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Introduction

Advances in computing and communication over wired and wireless networks have
resulted in many pervasive distributed computing environments. The Internet, intranets,
local area networks, and wireless networks are some examples. Many of these environments
have different distributed sources of voluminous data and multiple compute nodes. Analyz-
ing and monitoring these distributed data sources require data mining technology designed
for distributed applications.

This chapter starts by pointing out a mismatch between the architecture of most off-
the-shelf data mining systems and the needs of mining systems for distributed applications.
It also claims that such mismatch may cause a fundamental bottleneck in many emerging
distributed applications. Figure 1(Left) presents a schematic diagram of the traditional
data warehouse-based architecture for data mining. This model of data mining works by
regularly uploading mission critical data in the warehouse for subsequent centralized data
mining application. This centralized approach is fundamentally inappropriate for most of
the distributed and ubiquitous data mining applications. The long response time, lack of
proper use of distributed resources, and the fundamental characteristics of centralized data
mining algorithms do not work well in distributed environments.

A scalable solution for distributed applications calls for distributed processing of data,
controlled by the available resources and human factors. For example, consider an ad hoc
wireless sensor network where the different sensor nodes are monitoring some time-critical
events. Central collection of data from every sensor node may create heavy traffic over
the limited bandwidth wireless channels and this may also drain a lot of power from the
devices. A distributed architecture for data mining is likely to reduce the communication
load and also reduce the battery power more evenly across the different nodes in the sensor
network. One can easily imagine similar needs for distributed computation of data mining
primitives in ad hoc wireless networks of mobile devices like PDAs, cellphones, and wearable
computers. Potential applications include personalization, collaborative process monitoring,
intrusion detection over ad hoc wireless networks. We need data mining architectures that
pay careful attention to the distributed resources of data, computing, and communication in
order to consume them in a near optimal fashion. Distributed data mining (DDM) considers
data mining in this broader context. As shown in Figure 1 (Right), the objective of DDM is
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Figure 1. A data warehouse architecture (Left). Distributed Data Mining Framework (Right).

to perform the data mining operations based on the type and availability of the distributed
resources. It may choose to download the data sets to a single site and perform the data
mining operations at a central location. However, that decision in DDM should be based
on the properties of the computing, storage, and communication capabilities. This is in
contrast with the traditional centralized data mining methodology where collection of data
at a single location prior to analysis is an invariant characteristic.

The wireless domain is not the only example. In fact, most of the applications that
deal with time-critical distributed data are likely to benefit by paying careful attention to
the distributed resources for computation, storage, and the cost of communication. The
world wide web is a very good example. It contains distributed data and computing re-
sources. An increasing number of databases (e.g. weather databases, oceanographic data
at www.noaa.gov), and data streams (e.g. financial data at www.nasdaq.com, emerging
disease information at www.cdc.gov) are coming online; many of them change frequently.
It is easy to think of many applications that require regular monitoring of these diverse and
distributed sources of data. A distributed approach to analyze this data is likely to be more
scalable and practical particularly when the application involves a large number of data
sites. The distributed approach may also find applications in mining remote sensing and
astronomy data. For example, the NASA Earth Observing System (EOS), a data collector
for a number of satellites, holds 1450 data sets that are stored, managed, and distributed
by the different EOS Data and Information System (EOSDIS) sites that are geographically
located all over the USA. A pair of Terra spacecraft and Landsat 7 alone produces about
350 GB of EOSDIS data per day. An online mining system for EOS data streams may
not scale if we use a centralized data mining architecture. Mining the distributed EOS
repositories and associating the information with other existing environmental databases
may benefit from DDM. In astronomy, the size of telescope image archives have already
reached the terabyte range and they continue to increase very fast as information is col-
lected for new all-sky surveyors such as the GSC-II (McLean et al., 1998) and the Sloan
Digital Survey (Szalay, 1998). DDM may offer a practical scalable solution for mining these
large distributed astronomy data repositories.
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DDM may also be useful in environments with multiple compute nodes connected
over high speed networks. Even if the data can be quickly centralized using the relatively
fast network, proper balancing of computational load among a cluster of nodes may require
a distributed approach. The privacy issue is playing an increasingly important role in the
emerging data mining applications. If a consortium of different banks wants to collaborate
for detecting frauds then a centralized data mining system may require collection of all the
data from every bank in a single location. However, this is not necessarily true if DDM is
our choice of technology. DDM systems may be able to learn models from distributed data
without exchanging the raw data. This may allow both detection of fraud and preserving
the privacy of every Bank’s customer transaction data.

This paper presents a brief overview of the DDM algorithms, systems, applications,
and the emerging research directions. The structure of the paper is organized as follows. We
first present the related research of DDM and illustrate data distribution scenarios. Then
DDM algorithms are reviewed. Subsequently, the architectural issues in DDM systems and
future directions are discussed.

Related Research

DDM deals with distributed data analysis algorithms and distributed systems. There
are several other fields that deal with these issues at least partially. This section discusses
this connection between DDM and a few other related fields.

Many DDM systems adopt the Multi-Agent System (MAS) architecture. MAS finds
its root in the Distributed Artificial Intelligence (DAI), which investigates Al-based search,
learning, planning and other problem-solving techniques for distributed environments. Early
research is in this area includes blackboard systems (Nii, 1986), classifier systems (Holland,
1975), production systems (Newell & Simon, 1963), connectionism (Rumelhart & McClel-
land, 1986), Minsky’s Society of Mind concept (Minsky, 1985), Cooperative problem solving
(Durfee, Lesser, & Corkill, 1989), Actor framework (Agha, 1986), the Contract Net protocol
(Smith, 1980; Davies & Smith, 1983). The emergence of distributed environments, such as
the Internet and e-commerce have catalyzed many applications of DAI/MAS technology and
extensive literature on multi-agent communication (Finin, Labrou, & Mayfield, 1997), nego-
tiation (Rosenschein, 1994), search (Lander & Lesser, 1992), architectural issues (Woolridge
& Jenneings, 1995), and learning (Sen, 1997) is now available. While most of these topics
are quite relevant to the DDM, DAI/MAS learning and architectural issues are probably
the most relevant topics. The existing literature on multi-agent learning does not typically
address the issues involved with large scale distributed data analysis. In DAI/MAS the fo-
cus is more on learning control knowledge (Byrne & Edwards, 1995; Carmel & Markovitch,
1995; Joshi, 1995; Sen & Sekaran, 1995), adaptive behavior(Mor, Goldman, & Rosenschein,
1995; Sandholm & Crites, 1995; Wei}, 1995), and other related issues. However, several
efforts reported in the DAI/MAS literature do consider data intensive applications such as
information discovery in the World Wide Web (Lesser et al., 1998; Menczer & Belew, 1998;
Moukas, 1996).

High performance parallel computing environments are often used for quick access
and manipulation of such data sets. Therefore, it makes sense to exploit such computing
environments for scaling up the data mining process. Parallel data mining (PDM) (Alsabti,
Ranka, & Singh, 1997; Freitas & Lavington, 1998; Kamath & Musick, 2000; Zaki, 1996,
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1997; Parthasarathy, Zaki, Ogihara, & Li, 2001; Han, Karypis, & Kumar, 1997; Joshi, Han,
Karypis, & Kumar, 2000) does this. Although PDM often assumes the presence of high
speed network connections among the computing nodes, the development of DDM has also
been influenced by the PDM literature.

Data fusion refers to seamless integration of data from disparate sources. Among the
extensive literature on data fusion, the distributed approach of multi-sensor data fusion
is worth considering. Within this approach, each sensor makes a local decision. All local
decisions are then combined at a fusion center to produce a global decision. The objective
of this approach is to determine the optimum local and global decision rules that maximize
the probability of signal detection. Typically the decision requires hypothesis testing tech-
niques. The Bayesian (Hoballah & Varshney, 1989) and the Neyman-Pearson (Viswanathan
& Varshney, 1997) criteria are often used for this purpose. The following section presents
data distribution scenarios and steps required to prepare data for DDM.

Data Distribution and Pre-Processing

Identifying how the data is distributed is the first step in developing a distributed
data mining solution. Most of the DDM algorithms are designed for the relational data
model (tabular form). That is why in this chapter we shall restrict our attention to the
relational model and discuss different data distribution scenarios within the context of the
data schema.

Homogeneous/Heterogeneous Data Scenarios

In a relational database the schema provides the information regarding the relations
stored. Information regarding different schemata from different tables is essential for iden-
tifying their mutual dependencies and therefore the choice of data mining algorithms. Most
of the existing DDM work considers homogeneous schemata across different sites. Homo-
geneous schemata contain the same set of attributes across distributed data sites. This
distributed data model usually occurs in the same organization (e.g, Wal-Mart chains) or
across similar domains. Some DDM algorithms consider heterogeneous schemata that de-
fine different sets of attributes across distributed databases. However, the heterogeneous
schemata are usually restricted to a simple scenario where every participating table shares
a common key column that links corresponding rows across the tables.

Preparing the data is an important step in data mining and DDM is no exception.
Data pre-processing in DDM must work in a distributed fashion. Many of the standard
centralized data pre-processing techniques can be directly applied without downloading all
the data sets to a single site. Some of these techniques are briefly discussed in the following
section.

Data Pre-processing

Standardizing data sets across different sites is an important process in DDM. The
first step is to exchange the database schema information and the meta-data. Typically
this involves low communication overhead. Additional information regarding the physical
meaning of features, measurement units, and other domain specific information are often
exchanged for better understanding of the distributed data sources.
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If the data sites are heterogeneous, key-Association is a necessary step. The primary
purpose of the key-Association step is to select a set of keys for associating the data across
different sites. The schema information and the physical meaning of the features can be
used for linking the distributed data sets. If a precise key is not available we may need
to use clustering techniques to create approximate keys. Usually in a spatial database the
coordinate location can serve as a key. In a temporal database the time stamp of the
observation may serve the same purpose.

Data normalizations are often necessary for avoiding undesirable scaling effects. The
need for data normalization depends on the application and the data analysis algorithm.
For example, normalization may be critical in nearest neighbor classification for assigning
uniform weight to all the features. Some of the popular normalization techniques are:

1. Decimal scaling: This technique works by moving the decimal point. It is also
applicable to both homogeneous and heterogeneous DDM.

2. Standard deviation scaling: For any given feature value z[i] this technique con-
structs the normalized feature z'[i] where z'[i] = m[il,—;“’”; fy and oy are the mean and the
standard deviation of z[i]. In case of homogeneous DDM, the computation of overall mean
and standard deviation can be distributed among the different sites in a straight forward
manner. In case of homogeneous DDM this computation is strictly local.

Missing data is a real problem in most applications. Most of the simple techniques
like replacement by (1) class labels, (2) some constant value, and (3) expected value may
or may not work depending on the application domain. Usually they bias the data set and
may result in poor data mining performance. However, if desired these techniques can be
used directly in a DDM application. More involved techniques for handling missing data
require predictive modeling of data. Typically decision trees, Bayesian algorithms, and
other inductive models are learned for predicting the missing values. The following section
considers related fields of DDM.

Distributed Data Mining Algorithms

Most DDM algorithms are designed upon the potential parallelism they can apply
over the given distributed data. Typically the same algorithm operates on each distributed
data site concurrently, producing one local model per site. Subsequently all local models
are aggregated to produce the final model. In essence, the success of DDM algorithms lies
in the aggregation. Each local model represents locally coherent patterns, but lacks details
that may be required to induce globally meaningful knowledge. For this reason, many DDM
algorithms require a centralization of a subset of local data to compensate it. Therefore,
minimum data transfer is another key attribute of the successful DDM algorithm. In this
section, we present a literature review on DDM algorithms.

Distributed Classifier Learning

Most distributed classifiers have their foundations in ensemble learning (Dietterich,
2000; Opitz & Maclin, 1999; Bauer & Kohavi, 1999; Merz & Pazzani, 1999). The ensem-
ble approach has been applied in various domains to increase the classification accuracy
of predictive models. It produces multiple models (base classifiers) — typically from “ho-
mogeneous” data subsets — and combines them to enhance accuracy. Typically, voting



DISTRIBUTED DATA MINING: ALGORITHMS, SYSTEMS, AND APPLICATIONS 6

Meta- level

Data

Data at Site A Data at Site B

Figure 2. Meta Learning from distributed homogeneous data sites.

(weighted or unweighted) schemes are employed to aggregate base classifiers.

The ensemble approach is directly applicable to the distributed scenario. Different
models can be generated at different sites and ultimately aggregated using ensemble com-
bining strategies. Fan, et al. (Fan, Stolfo, & Zhang, 1999) discussed an AdaBoost-based
ensemble approach in this perspective. Breiman (Breiman, 1999) considered Arcing as a
mean to aggregate multiple blocks of data, especially in on-line setting. An experimen-
tal investigation of Stacking (Wolpert, 1992) for combining multiple models was reported
elsewhere (Ting & Low, 1997).

Homogeneous Distributed Classifiers. One notable ensemble approach to learn dis-
tributed classifier is meta-learning framework (Chan & Stolfo, 1993b, 1993a, 1998). It offers
a way to mine classifiers from homogeneous, distributed data. In this approach, supervised
learning techniques are first used to learn classifiers at local data sites; then meta-level
classifiers are learned from a data set generated using the locally learned concepts. The
meta-level learning may be applied recursively, producing a hierarchy of meta-classifiers.
Java Agent for Meta-learning is reported elsewhere (Stolfo et al., 1997; Lee, Stolfo, & Mok,
1999). Meta-learning follows three main steps:

1. Generate base classifiers at each site using a classifier learning algorithms.

2. Collect the base classifiers at a central site. Produce meta-level data from a sepa-
rate validation set and predictions generated by the base classifier on it.

3. Generate the final classifier (meta-classifier) from meta-level data.

Learning at the meta-level can work in many different ways. For example, we may
generate a new dataset using the locally learned classifiers. We may also move some of the
original training data from the local sites, blend it with the data artificially generated by
the local classifiers, and then run any learning algorithm to learn the meta-level classifiers.
We may also decide the output of the meta-classifier by counting votes cast by different
base classifiers. The following discourse notes two common techniques for meta-learning
from the output of the base classifiers are briefly described in the following.

1. The Arbiter Scheme: This scheme makes use of a special classifier, called arbiter,
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for deciding the final class prediction for a given feature vector. The arbiter is learned
using a learning algorithm. Classification is performed based on the class predicted by the
majority of the base classifiers and the arbiter. If there is a tie, the arbiter’s prediction gets
the preference.

2. The Combiner Scheme: This combiner scheme offers an alternate way to perform
meta- learning. The combiner classifier is learned in either of the following ways. One
way is to learn the combiner from the correct classification and the base classifier outputs.
Another possibility is to learn the combiner from the data comprised of the feature vector
of the training examples, the correct classifications, and the base classifier outputs.

Either of the above two techniques can be iteratively used resulting in a hierarchy of meta-
classifiers. Figure 2 shows the overall architecture of the meta learning framework.

Meta-learning illustrates two characteristics of DDM algorithms — parallelism and
reduced communication. All base classifiers are generated in parallel and collected at the
central location along with the validation set, where the communication overhead is negli-
gible compared to the transfer of entire raw data.

Distributed Learning with Knowledge Probing (DLKP) (Guo & Sutiwaraphun, 2000)
is another meta-learning based technique to produce a global model by aggregating local
models. Knowledge probing was initially proposed to extract descriptive knowledge from
a black box model, such as neural network. The key idea is to probe a descriptive model
from data whose class values are assigned by a black box model. DLKP is an extension of
knowledge probing to a homogeneous distributed data setting. It works as follows:

1. Generate base classifiers at each site using off-the-shelf classifier learning algo-
rithms.

2. Select a set of unlabeled data for the probing set.

3. Prepare probing data set by combining predictions from all base classifiers.

4. Learn a final model directly from the probing set.

In step 3, a probing data set can be generated using various methods such as uniform
voting, trained predictor, likelihood combination, etc. The main difference between meta-
learning and DLKP is the second learning phase. In meta-learning, special type of classifiers
(meta-classifier) are trained to combine or arbitrate the outputs of the local models. The
final classifier includes both mete-classifiers and local (base) models. In contrast, DLKP
produces a final descriptive model that is learned from the probing data set as its final
classifier.

Gorodetski and his colleagues (Gorodetski, Skormin, Popyack, & Karsaev, 2000) ad-
dressed distributed learning in data fusion systems within the meta-learning paradigm. For
base classifiers, they developed a technique that learns a wide class of rules from arbitrary
formulas of first order logic. This is particularly applied as a visual technique to learn rules
from databases. To overcome deficiencies of local learning (base classifiers), they adopted
a randomized approach to select subsets of attributes and cases that are required to learn
rules from distributed data, which results in a meta-level classifier.

Heterogeneous Distributed Classifiers. The ensemble learning based approach offers
techniques for mining from homogeneous data sites. However, it is not straightforward to
apply to heterogeneous distributed data. In heterogeneous distributed data, we observe
the incomplete knowledge about the complete data set. Different local models represent
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disjoint regions of the problem and DDM has to develop a global data model, associations,
and other patterns with only limited access to the features observed at non-local sites. For
this reason, it is generally believed that mining of heterogeneous distributed data is more
challenging.

The issues in mining from heterogeneous data is discussed in (Provost & Buchanan,
1995) from the perspective of inductive bias. This work notes that such heterogeneous
partitioning of the feature space can be addressed by decomposing the problem into smaller
sub-problems when the problem is site-wise decomposable. However, this approach is too
restrictive to handle problems that involve inter-site correlations.

The WoRLD system (Aronis, Kulluri, Provost, & Buchanan, 1997) addressed the
problem of concept learning from heterogeneous sites by developing an “activation spread-
ing” approach. This approach first computes the cardinal distribution of the feature values
in the individual data sets. Next, this distribution information is propagated across differ-
ent sites. Features with strong correlations to the concept space are identified based on the
first order statistics of the cardinal distribution. Since the technique is based on the first
order statistical approximation of the underlying distribution, it may not be appropriate
for data mining problems where concept learning requires higher order statistics.

An ensemble approach to combine heterogeneous local classifiers is proposed in
(Tumer & Ghosh, 2000). It especially uses an order statistics-based technique for com-
bining high variance models generated from heterogeneous sites. The technique works by
ordering the predictions of different classifiers and using them in an appropriate manner.
The paper gives several methods, including selecting an appropriate order statistic as the
classifier and taking a linear combination of some of the order statistics (“spread” and
“trimmed mean” classifiers). It also analyzes the error of such a classifier in various situa-
tions. Although these techniques are more robust than other ensemble based models, they
do not consider global correlations.

Park and his colleagues (Park et al., 2002) note that any inter-site pattern cannot
be captured by the aggregation of heterogeneous local classifiers. To detect such patterns,
they first identify a subset of data that any local classifier can not classify with a high
confidence. Identified subset is merged in a central site and another classifier (central
classifier) is constructed from it. When a combination of local classifiers can not classify
an unseen data with a high confidence, the central classifier is used instead. This approach
exhibits a better performance than a simple aggregation of local models. However, its
performance is sensitive to the sample size (or, confidence threshold).

Collective Data Mining

Kargupta and his colleagues considered the Collective framework to address data
analysis for heterogeneous environments and proposed the Collective Data Mining (CDM)
framework for predictive data modeling. CDM is a functionally complete framework for
inducing any pattern function in a distributed fashion that has roots in theory of com-
munications, machine learning, statistics, and distributed databases. Instead of combining
incomplete local models, it seeks to find globally meaningful pieces of information from each
local site. In other words, it obtains local building blocks that directly constitute the global
model. Given a set of labeled training data, CDM learns a function that approximates it.
The foundation of CDM is based on the observation that any function can be represented in
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a distributed fashion using an appropriate set of basis functions. When the basis functions
are orthonormal, the local analysis produce correct and useful results that can be directly
used as a component of the global model without any loss of accuracy. Since data modeling
using canonical, non-orthogonal basis functions does not appear to be suitable in a dis-
tributed environment, CDM does not directly learn data models in popular representations
like polynomial, logistic functions, decision tree, and feed-forward neural-nets. Instead, it
first learns the spectrum of these models in some appropriately chosen orthonormal basis
space, guarantees the correctness of the generated model, and then converts the model in or-
thonormal representation to the desired forms. The main steps of CDM can be summarized
as follows:

1. Generate approximate orthonormal basis coefficients at each local site;

2. Move an appropriately chosen sample of the data sets from each site to a single site
and generate the approximate basis coefficients corresponding to non-linear cross terms;

3. Combine the local models, transform the model into the user described canonical

representation, and output the model.
Here non-linear terms represent a set of coefficients (or patterns) that can not be determined
at a local site. In essence, the performance of a CDM model depends on the quality
of estimated cross-terms. Typically CDM requires an exchange of a small sample that
is often negligible compared to entire data. For example, let us consider the Collective
Principal Component Analysis (CPCA) algorithm (Kargupta, Huang, Krishnamrthy, Park,
& Wang, 2000; Kargupta, Huang, S., & Johnson, 2001) that performs distributed PCA.
The followings are main steps of CPCA.

1. Perform local PCA at each site; select dominant eigenvectors and project the data
along them.

2. Send a sample of the projected data along with the eigenvectors.

3. Combine the projected data from all the sites.

4. Perform PCA on the global data set, identify the dominant eigenvectors and trans-
form them back to the original space.

To compute exact Principal Components (PCs), in principal, we need to reconstruct
the original data from all projected local samples. However, since the PCA is invariant to
linear transformation, the global PCs are computed directly from projected samples. The
size of samples is a lot smaller than that of the original data. In other words, we can exploit
the dimensionality reduction already achieved at each of the local sites.

Kargupta, et. al. (Kargupta et al., 2001) proposed a distributed clustering algorithm
based on CPCA. The proposed work first apply the given off-the-shelve clustering algorithm
to the local PCs. Then the global PCs are obtained from an appropriate data subset
(projected) that is union of all representative points from local clusters. Each site projects
local data on the global PCs and again obtain new clusters, which are subsequently combined
at the central site.

CDM also shows that with an appropriate basis, multivariate polynomial regression
can be performed from heterogeneous distributed data. The collective multivariate regres-
sion (Hershberger & Kargupta, 2001) chooses wavelet basis to represent local data. For each
feature in data, wavelet transformation is applied and significant coeflicients are centralized.
Then the regression is performed directly on the wavelet coefficients. This approach has a
significant advantage in communication reduction since a set of wavelet coefficients usually
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represents raw data in a highly compressed format.

The CDM framework is also extended to other areas like Bayesian Network (BN)
learning (Chen, Krishnamoorthy, & Kargupta, 2001, 2002). Within collective Bayesian
network learning strategy, each site compute a BN and identifies the observations that
are most likely to be evidence of coupling between local and non-local variables. These
observations are used to compute a non-local BN consisting of links between variables
across two or more sites. The final collective BN is obtained by combining the local models
with the links discovered at the central site.

Other extensions of the CDM framework include distributed decision tree construction
(Park, Ayyagari, & Kargupta, 2001), and collective hierarchical clustering (Johnson &
Kargupta, 1999).

Distributed Association Rule Mining

Two main approaches to distributed association rule mining are Count Distribution
(CD) and Data Distribution (DD). CD especially considers the case when the data is par-
titioned homogeneously into several data sites. Each data site computes support counts
for the same candidate itemsets independently, which are then gathered at a central site to
determine the large itemsets for the next round. In contrast, DD focuses on maximizing
parallelism; it distributes candidate itemsets so that each site computes a disjoint subset.
It requires the exchange of data partitions, therefore only viable for machines with high
speed communications.

Agrawal and Shafer (Agrawal & Shafer, 1996) introduce a parallel version of Apriori.
It requires O(|C| - n) communication overhead for each phase, where |C| and n are the size
of candidate itemset C' and the number of data sites, respectively. The Fast Distributed
Mining (FDM) algorithm (Cheung, Ng, Fu, & Fu, 1996) reduces the communication cost
to O(|Cp| - n), where C, is the potential candidate itemset (or, the union of all locally large
itemsets). The FDM notes that any globally large itemset should be identified locally large
at one or more sites. However, this approach does not scale well in n, especially when the
distributed data are skewed in distribution. Schuster and Wolff (Schuster & Wolff, 2001)
propose the Distributed Decision Minier (DDM) algorithm that reduces communication
overhead to O(Prgpope - |C| - 1), where Prgpope is the probability that a candidate itemset
has support greater than the given threshold. DDM differs from FDM in that a locally large
itemset is not identified a globally large itemset until it is verified by exchange of messages.

Jensen and Sopakar (Jensen & Soparkar, 2000) propose an association rule mining
algorithm from heterogeneous relational tables. It particularly considers mining from star
schema of n primary tables T1, - - - , T, (with one primary key) and one relationship table 7.
They assume T, contains all foreign keys to each T;, and exploit the foreign key relationships
to develop a decentralized algorithm. Since each foreign key is a unique primary key in a
corresponding table, explicit join operation can be avoided to compute support of an itemset.

Distributed Clustering

Most distributed clustering algorithms have their foundations in parallel computing,
and are thus applicable in homogeneous scenarios. They focus on applying center-based
clustering algorithms, such as K-Means, K-Harmonic Means and EM, in a parallel fashion
(Dhillon & Modha, 1999; Zhang, Hsu, & Forman, 2000; Sayal & Scheuermann, 2000). Two
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approaches exist in this category. The first approach approximates the underlying distance
measure by aggregation and the second provides the exact measure by data broadcast-
ing. The approximation approach is sensitive to aggregation ratio and the exact approach
involves heavy communication overheads.

Forman and Zhang (Forman & Zhang, 2000) propose a center-based distributed clus-
tering algorithm that only requires the exchange of sufficient statistics, which is essentially
an extension of their earlier parallel clustering work (Zhang et al., 2000). The Recursive
Agglomeration of Clustering Hierarchies by Encircling Tactic (RACHET) (Samatova, Os-
trouchov, Geist, & Melechko, 2002) is also based on the exchange of sufficient statistics. It
particularly collects local dendograms that are merged into a global dendogram. Each local
dendogram contains descriptive statistics about the local cluster centroid that is sufficient
for the global aggregation. However, both approaches need to iterate until the sufficient
statistics converge or the desired quality is achieved.

Parthasarathy and Ogihara (Parthasarathy & Ogihara, 2000) note that the primary
problem with distributed clustering is to provide a suitable distance metric. They define
one such metric as based on the association rule. However, this approach is still restricted to
homogeneous tables. In contrast, McClean and her colleagues (McClean, Scotney, & Greer,
2000) consider the clustering of heterogeneous distributed databases. They particularly
focus on clustering heterogeneous datacubes comprised of attributes from different domains.
They utilize Euclidean distance and Kullback-Leiber information divergence to measure
differences between aggregates.

The PADMA system (Kargupta, Hamzaoglu, Stafford, Hanagandi, & Buescher, 1996;
Kargupta, Hamzaoglu, & Stafford, 1997) is an application system that employs a distributed
clustering algorithm. It is a document analysis tool from homogeneous data sites, where
clustering is aided by relevance feedback-based supervised learning techniques.

Other DDM algorithms

A distributed cooperative Bayesian learning algorithm was developed in (Yamanishi,
1997). This technique considers homogeneous data sets. In this approach different Bayesian
agents estimate the parameters of the target distribution, and a population learner combines
the outputs of those Bayesian models. A “fragmented approach” to mine classifiers from
distributed data sources is suggested by (Cho & Wiithrich, April, 1998). In this method, a
single, good, rule is generated in each distributed data source. These rules are then ranked
using some criterion and a number of the top ranked rules are selected to form the rule set.
In (Lam & Segre, 1997) the authors report a technique to automatically produce a Bayesian
belief network from knowledge discovered using a distributed approach. Additional work on
DDM design optimization (Turinsky & Grossman, 2000), classifier pruning (Prodromidis
& Stolfo, 2000), measuring the quality of distributed data sources (Wiithrich, Cho, Pun,
& Zhang, 2000), and problem decomposition and local model selection in DDM (Pokrajac,
Fiez, Obradovic, Kwek, & Obradovic, 1999), are also reported.

Distributed Data Mining Systems

A DDM system is inevitably a very complex entity that is comprised of many compo-
nents; mining algorithms, communication subsystem, resource management, task schedul-
ing, user interfaces, etc. It should provide efficient access to both distributed data and
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computing resources, monitor the entire mining procedure, and present results to users in
appropriate formats. A successful DDM system is also flexible enough to adapt to vari-
ous situations. It should dynamically identify the optimal mining strategy under the given
resources and provide an easy way to update its components. In this section, we discuss
various aspects of DDM systems. In particular, architectural and communication issues are
examined.

Architectural Issues

Many organizations have a cluster of high-performance workstations (e.g, SMPs) con-
nected by a network link. Such a cluster can be a cost effective resource for scalable data
mining. However, Parthasarathy (Parthasarathy, 2001) notes that performance in such an
environment is largely affected by contention for processors, network link and I/O resources.
He emphasized that TCP/IP protocol is inherently designed to avoid contention, thus re-
ducing communication rates drastically even with a small amount of resource competition.
As an approach to deal with such a problem, he suggests guarding the allocation of resources
and making applications adapt to resource constraints. The Three-tier client/server archi-
tecture is one approach for efficient resource management. The Kensington system (Chat-
tratichat et al., 1999), Intelliminer (Parthasarathy & Subramonian, 2000) belong to this
category. For example, the Kensington system is divided into client, application server and
third-tier server. The client module provides interactive creation of data mining tasks, visu-
alization of data and models and sampled data, while the application server is responsible for
user authentication, access control, task coordination and data management. The third-tier
server provides high performance data mining services located in high-end computing facil-
ities that include parallel systems. Particularly, it is placed in proximity to the databases
to increase the performance. Figure 3 shows the Intelliminer developed by Parthasarathy
and Subramonian (Parthasarathy & Subramonian, 2000). Intelliminer is most specifically
designed to support distributed doall loop primitive over clusters of SMP workstations. The
doall loop is one where each iteration is independent (Wolfe, 1995).
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The agent-based model is another approach to address scalable mining over dis-
tributed data of large sizes (See figure 4). Although there are many different types of
software agents (Wooldridge & Jennings, 1995), they are typically considered to be au-
tonomous intelligent softwares. All of the agent-based DDM systems employ one or more
agents per data site. These agents are responsible for analyzing local data and communicate
with other agents during the mining stage. A globally coherent knowledge is synthesized
via exchanges of locally mined knowledge. However, in an agent-based model, an efficient
control over remote resources is inherently difficult. In addition, without dedicated high-
performance compute servers, the optimal mining performance is often not guaranteed.
For this reason, most agent-based systems require a supervisory agent that facilitates the
entire mining process. This agent, sometime called a facilitator, controls the behavior of
each local agent. Java Agents for Meta-learning (JAM) and the BODHI system follow this
approach. In JAM, for example, agents operating on a local database produce local clas-
sifiers. These local classifiers are then imported to a data site where they are combined
using meta-learning agents. Both BODHI and JAM are implemented with Java, thus re-
alizing a platform independent distributed data mining environment. By adopting loosely
synchronized communication protocol among data sites, they seek to achieve asynchronous
distributed data mining. BODHI also notes the importance of mobile agent technology.
As all agents are extensions of a basic agent object, the BODHI system is easily capa-
ble of transferring an agent from one site to another, along with the agent’s environment,
configuration, current state, and learned knowledge.

The InfoSleuth project (Martin, Unruh, & Urban, 1999) at the Microelectronics and
Computer Corporation (MCC) is agent technology-based distributed infrastructure. It im-
plements various types of agents that facilitate information gathering, and analysis and event
notification. The InfoSleuth is designed to provide an integrated solution to information-
related problems that are tailored for user-specified knowledge discovery. It especially sup-
ports continuous query subscriptions that instruct a targeted agent to continuously monitor
and update its response to the query if any change is detected from an information source.
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The most notable aspect of the InfoSleuth system is its support of composite event detec-
tion. Events in the InfoSleuth define both the changes and analysis observations of data that
are transferred from various heterogeneous data sources. Data change events and data anal-
ysis events are combined to create higher-level events called composite events. InfoSleuth
provides the composite event language that is adopted from active database rule language.

Distributed Knowledge Networks (DKN) (Honavar, Miller, & Wong, 1998) is another
distributed data mining framework that is based on agent technology. DKN emphasizes the
important role of mobile agents in situations where the transfer of data from private source
becomes infeasible. DKN also proposes a detailed solution to extract and integrate data
from heterogeneous sources that consist of different data types and semantic structures. To
facilitate interoperability among heterogeneous databases, it adopts an object-oriented view
that creates a uniform interface for multidatabases. An object-oriented view helps to hide
the heterogeneity and distributed nature of mutlidatabases. Rooted in knowledge-based
agent software, DKN also implements an object-oriented data warehouse.

Communication Models in DDM Systems

Architectural requirements for efficient data communication for a wide area network
are explored in (Grossman et al., 1998; Turinsky & Grossman, 2000), and most often con-
sider data transfer costs in finding an optimal mining process. In a distributed data/compute
nodes environment, they formulate the overall cost function for data transfer strategies. A
strategy denotes the amount of data transfer between every pair of compute nodes within
the environment. The optimal strategy is one that minimizes the cost function with respect
to the given error level. The problem is essentially a convex linear programming problem,
and the OPTimal strategy Data and Model Partition strategy (OPTDMP) is proposed as
a solution. However, their work is restricted to identify the amount of data to transfer. It
does not address any specific portion of data to be transferred, and thus is inapplicable to
the heterogeneous case.

Papyrus (Grossman, Bailey, Sivakumar, & Turinsky, 1999; Grossman et al., 1999)
is designed to find the optimal mining strategy over clusters of workstations connected by
either a high-speed network (super-clusters) or a commodity network (meta-clusters). One
such environment is shown in Figure 5. Papyrus supports three strategies: Move Results
(MR), Move Models (MM) and Move Data (MD), as well as combinations of these strategies.

Costing infrastructure is also discussed in the DDM architecture by Krishnaswamy, et.
el. (Krishnaswamy, Zaslavsky, & Loke, 2000). He notes that DDM evolves to embrace the
e-commerce environment, especially the paradigm of Application Service Providers (ASP).
ASP technology allows small organizations or individuals to access a pool of commercial
software on demand (Sarawagi & Nagaralu, 2000). The proposed architecture demonstrates
how DDM can be integrated into ASP in an e-commerce environment. Krishnaswamy
emphasizes that the primary issue under such highly inter-domain operational environments
is how to set up a standard by which to bill each user based on estimated costs and response
times.

Components Maintenance

Expandability of components is one key feature of the successful DDM systems. There
are far too many different approaches and algorithms for data mining to incorporate them
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Figure 5. Cluster of workstations in Papyrus.

all into a single system, and more are constantly being developed. Therefore, a DDM
system must be able to incorporate new algorithms and methods as needed. For this
purpose, BODHI system offers APIs support for creating custom-based agents. Users can
easily design and insert their own distributed mining applications with the APIs. The
Kensington system adopts Software Component Architecture. Software components are
software blocks that can be easily combined into a more complex ensemble. In particular,
the application server consists of four Enterprise JavaBeans (EJB) classes. Each EJB class
provides services to clients that can be accessed through Remote Method Invocation (RMI)
calls. High performance software modules in the third-tier server are also components that
are integrated via CORBA, RMI or JNI.

The Parallel and Distributed Data Mining Application Suite (PaDDMAS) (Rana,
Walker, li, Lynden, & Ward, 2000) is another component based system for developing dis-
tributed data mining applications. The overall architecture of PADDMAS resembles the
Kensington system in the sense that it identifies analysis algorithms as object components
implemented as either Java or CORBA objects. It also provides a tool set that aids users
in creating a distributed data mining application by combining existing data mining com-
ponents using a dataflow approach. However, PADDMAS takes one step further to allow
easy insertion of custom-based components. To ensure uniformity across components, each
component in PADDMAS has its interface specification written in XML. A user supplied
component must also have its interfaces defined in XML. PaDDMAS allows a connection
of two components only if their interfaces are compatible. A markup for data mining al-
gorithms has emerged from the Predictive Model Markup Language (PMML) (Grossman
et al., 1999). PMML was designed to encode and exchange predictive data mining analysis
components like C4.5 (Quinlan, 1993). In that sense, the markup used in PADDMAS can be
considered an attempt to embrace both analysis and data management components. Also,
the emphasis of PaDDMAS is on encoding interfaces rather than encoding data structure
of components.
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Future Directions

Current data mining products are primarily designed for off-line decision support
applications. Real-time on-line decision support is a natural extension and it is likely to
be one of the primary target applications for the next generation of data mining products.
This will require a data mining technology that pays careful attention to the distribution
of computing, communication, and storage resources in the environment. Distributed data
mining is an ideal candidate for such applications. Several organizations are currently
working toward DDM applications in different areas including financial data mining from
mobile devices (Kargupta et al., 2002), sensor-network-based distributed database, (Bonnet,
Gehrke, & Seshadri, 2001), car-health diagnostics analysis (Wirth, Borth, & Hipp, 2001).

However, DDM still has several major open issues that need to be addressed. First
of all, many real-life applications deal with data distribution scenarios that are neither
homogeneous nor heterogeneous in their pristine sense described in an earlier section. We
may have heterogeneous data sites that share more than one column. We may not have
any well defined key that links multiple rows across the sites. We need more algorithms for
the heterogeneous scenarios. Also distributed data pre-processing based on metadata needs
further explorations.

DDM frequently requires exchange of data mining models among the participating
sites. Therefore, seamless and transparent realization of DDM technology will require stan-
dardized schemes to represent and exchange models. The Predictive Model Markup Lan-
guage (PMML), Cross-Industry Standard Process Model for Data Mining (CRISP-DM),
other related efforts are likely to be very useful for the development of DDM.

Web search sites like Yahoo and Google are likely to start offering data mining services
for analyzing the data they host (Sarawagi & Nagaralu, 2000). Combining the data mining
models from such sites will be an interesting DDM application. Since the sites may have
partially shared domain, no explicit keys exist linking the data, DDM for this application
is also likely to be very challenging.
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