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Abstract. This paper describes a novel approach to detect correlation
from data streams in the context of MobiMine — an experimental mo-
bile data mining system. It presents a brief description of the MobiMine
and identifies the problem of detecting dependencies among stocks from
incrementally observed financial data streams. This is a non-trivial prob-
lem since the stock-market data is inherently noisy and small incremental
volumes of data makes the estimation process more vulnerable to noise.
This paper presents EDS, a technique to estimate the correlation matrix
from data streams by exploiting some properties of the distribution of
eigenvalues for random matrices. It separates the “information” from the
“noise” by comparing the eigen-spectrum generated from the observed
data with that of random matrices. The comparison immediately leads
to a decomposition of the covariance matrix into two matrices: one cap-
turing the “noise” and the other capturing useful “information.” The
paper also presents experimental results using Nasdaq 100 stock data.

1 Introduction

Mobile computing devices like PDAs, cell-phones, wearables, and smart cards
are playing an increasingly important role in our daily life. The emergence of
powerful mobile devices with reasonable computing and storage capacity is ush-
ering an era of advanced data and computationally intensive mobile applications.
Monitoring and mining time-critical data streams in a ubiquitous fashion is one
such possibility. Financial data monitoring, process control, regulation compli-
ance, and security applications are some possible domains where such ubiquitous
mining is very appealing.

This paper considers the problem of detecting dependencies among a set of
features from financial data streams monitored by a distributed mobile data min-
ing system called the MobiMine. MobiMine is not a market forecasting system.
It is neither a traditional system for stock selection and portfolio management.
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Instead it is designed for drawing the attention of the user to time critical “in-
teresting” emerging characteristics in the stock market.

This paper explores a particular module of the MobiMine that tries to detect
statistical dependencies among a set of stocks. At a given moment the system
maintains a relevant amount of historical statistics and updates that based on
the incoming block of data. Since the data block is usually noisy, the statistics
collected from any given block should be carefully filtered and then presented to
the user. This paper offers a technique for extracting useful information from in-
dividual data blocks in a data stream scenario based on some well-known results
from the theory of randomized matrices. It presents a technique to extract sig-
nificant Eigen-states from Data Streams (EDS) where the data blocks are noisy.
The technique can also be easily applied to feature selection, feature construc-
tion, clustering, and regression from data streams. More generally, EDS offers a
way to filter the observed data, so that any data mining technique (exploratory
or otherwise) can later be applied on the filtered data. In the context of financial
data streams, any technique for the analysing, forecasting, and monitoring stock
prices can be applied on the filtered data. As such, the EDS by itself is not a
market forecasting tool.

The technical approach of the proposed work is based on the observation
that the distribution of eigenvalues of random matrices [1] exhibit some well
known characteristics. The basic idea is to compare a “random” phenomenon
with the behavior of the incoming data from the stream in the eigen space and
note the differences. This results in a decomposition of the covariance matrix:
one capturing the “noise” and the other capturing useful “information.” Note
that the terms “noise” and “information” are used in a generic sense. In the
context of financial data, the change in price of a stock is influenced by two
types of factors: (a) causal factors that directly or indirectly have an influence in
the current or future performance of the company. This would include earnings,
revenue, and future outlook of that company, performance of competitors, state
of the overall economy, etc. This corresponds to the “information” part. (b)
random factors that might be completely unpredictable and totally unrelated to
the performance of the company. This corresponds to the “noise” part.

The eigenvectors generated from the “information” part of the covariance
matrix are extracted and stored for the chosen application. Moreover, the eigen-
vectors can be used to filter the observed data by projecting them onto the
subspace spanned by the eigenvectors corresponding to the “information.”

Section 2 presents a brief overview of the MobiMine system. Section 3 dis-
cusses relevant theory of random matrices and then describes the EDS technique.
Section 4 presents the experimental results. Section 5 concludes the work and
identifies future work.

2 The MobiMine System

This section presents an overview of the MobiMine, a PDA-based application for
managing stock portfolios and monitoring the continuous stream of stock market



Dependency Detection in MobiMine and Random Matrices 3

Fig. 1. (Left) The architecture of the MobiMine Server. (Right) The main interface of
MobiMine. The bottom-most ticker shows the WatchList; the ticker right above the
WatchList shows the stocks in the portfolio.

data. The overview presented in this section covers the different modules of the
MobiMine; not all of them make use of the random matrix-based techniques
discussed so far in this paper. However, a general description is necessary to cast
the current contribution in the context of a real application environment.

2.1 An Overview of the System

The MobiMine is a client-server application. The clients (Figure 2), running
on mobile devices like hand-held PDAs and cell-phones, monitor a stream of
financial data coming through the MobiMine server (Figure 1(Top)). The system
is designed for currently available low-bandwidth wireless connections between
the client and the server. In addition to different standard portfolio management
operations, the MobiMine server and client apply several advanced data mining
techniques in order to offer the user a variety of different tools for monitoring
the stock market at any time from any where. Figure 1(Bottom) shows the main
user interface of the MobiMine.

The main functionalities of the MobiMine are listed in the following:

1. Portfolio Management and Stock Tickers: Standard book-keeping operations
on stock portfolios including stock tickers to keep an eye on the performance
of the stocks in the portfolio.

2. FocusArea: Stock market data is often overwhelming. It is very difficult
to keep track of all the developments in the market. Even for a full-time
professional following the developments all the time is challenging. It is un-
doubtedly more difficult for a mobile user who is likely to be busy with other
things. The MobiMine system offers a unique way to monitor changes in the
market data by selecting a subset of the events that is more “interesting”
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Fig. 2. The architecture of the MobiMine Client.

to the user. This is called the FocusArea of the user. It is a time varying
feature and it is currently designed to support the following functionalities:
(a) WatchList: The system applies different measures to assign a score to ev-

ery stock under observation. The score is an indication of the “interesting-
ness” of the stock. A relatively higher score corresponds to a more in-
teresting stock. A selected bunch of “interesting” stocks goes through a
personalization module in the client device before it is presented to the
user in the form of a WatchList.

(b) Context Module: This module offers a collection of different services for
better understanding of the time-critical dynamics of the market. The
main interesting components are,
i. StockConnection Module: This module allows the user to graphically

visualize the “influence” of the currently “active” stocks on the user’s
portfolio. This module detects the highly active stocks in the market
and presents the causal relationship between these and the stocks in
user’s portfolio, if any. The objective is to give the user a high level
qualitative idea about the possible influence on the portfolio stocks
by the emerging market dynamics.

ii. StockNuggets Module: The MobiMine Server continuously processes
a data stream defined by a large number of stock features (funda-
mentals, technical features, evaluation of a large number of well-
known portfolio managers). This module applies online clustering
algorithms on the active stocks and the stocks that are usually influ-
enced by them (excluding the stocks in the user’s portfolio) in order
to identify similarly behaving stocks in a specific sector.

The StockConnection module tries to detect the effect of the market
activity on user’s portfolio. On the other hand, the StockNuggets module
offers an advanced stock-screener-like service that is restricted to only
time-critical emerging behavior of stocks.

(c) Reporting Module: This module supports a multi-media based reporting
system. It can be invoked from all the interfaces of the system. It allows
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the user to watch different visualization modules and record audio clips.
The interface can also invoke the e-mail system for enclosing the audio
clips and reports.

A detailed description of this system can be found elsewhere [2]. The following
section discusses the unique philosophical differences between the MobiMine and
traditional systems for mining stock data.

2.2 MobiMine: What It is Not

A large body of work exists that addresses different aspects of stock forecasting
[3–8] and selection [9, 10] problem. The MobiMine is fundamentally different
from the existing systems for stock forecasting and selection. First of all, it
is different on the basis of philosophical point of view. In a traditional stock
selection or portfolio management system the user initiates the session. User
outlines some preferences and then the system looks for a set of stocks that
satisfy the constraints and maximizes some objective function (e.g. maximizing
return, minimizing risk). The MobiMine does not do that. Instead it initiates
an action, triggered by some activities in the market. The goal is to draw user’s
attention to possibly time-critical information. For example, if the Intel stock
is under-priced but its long time outlook looks very good then a good stock
selection system is likely to detect Intel as a good buy. However, the MobiMine
is unlikely to pick Intel in the WatchList unless Intel stock happens to be highly
active in the market and it fits with user’s personal style of investment. The
Context detection module is also unlikely to show Intel in its radar screen unless
Intel happens to be highly influenced by some of the highly active stocks in the
market. This difference in the design objective is mainly based on our belief that
mobile data mining systems are likely to be appropriate only for time-critical
data. If the data is not changing right now, probably you can wait and you do
not need to keep an eye on the stock price while you are having a lunch with
your colleagues.

This paper focuses on the correlation-based dependency detection aspect of
the used in the StockConnection module. The following section initiates the
discussion.

3 Data Filtering and Random Matrices

Detecting dependencies among stocks is an important task of MobiMine for
identifying the focus area of the user. Correlation analysis of time series data is a
common technique for detecting statistical dependencies among them. However,
doing it online is a challenging problem since correlation must be computed
from incrementally collected noisy data. At any given instant, the MobiMine can
compute the correlation matrix among a set of stocks. However, the correlation
may be completely misleading introduced by many factors like noise and small
number of observations.



6 Hillol Kargupta et al.

Accurate estimation of the correlation requires proper filtering of the corre-
lation matrix. This paper considers an approach that removes the “noise” by
considering the eigen values of the covariance matrix computed from the col-
lected data. The noisy eigen-states are removed by exploiting properties of the
eigen-distribution of random matrices. The eigenvalues of the covariance matrix
can then be used, in conjunction with random matrix theory, to identify and
filter out the noisy eigenstates.

In this section, we will first present a brief review of the theory of random
matrices. We will then present the EDS, that works incrementally by observing
one block of data at a time.

3.1 Introduction to Random Matrices

A random matrix X is a matrix whose elements are random variables with
given probability laws. The theory of random matrices deals with the statistical
properties of the eigenvalues of such matrices.

In this paper, we would be interested in the distribution of the eigenval-
ues of the sample covariance matrix obtained from a random matrix X. Let X
be an m × n matrix whose entries Xij , i = 1, . . . ,m, j = 1, . . . , n are i.i.d.
random variables. Furthermore, let us assume that X11 has zero mean and

unit variance. Consider the n × n sample covariance matrix Y
(m)
n = 1

m
XX ′.

Let λ
(m)
n1 ≤ λ

(m)
n2 ≤ · · · ≤ λ

(m)
nn be the eigenvalues of Y

(m)
n . Let F

(m)
n (x) =

(
∑n

i=1 U(x−λ
(m)
ni ))/n, be the empirical cumulative distribution function (c.d.f.)

of the eigenvalues {λ(m)
ni }1≤i≤n, where U(x) is the unit step function. We will

consider asymptotics such that in the limit as N → ∞, we have m(N) → ∞,

n(N) → ∞, and m(N)
n(N) → Q, where Q ≥ 1.

Under these assumptions, it can be shown that [11] the empirical c.d.f.

F
(m)
n (x) converges in probability to a continuous distribution function FQ(x)

for every x, whose probability density function (p.d.f.) is given by

fQ(x) =

{

Q
√

(x−λmin)(λmax−x)

2πx
λmin < x < λmax

0 otherwise,
(1)

where λmin = (1 − 1/
√

Q)2 and λmax = (1 + 1/
√

Q)2.

3.2 EDS Approach for Online filtering

Consider a data stream mining problem that observes a series of data blocks
X1, X2, · · ·Xs, where Xt is an mt × n dimensional matrix observed at time t
(i.e., mt observations are made at time t). If the data has zero-mean, the sample
covariance Covt based on data blocks X1, X2, . . . , Xt can be computed in a
recursive fashion as follows [12]:

Covt =

∑t−1
j=1 mj

∑t

j=1 mj

[

Covt−1 +
mt

∑t−1
j=1 mj

Σ̂t

]

(2)
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where Σ̂i = (X ′
iXi)/mi is the sample covariance matrix computed from only the

data block Xi.
In order to exploit the results from random matrix theory, we will first center

and then normalize the raw data, so that it has zero mean and unit variance.
This type of normalization is sometimes called Z-normalization, which simply in-
volves subtracting the column mean and dividing by the corresponding standard
deviation. Since the sample mean and variance may be different in different data
blocks (in general, we do not know the true mean and variance of the underlying
distribution), Equation 2 must be suitably modified. In the following, we provide
the important steps involved in updating the covariance matrix incrementally.
Detailed derivations can be found in [12].

Let µt, σt be the local mean and standard deviation row vectors, respectively,
for the data block Xt and µt, σt be the aggregate mean and standard deviation,
respectively, based on the aggregation of X1, X2, · · · , Xt. Let X̄r, X̂r denote
the local centered and local Z-normalized data, respectively, obtained from data
block Xr (1 ≤ r ≤ t) using µr and σr. Moreover, at time t, let X̄r,t, X̂r,t

denote the actual centered and actual Z-normalized data obtained from data
block Xr using the µt and σt. In particular, X̂r,t,[i,j] = X̄r,t,[i,j]/σt,[j] = (Xr,t,[i,j]−
µt,[j])/σt,[j], where i, j denote row and column indices. Note that the aggregate

mean µt can be updated incrementally as follows: µt = (
∑t

r=1 µrmr)/
∑t

r=1 mr

= (µt−1

∑t−1
r=1 mr + µtmt)/

∑t

r=1 mr. Let us define Zt to be the covariance
matrix of the aggregation of centered (or zero mean) data X̄1,t, X̄2,t, . . . , X̄t,t,
and zt be the local covariance matrix of the current block X̄t. Note that

σt,[j] =
√

Zt,[j,j], and Covt,[i,j]) =
Zt,[i,j]

σt,[i] × σt,[j]
, 1 ≤ i, j ≤ n, (3)

where Covt is the covariance matrix of the aggregated Z-normalized data X̂1,t, . . . , X̂t,t.
Therefore, the Z-normalization problem is reduced to that of incrementally up-
dating the covariance matrix Zt on the centered data. Define ∆t = (µt − µt−1)
and ∆t = (µt − µt). It is then easy to show that [12]

X̄ ′
r,tX̄r,t − X̄ ′

r,t−1X̄r,t−1 = mr∆t
′
∆t, X̄ ′

t,tX̄t,t − (X̄t)
′(X̄t) = mt∆

′
t∆t, and

Zt = Zt−1 + ∆
′

t∆t

t−1
∑

r=1

mr + X̄ ′
tX̄t + mt∆

′
t∆t (4)

The above discussion shows that the covariance matrix can be incrementally
updated, which can then be used to compute eigenvectors. An online algorithm
can directly compute the eigenvectors of this matrix. However, this simplistic
approach does not work well in practice due to two main problems: (a) data
may be inherently noisy and (b) the number of observations (mi) made at a
given time may be small. Both of these possibilities may produce misleading
covariance matrix estimates, resulting in spurious eigen-states. It is important
that we filter out the noisy eigenstates and extract only those states that belong
to the eigenspace representing the underlying information.
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Fig. 3. (Left) The flow chart of the proposed EDS approach for mining data streams.
(Right) The distribution of the eigen values, λmax and λmin with increasing Q. The
graph is generated using the financial data set.

In this paper, we assume that the observed data is stationary and consists of
actual information corrupted by random noise. The proposed technique decom-
poses the covariance matrix into two components: (1) the noise part and (2) the
information part by simply comparing the eigenspace of the covariance matrix
of observed data with that of a randomly generated matrix. In other words, we
compare the distribution of the empirically observed eigenvalues with the theo-
retically known eigenvalue distribution of random matrices given by Equation 1.
All the eigenvalues that fall inside the interval [λmin, λmax] correspond to noisy
eigenstates. Following are some of the main steps at any time t in the EDS
approach:

1. Based on the current estimate of the covariance matrix Covt, compute the
eigenvalues λt,1 ≤ · · · ≤ λt,n.

2. Identify the noisy-eigenstates λt,i ≤ λt,i+1 · · · ≤ λt,j such that λt,i ≥ λmin

and λt,j ≤ λmax. Let Λt,n = diag{λt,i, . . . , λt,j}, be the diagonal matrix with
all the noisy eigenvalues. Similarly, let Λt,s = diag{λt,1, . . . , λt,i−1, λt,j+1, . . . ,
λt,n}, be the diagonal matrix with all the non-random eigenvalues.

Let At,n and At,s be the matrices whose columns are eigenvectors corresponding
to the eigenvalues in Λt,n and Λt,s, respectively and At = [At,s|At,n]. Then we

can decompose Covt = Covt,s +Covt,n, where Covt,s = At,sΛt,sA
′

t,s is the signal

part of the covariance matrix and Covt,n = At,nΛt,nA
′

t,n is the noise part of
the covariance matrix. At any given time step, the signal part of the covariance
matrix produces the useful non-random eigenstates and they should be used for
data mining applications. Note that it suffices to compute only the eigenvalues
(and eigenvectors) that fall outside the interval [λmin, λmax], corresponding to
the signal eigenstates. This allows computation of Covt,s and hence Covt,n. The
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following section documents the performance of the EDS algorithm for detecting
dependencies among Nasdaq 100 stocks.

4 Mobile Financial Data Stream Mining Using EDS

In order to study the properties of the proposed EDS technique in a systematic
manner, we performed controlled experiments with Nasdaq 100 financial time-
series data streams. The EDS is used to generate a “filtered” correlation matrix
that detects the dependencies among different stocks. This section reports the
experimental results.

**** This para needs updating *** The experiments reported here consider
99 companies from Nasdaq 100. We sample data every five minutes and each
block of data is comprised of mi = 99 rows. At any given moment the user is
interested in the underlying dependencies observed from the current and previ-
ously observed data blocks.

First let us study the effect of the EDS-based filtering on the eigen-states
produced by this financial time-series data. Figure 3 (Right) shows the distribu-
tion of eigenvalues from the covariance matrix (Covt) for different values of t. It
also shows the theoretical lower and upper bounds (λmax and λmin) at different
time steps (i.e. increasing Q). The eigen-states falling outside these bounds are
considered for constructing the “signal” or “information” part of the covariance
matrix. The figure shows that initially a relatively large number of eigen states
are identified as noisy. As time progresses and more data blocks arrive, the noise
regime shrinks. It is also interesting to note that the EDS algorithm includes
the lower end of the spectrum in the signal part. This is philosophically different
from the traditional wisdom of considering only those eigen states with large
eigen values.

In order to evaluate the online performance of the EDS algorithm we compare
the eigen-space captured by the EDS at any given instant with respect to the
“true” eigen-space defined by the underlying data distribution. Although data
streams are conceptually infinite in size, the experiments documented in this
section report results over a finite period of time. So we can benchmark the
performance of the EDS with respect to the “true” eigen-space defined by the
eigen vectors computed from the entire data set (all the data blocks) collected
from the stream during the chosen period of observation. We first report the
evolution of the signal-part of the covariance matrix as a function of time and
compare that with the “true” covariance matrix generated from the entire data
set. We report two different ways to compute this difference:

1. RMSE: The root mean square error (RMSE) is computed between the co-
variance matrices generated by the online EDS and the entire data set.

2. Thresholded Error: This measure first computes the difference between the
estimated and true covariance matrices. If the (i, j)-th entry of the difference
matrix is greater than some user given threshold θ then the value is set to 1
otherwise 0. The total number of 1’s in this matrix is the observed thresholded

error count.
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Fig. 4. The relative performance (thresholded error count in left and RMS error on
right) of the EDS algorithm and the traditional approach using eigen vectors capturing
90% and 75% of the total variance. Different batch numbers correspond to different
time steps.

Figure 4 compares the performance of our EDS algorithm with that of a tradi-
tional method that simply designates as signal, all the eigen-states that account
for, respectively, 90% and 75% of the total variance. The latter corresponds a
regular principal component analysis (PCA) that uses enough components to
explain, respectively, 90% and 75% of the total variation in data. It shows the
thresholded error count for each method, as a function of time (batch number). It
is apparent that the EDS algorithm quickly outperforms the traditional method.

In order to evaluate the effect of filtering performed by the EDS algorithm,
we picked a representative pair of stocks and compared the covariance between
them, computed from the EDS filtered data and compare it with that using the
raw data directly. We plot the absolute error between the estimated covariance
value at each time step and the final covariance value.

Figure 5 depicts the comparison for the covariance between two stocks —
Dell (DELL) and Amazon (AMZN). It is apparent that filtering using the EDS
algorithm results in a smaller error overall.

5 Conclusions and Future Work

Although mobile computing devices are becoming more accessible and compu-
tationally powerful, their usage is still restricted to simple operations like web
surfing, checking emails, maintaining personal schedules, and taking notes. The
limited battery power, restricted visual display area, and the low-bandwidth
communication channel are hindering more sophisticated desktop-style applica-
tions. However, the ubiquitous aspect of these devices makes them very attrac-
tive for many time-critical applications. We need a new breed of applications for
time-critical domains that can live with these resource restrictions.
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This paper described one such application that performs online mining of
financial data. It offered the EDS approach for extracting useful noise-free eigen
states from data streams. It shows that the EDS approach is better than the
traditional wisdom of selecting the top-ranking eigenvectors guided by some user-
given threshold. The EDS allows us to extract the eigenstates that correspond
to non-random information that are likely to be useful from a data mining per-
spective. Indeed, any data mining technique, exploratory or otherwise, can be
applied on the EDS filtered data.

The EDS approach works by comparing the empirically observed eigen dis-
tribution with the known distribution of random matrices. The theoretically
known values of upper and lower limits of the spectrum are used to identify the
boundary between noisy and signal eigen-states.

Another feature of our EDS approach is illustrated in Figure 3. As seen from
the graph, the limits λmax and λmin both converge to 1 as the ratio Q tends
to infinity (see also equation 1). In a data stream mining scenario, the number
of features n is fixed, whereas the number of total number of observations m
increases as each block of data is received. Hence, Q increases with time, which
results in a smaller interval [λmax, λmin] for the noisy eigenstates. This means
that, as we observe more and more data, the EDS algorithm would potentially
designate more eigenstates as signal. This is also intuitively satisfying, since most
of the noise would get “averaged-out” as we observe more data.

In many real-world applications, the data stream is usually quasi-stationary.
In other words, the data can be considered to be stationary over short periods
of time but the statistical behavior of the data changes —- either gradually over
time or due to some underlying event that triggers an abrupt change. These
situations can be easily accommodated in the EDS framework. For example,
one can use a fixed finite window of past observations to update the covariance
matrix. Alternatively, an exponential weighting can be applied to past data
blocks, thereby relying more on the recent data. Abrupt changes in the data
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distribution can be detected by monitoring the change in the covariance matrix
or the subspace spanned by the noisy eigenstates, using an appropriate metric.
Any significant deviation with respect to the past history would be an indication
of an abrupt change. The EDS filter can be reset in such circumstances. We plan
to pursue some of these ideas in a future publication.
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