among different sites. A naive approach to learn
a BN from a distributed heterogenous dataset is to ag-
gregate all data to a central site and learn a BN from
the merged data. We will refer to this as the central-
ized learning method. The BN learnt from this method
will be denoted by Bcntr. However, in many situations,
limited network bandwidth and/or data security might
render this approach infeasible.

In our earlier work [CSK01b, CSK01a, CSK02],
we proposed an approach to learn a BN from dis-
tributed heterogenous data. Both the distributed learn-
ing method proposed in this paper and that pro-
posed in [CSK01b, CSK01a, CSK02] are within the
framework of Collective Data Mining [KPHJ00]. In
[CSK01b, CSK01a], the focus of our work was on dis-
tributed BN parameter learning although we gave some
ideas about distributed structure learning. In this pa-
per, we focus on the distributed BN structure learning.
A collective method is proposed to solve the structure
learning problem. To our knowledge, there is no signif-
icant work that addresses the problem of BN structure
learning from distributed heterogenous data. The re-
mainder of this paper is structured as follows. Section 2
provides an overview of BN, structure learning for BN,
and discusses related literature. Section 3 discusses the
proposed collective learning algorithm. Experimental
results are presented in Section 4. We conclude with
some discussions in Section 5.

2 Bayesian Network, Structure Learning, and
Related Work

In this section, we provide a brief overview of BN and
the structure learning algorithms. We then review some
related literature.

2.1 Bayesian Network A Bayesian Network (BN)
is a probabilistic graph model that can be defined as a



pair B=(G, θ). Here, G = (V, E) is a directed acyclic
graph (DAG) that represents the structure of the BN.
V is the node set and E is the edge set. For a node
X ∈ V, a parent of X is a node from which there exists
a directed link to X. The set of parents of X is denoted
by pa(X).

In this paper, we consider a BN over N discrete
variables Xi (1 ≤ i ≤ N). Conditional probability
θijk = P (Xi = k | pa(Xi) = j) is the probability of
variable Xi in state k when pa(Xi) is in state j. If
a variable Xi has no parents (root node), then θijk

corresponds to the marginal probability of node Xi.
We will denote by θ the set of all parameters θijk. A
specific ordering of the variables in a BN is called a node
ordering.

2.2 Structure Learning Structure learning is an
active topic of research in the field of BN. Structure
learning is a model selection problem in the sense
that each structure corresponds to a model (for which
parameters have to be estimated), and we need to
select a model based on the data. In general, there
are two approaches to learn the structure of a BN.
The first approach is a dependence analysis method
that poses learning as a constraint satisfaction problem.
The algorithms in this approach try to discover the
dependencies from the data, usually using a statistical
hypothesis test. The algorithm proposed in [PV91] uses
this approach. The second approach is a searching and
scoring based method that poses the learning as an
optimization problem. This kind of algorithm defines
a “score” that describes the fitness of each possible
structure to the observed data. Commonly used scores
include Bayesian score [CH92, Hec98] and MDL score
[Suz93]. Then the structure learning problem becomes
an optimization problem: find the structure Sopt that
maximizes (or minimizes depending on how the score
is defined) the score. An important property of some
score functions is decomposability. That is, the score
function can be decomposed as follows:
(2.1)
Score(S,D) =

∑
i

Score(Xi, pa(Xi),D(Xi, pa(Xi))).

Here S denotes the BN structure, D denotes the entire
data, and D(Xi, pa(Xi)) denotes the data involving only
Xi and pa(Xi).

The most widely used structure learning algorithm
is the K2 algorithm [CH92]. It belongs to the second
approach. The structure learning problem can be stated
as follows: Given the complete training dataset D
(no missing value) and a node order, find a network
structure S that best matches D. Suppose the prior of
the parameters (when the structure is fixed) is Dirichlet:

p(θ | S) ∼ Di(αij1, αij2, . . . , αijri
). Let Nijk be the

number of samples in D for which Xi = k and pa(Xi) =
j. Then the posterior distribution is also Dirichlet:

p(θ | S,D) ∼ Di(αij1+Nij1, αij2+Nij2, . . . , αijri
+Nijri

).

We can then write

p(D | S) = K2(S,D) =
n∑

i=1

qi∑
j=1

Γ(αij)
Γ(αij + Nij)

×

( ri∑
k=1

Γ(αijk + Nijk)
Γ(αij)

)
(2.2)

and

K2(Xi, pa(Xi)) =
qi∑

j=1

Γ(αij)
Γ(αij + Nij)

×

( ri∑
k=1

Γ(αijk + Nijk)
Γ(αij)

)
,(2.3)

where Nij =
∑ri

k=1 Nijk and αij =
∑ri

k=1 αijk. p(D | S)
is called Cooper-Herskovits scoring function. In this
paper, we refer to it as the K2 score since it is the
score function of K2 algorithm. Note that the K2 score
satisfies the decomposability property.

Having defined a score, the next step is to iden-
tify a network structure with the highest score. Gener-
ally, this search problem is NP-hard. So we need to use
sub-optimal search methods. Most widely used search
methods for BN structure learning use the decompos-
ability property. These search methods make a series of
arc changes (addition or deletion of one arc at a time).
After each arc change, we must check whether the re-
sulting graph S is a valid DAG. For each arc change, we
have a score Scoreb for the DAG Sb before the change
and Scorea for DAG Sa after the change. Acceptance
of the change depends on the difference between the two
scores. If a score satisfies the decomposability property,
we can do the search node by node. For each node, only
Score(Xi, pa(Xi)a,D(Xi, pa(Xi)a)) needs to be evalu-
ated and not the whole score. This can simplify the
computation considerably.

2.3 Related Work Mining from heterogeneous data
constitutes an important class of Distributed Data Min-
ing (DDM) problems. Kargupta et. al. [KPHJ00] pro-
posed the Collective Data Mining (CDM) framework for
data mining from distributed heterogenous data. For
learning BN from distributed datasets, Kenji [Ken97]
introduced an algorithm that can handle the homoge-
neous distributed learning scenario (here, each site con-
tains data for all the variables, but for a subset of the



observations). In [CSK01b, CSK01a, CS02], a collec-
tive method that deals with the heterogenous case is
proposed.

3 Collective Structure Learning Algorithm
from a Distributed Heterogeneous Database

We first provide an overview of the proposed algorithm.
Details of some of the steps will be explained later.

The main steps in our collective method are as
follows: (a) Local learning: Learn local BN (local
model) involving the variables observed at each site
based on local data set. (b) Sample selection: At each
site, based on the local BN, identify the samples that
are most likely to be evidence of coupling between local
and non-local variables. The selection process is based
on the likelihood of each sample under the local BN
model. Transmit the index of low likelihood samples
from each local site to the central site. At the central
site, compute the intersection of these index sets and
obtain samples corresponding to this intersection set
from all the local sites. (c) Cross learning: At the
central site, a limited number of observations of all the
variables are now available. Using this dataset, learn
a new BN (both structure and parameter). This BN
would contain links involving variables across different
sites. (d) Combination: Combine the local models with
the cross links to obtain a collective BN Bcoll. We shall
now define some terminology.

There are two types of variables in a distributed
BN. If a variable Xi and its parents are all in the same
site, then Xi is called a local variable. Otherwise Xi is
called a cross variable. If an edge X → Y whose parent
variable X and child variable Y are in different sites,
this edge is referred to as a cross link. Otherwise it is
called a local link. From the description of the collective
learning procedure, our algorithm includes four main
steps: local learning, sample selection, cross learning,
and combination. Local learning and cross learning
steps are both similar to a centralized BN learning
problem. In this paper, the structure learning algorithm
which is used for local learning and cross learning step is
called the base structure learning algorithm. We use the
K2 algorithm as our base structure learning algorithm.

3.1 Local Learning Local learning step consists of
learning (structure and parameters of) the local BN
(local model) involving the variables observed at each
site based on local data set. For local learning, we can
show the following proposition.

Proposition 3.1. (Local node) For a local vari-
able, a base structure learning algorithm with decom-
posability property can find the correct local structure

for this variable.

Proof: Let X be a local variable. For Bcntr, the search
space S(X) of local structure of X is the set of all
subsets of Pred(X) and the dataset is D. Let pabest

be the parent set that maximizes score(X, pa(X),D).
Suppose variable X is in site A. The search space
Slocal(X) of local structure of X in site A is the set
of all subsets of {Pred(X) \ {Y : Y /∈ NodeSet(A)}}.
The dataset is Dlocal(A). Since the local structure
learning algorithm has decomposability property, the
score of any candidate parent set in Slocal(X) with
respect to Dlocal(A) is the same as that in S(X) with
respect to D. This is clear from equation (2.3) of K2
algorithm. For a local variable, all parents are in the
same site, so pabest is also in Slocal(X). Since pabest can
maximize score(X, pa(X)) and score(X, pa(X),D) =
scorelocal(X, pa(X),Dlocal), the optimization result of
local structure learning is also pabest. Therefore, local
learning can find the correct structure for X. This
concludes the proof.

For cross variables Y , the situation is more compli-
cated than that for local variables. Some parents of Y
are not in the same site so the parent set can be split into
two sets: palocal(Y ) is the set of parents in the same site
and paother(Y ) is the set of parents in other sites. Since
we cannot observe any variables in paother(Y ), the edges
from a variable in paother(Y ) to Y (cross links) will be
missing during local learning. The following proposi-
tion shows that the edges from variables in palocal(Y )
to Y (local links) can be correctly detected during local
learning.

Proposition 3.2. (Cross node) For a cross variable
Y , a base structure learning algorithm with decompos-
ability property can find all the edges from variables in
palocal(Y ) to Y .

Proof: Structure learning is a global optimization prob-
lem. Fix a cross variable Y . For centralized learning,
let pabest(Y ) be the optimal solution that maximizes
score(Y, pa(Y ),D). We then have

score(Y, pa(Y ),D) > score(Y, ns(Y ),D),

where ns(Y ) ∈ {S(Y ) \ pabest(Y )}. This means that,
in a step with fixed candidate parent set, when we
add a variable in pabest(Y ), the score will increase.
This is again clear from the K2 algorithm. Since
score(Y, pa(Y ),D) = scorelocal(Y, pa(Y ),Dlocal) and
palocal(Y ) ⊆ pabest(Y ), scorelocal(Y, pa(Y ),Dlocal) will
increase after we add a variable in palocal(Y ). That
is, the edges from variables in palocal(Y ) to Y will be
detected in local learning. This concludes the proof.

For a variable Z in paother(Y ), the edge from Z to
Y will be missing, since we do not observe Z at the



local site. But if there exists a path U → Z → Y from
a variable U (in the same site as Y ) to Z (in the other
site) then to Y , we may get a wrong extra edge from U
to Y in local structure learning, because variable Z is
“hidden” (unobserved) at the local site.

3.2 Sample Selection and Cross Learning In this
subsection, we discuss how to find the local structure
of a cross node. We first discuss how to select a small
subset of the samples to be transmitted to a central site.

Let pA(.) and pB(.) denote the estimated probabil-
ity functions (or likelihoods) involving the local vari-
ables in site A and B, obtained from local learning.
Since pA(x), pB(x) denote the probability or likelihood
of obtaining observation x at sites A and B, we would
call these probability functions the likelihood functions
lA(x) and lB(x), for the local models obtained at sites
A and B, respectively. The observations at each site are
ranked based on how well they fit the local model, using
the local likelihood functions. The observations at site
A with large likelihood under lA(.) are evidence of “local
relationships” between site A variables, whereas those
with low likelihoods under lA(.) are possible evidence of
“cross relationships” between variables across sites. Let
IndLowA denote the set of keys associated with the ob-
servations with low likelihood under lA(.). In practice,
this step can be implemented in different ways. For ex-
ample, we can set a threshold ρA and if lA(x) ≤ ρA, then
Ind(x) ∈ IndLowA. The sites A and B transmit the set
of keys IndLowA, IndLowB , respectively, to a central
site, where the intersection IndLow = IndA ∩ IndB is
computed. The observations corresponding to the set
of keys in IndLow are then obtained from each local
site by the central site. We assume that there is a sin-
gle “key” variable (e.g., time index, user id) at the local
sites that can be used to merge the transmitted datasets.
This dataset is called Dcoll. The details of this selection
strategy are in [CSK02]. Finally, a BN (Bcross) is learnt
at the central site using the transmitted data.

In practice, the likelihood threshold ρA, ρB have to
be chosen carefully. In our experiments, we first set a
small threshold at each local site and obtain dataset
D1

coll at the central site. This is used in the cross
learning step to get B1

cross. The likelihood threshold is
then increased to obtain a larger dataset D2

coll (most of
samples in D2

coll and D1
coll are the same, so we only need

to transmit a small number of samples to the central site
again). Then we get B2

cross from the cross learning step.
After comparing B2

cross and B1
cross we retain only the

common cross links. This procedure can be considered
as a noise removal process.

3.3 Combination The last step of our collective
learning is to combine the local BNs and Bcross learnt
from cross learning into Bcoll. From the discussions in
Sections 3.1 and 3.2, we know the following: (a) Local
learning can find the local structure of local variables
and the local links of cross variables. (b) Cross learning
can find the cross links of cross variables. (c) If we
only assemble all local BNs together and do not use any
information from cross learning, there will be two types
of errors: extra local link due to the hidden variable
problem and missing cross links for cross variables. In
the combining step, we focus on the last problem. That
is, how to add the cross links and remove the extra local
links.

First, we assemble all local BNs together and get a
BN Ball

local. We then add all the cross links from Bcross

to Ball
local. The third step is to remove the extra local

links. Note that the child variable of an extra local link
must be a cross variable. In general, we do not know
which variable is a cross variable. But in cross learning,
we can get the cross links and the child variables of these
links are cross variables. In this way, we can identify all
cross variables. Then for each cross variable Y , find
whether there exists a path from a variable Z, which in
the same site with Y , to a variable in another site, and
then back to Y . If there does exist this kind of (hidden
variable) structure, we check the cross learning result
for this variable. An extra local link appearing due to
the hidden variable problem will not be supported by
the result of cross learning, which is then removed.

4 Experimental Results

We illustrate our method using a real world BN ap-
plication called the ALARM network. Due to space
constraint, we are unable to present results on other
common BNs. ALARM network is widely used as a
benchmark model to evaluate BN learning algorithms.
ALARM network has been developed for on-line moni-
toring of patients in intensive care units and generously
contributed to the community by Beinlich and his col-
laborators [BSCC89]. The structure of the ALARM net-
work is shown in Figure 1. It has 37 nodes and 46 edges.
These nodes are discrete valued, but not necessarily bi-
nary. In our distributed ALARM model, The 37 nodes
were split into 3 sites as shown in Figure 1. There are
five cross variables: 17, 20, 21, 23, 30 and six cross links:
2 → 17, 19 → 20, 10 → 21, 11 → 21, 22 → 23, 28 → 30
in this distributed ALARM model. A dataset with
15000 samples was generated from this ALARM net-
work model

In our experiment, local learning detected all local
links for cross variables and the structure of local
variables. But in site A, an extra local link 11 → 23



was detected because of the path 11 → 21 → 22 → 23.
In the cross learning step, we obtained all six cross
links correctly and obtained no extra cross links after
about 10% of all samples were transmitted to the central
site. In the combination step, we checked the link
11 → 23 because node 23 is a cross variables and
there exists a path 11 → 21 → 22 → 23. We found
that the cross learning does not support this link so
it was correctly removed. This experiment shows that
our collective learning algorithm can learn the correct
structure with a small amount of data transmission, for
complex distributed BN model and large dataset.
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Figure 1: ALARM Network

5 Conclusion and Discussion

We have presented an approach to learn the structure of
BN from distributed heterogenous data. This is based
on a collective learning strategy, where a local model
is obtained at each site and the global associations are
determined by a selective transmission of data to a cen-
tral site. In our collective method, local learning can
identify the local structure of local variables and local
links of cross variables. Cross learning can detect the
cross links of cross variables. Combining the results,
we can put together the local BNs and the BN learnt
from cross learning and also remove any “extra” local
links. In our experiments, the collective method learnt
the same BN structure as that obtained by a centralized
approach, even when only a small fraction of the data
was transmitted. To our knowledge, this is the first ap-

proach to learn the structure of a BN from distributed
heterogenous data.
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