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Abstract

This paper considers the problem of learning the pa-
rameters of a Bayesian Network, assuming the struc-
ture of the network is given, from a privacy-sensitive
dataset that is distributed between multiple parties. For
a binary-valued dataset, we show that the count infor-
mation required to estimate the conditional probabilities
in a Bayesian network can be obtained as a solution to
a set of linear equations involving some inner product
between the relevant different feature vectors. We con-
sider a random projection-based method that was pro-
posed elsewhere to securely compute the inner product
(with a modified implementation of that method).

1. Introduction

Advances in networking, storage, and computing
technologies have resulted in an unprecedented increase
in the amount of data collected and made available
to the public. This explosive growth in digital data
has brought increased concerns about the privacy of
personal information [1]. Privacy is also an impor-
tant issue in applications related to counter-terrorism
and homeland security. For example, mining health-
care data for the detection of bio-terrorism may require
mining clinical records and pharmaceutical purchases
of certain specific drugs. However, combining such di-
verse datasets belonging to different parties may vio-
late privacy laws. Therefore, it is important to be able
to extract desired data mining models from the data,
without accessing the raw data in its original form.

Privacy-sensitive data mining is an evolving area
within the broad field of data mining [2, 3, 8]. In the
following, we briefly review some of the important ap-
proaches proposed in the literature. Due to space con-
straints, we cite only a few important works.
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1.1. Related Work

There exists a growing body of literature on privacy-
sensitive data mining. These algorithms can be divided
into two broad groups: (a) approaches based on ran-
domization and (b) approaches based on secure multi-
party computation (SMC).

The first approach to privacy-sensitive data mining
starts by first perturbing the data using randomized
techniques. The perturbed data is then used to ex-
tract the patterns and models. The randomized value
distortion technique for learning decision trees [2] is an
example of this approach. See [7] for a possible pri-
vacy breach using this approach. Evfimievski et al.
[5] have also considered the approach in [2] in the con-
text of association rule mining and suggest techniques
for limiting privacy breaches.

SMC is the problem of evaluating a function of two
or more parties’ secret inputs, such that each party fi-
nally learns their specified function output and nothing
else is revealed, except what is implied by the party’s
own inputs and outputs. SMC problem was first intro-
duced by Yao [11]. Du and Atallah have presented a
collection of new secure multi-party computation ap-
plications such as privacy-sensitive statistical analy-
sis [4]. Clifton [3] has described several secure multi-
party computation based algorithms that can support
privacy-sensitive data mining. Feigenbaum et al. have
addressed the problem of computing approximations
using SMC [6]. More recently, Wright and Yang [10]
have proposed a privacy-sensitive Bayesian Network
structure learning algorithm.

1.2. Our Contribution

In this paper, we consider the problem of learning
the parameters of a Bayesian Network (BN), assuming
the structure of the network is given, from a privacy-
sensitive dataset that is distributed between multiple
parties. For a binary-valued dataset, we show that the



count information required to estimate the conditional
probabilities (model parameters) in a Bayesian network
can be obtained as a solution to a set of linear equations
involving some inner product between the relevant dif-
ferent feature vectors. Therefore, any privacy-sensitive
method for computing inner product between vectors
can be used to solve the Bayesian network parameter
learning problem. Specifically, we consider a random
projection-based method (to compute the inner prod-
uct) that was proposed elsewhere [9].

The rest of the paper is organized as follows. Section
2 provides a brief overview of Bayesian Networks (BN)
followed by a description of the problem statement. In
Section 3, we describe our proposed algorithm. Exper-
imental results are presented in Section 4. Section 5
concludes the paper.

2. Problem Description

A BN is a probabilistic graph model, which is an
important tool in data mining. It can be defined as a
pair (G, p), where G = (V, E) is a directed acyclic graph
(DAG). For a variable X ∈ V, a parent of X is a node
from which there exists a directed link to X. Figure 1
is a BN called the ASIA model. Let pa(X) denote the
set of parents of X, then the conditional independence
property can be used to factor the joint probability
as follows: P (V) =

∏

X∈V
P (X | pa(X)). The set of

conditional distributions {P (X | pa(X)),X ∈ V} are
called the parameters of a Bayesian network. Learning
a BN involves learning the structure of the network and
obtaining the conditional probabilities associated with
the network.
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Figure 1. ASIA Model

We consider a set-up where the data corresponding
to the different nodes are distributed among two or
more parties. For example, in the ASIA model of Fig-
ure 1, party I contains observations for features (nodes)
A, T,E,X, and D, whereas party II contains observa-
tions for features S,L, and B. This is usually referred
to vertical partitioning of the data or a heterogeneous
data distribution. The dataset is privacy-sensitive in
the sense that each party does not wish to share its
raw data with the other parties. However, they wish to
mine the combined dataset to obtain a global BN. We

assume that the structure of the global BN is known to
all the parties and focus on the problem of estimating
the parameters of the network. Our proposed solution
to this problem is presented in the following section.

3. Algorithm

In the following, we assume that the features of the
BN are binary, taking values in the set {−1, 1}. Ex-
tensions to multi-variate (discrete) case is conceptu-
ally similar, except for the algebra. In Section 3.1, we
describe a system of linear equations, whose solution
yields the desired conditional probabilities. The coef-
ficient matrix for the linear equations can be obtained
from the BN structure, which is assumed to be known.
The inner product between certain feature vectors are
needed to obtain the “right-hand-side vector” of the
linear equations. Any secure inner product computa-
tion module can be used for this purpose. This is dis-
cussed in Section 3.2. Finally, Section 3.3 provides a
privacy analysis of the proposed method.

3.1. Equations for BN parameter learning

In this section we build a set of linear equations
whose solution yields all the conditional probabilities
for a BN. We assume that all the data are binary with
values 1 or −1 and the structure of BN is given.

For simplicity, first consider a node z with two par-
ent nodes x and y. We need to obtain the values of all
the conditional probabilities for z, given the values of
nodes x and y. As shown in Table 1, there are eight
(23 = 8) different count values — {a, b, . . . , h} — to be
determined. For example, b represents the number of
observations with x = −1, y = 1 and z = −1. The
corresponding probabilities can be obtained simply by
normalizing the count values with respect to the total
number of observations N .

Let Nijk
xyz denote the number of observations for

which x = i, y = j, and z = k, for i, j, k ∈ {−1, 1}.

We then have P (z = k | x = i, y = j) =
Nijk

xyz

Nij
xy ,

i, j, k ∈ {−1, 1}, where Nij
xy denotes the number of

observations for which x = i, and y = j.

Definition 3.1 (Pseudo inner product) Given n ≥ 1
vectors x1, x2, . . . , xn, each of dimension k, we define
their pseudo-inner product (pip) pip(x1, x2, . . . , xn) =
∑k

j=1

∏n

i=1
xij, where xi = [xi1, xi2, . . . , xik], i =

1, 2, . . . , n are the components of vector xi.

Let N be the total number of observations and
X,Y,Z denote the data vector (column vector) for
nodes x, y, z, respectively. Since there are three data



Table 1. Three-node example
x, y

−1, −1 −1, 1 1, −1 1, 1
z = −1 a b c d
z = 1 e f g h

vectors, we can compute 23 − 1 = 7 different pseudo
inner products. Observe that each pseudo inner prod-
uct can be expressed uniquely by count variables
a, b, . . . , h. For example, pip(Z) equals the sum of
the entries in vector Z, which is precisely the num-
ber of observations with z = 1 minus the number
of observations with z = −1. Indeed, we can write
(e + f + g + h) − (a + b + c + d) = pip(Z). Another
obvious condition is: (e+f +g+h)+(a+b+c+d) = N .
Indeed, we can write eight linear equations as follows:
Ax = b, where

A =

























−1 −1 −1 −1 1 1 1 1
−1 −1 1 1 −1 −1 1 1
−1 1 −1 1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1

−1 1 1 −1 1 −1 −1 1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 1 1 1 1

























,

x = [a, b, c, d, e, f, g, h]T , and b = [pip(Z), pip(X),
pip(Y ), pip(Z,X), pip(Z, Y ), pip(Z,X, Y ), pip(X,Y ),
N ]T . It is easy to verify that matrix A is nonsingu-
lar. So we can solve the linear equations to get all the
required conditional probabilities.

This simple idea can be easily generalized to the
case of arbitrary number of parent nodes. The proof is
by induction and has been omitted due to page limi-
tations (see http://www.eecs.wsu.edu/∼siva/icdm

04 longversion.pdf for details).

3.2. Secure Inner Product Computation

From the previous subsection, we know if a BN
structure is given, the coefficient matrix A is uniquely
determined. Therefore, if we can compute the pseudo
inner products, the BN parameters can be obtained
by solving the linear equations. If the variables corre-
sponding to the parent node(s) of a given node belong
to a different party than the variable of the node itself,
then computing the pseudo inner product would re-
quire exchange of raw data between the parties. There-
fore, we need a privacy-sensitive method to compute
inner products in order to accomplish this step.

In our experiments, we used a random projection
based method proposed in [9]. The important equa-

tions are reproduced below: Let U be an m × n data
matrix, with m observations and n features. Suppose R
is an m×m orthogonal matrix; i.e., RT R = RRT = I.
Consider the (multiplicatively) perturbed matrix U1 =
RU . Note that we use a single projection as opposed to
the proposed double projection in [9]. It is easy to see
that UT

1 U1 = (UT RT )(RU) = UT (RT R)U = UT U .
Therefore the inner products between the columns of
U can be computed using the perturbed matrix U1. So
the owner of the data set U computes U1 and hands
over that to the other party (or a third party who does
the data mining), who can then compute the required
pseudo inner products. In practice, perturbation ma-
trix R is chosen to be a random orthogonal matrix.
This can be accomplished by starting with a random
matrix with independent identically distributed (i.i.d.)
entries W and orthogonalizing it.

3.3. Communication, Error, and Privacy Analysis

We now present a brief analysis of the communica-
tion cost and privacy of the proposed scheme.

First observe that for those nodes, all of whose par-
ents are in the same site, there is no privacy or com-
munication problem and those parameters (conditional
probabilities) can be locally estimated and communi-
cated to the other parties.

Suppose, node i has na − 1 parents at the same site
and nb parents at a different site. Therefore, roughly
2na2nb = 2na+nb pseudo inner products have to be
computed securely. This would require communication
of O(m2ni) bits, where ni = na + nb is one more than
the number of parents of node i. Therefore, the to-
tal communication cost is O(m

∑

i 2ni). Note that in
typical BN applications ni << n.

The pseudo inner product computation is the only
step that requires some exchange of data between the
parties. Therefore, any privacy breach would have to
occur in that step. Theorem 1 in [9] discusses the pri-
vacy preserving properties of the random projection
method. In particular, the m × m random orthogonal
matrix R has m(m− 1)/2 independent random entries
(the rest of the m(m + 1)/2 entries being determined
by orthogonality constraints). As such, there are in-
finitely many solutions U , in general, to U1 = RU , if
R is unknown. By using a single random orthogonal
matrix R in the projection instead of two random ma-
trices R1, R2 as in [9], we do not have to “average” over
results over multiple trials. Moreover, inner products
computed using a single random orthogonal matrix R
are virtually error-free as opposed to the case with dou-
ble projection using random matrices, where the error
goes to zero as the number of independent trials goes



to infinity. More details about the privacy preserving
properties of single and double projection methods can
be found in [9].

4. Experimental Results

In this section, we present results of our experi-
ments with the proposed privacy-sensitive BN param-
eter learning for the ASIA model (see Figure 1). The
true conditional probabilities (parameters) of the ASIA
model for nodes E and D (nodes with parents from dif-
ferent sites) are given in Table 2. A data set with 2000
samples was generated from this model.

Table 2. True conditional probabilities
E 0.9 0.1 0.1 0.01 0.1 0.9 0.9 0.99
D 0.9 0.2 0.8 0.9 0.1 0.8 0.2 0.1

We generated a random matrix R1 whose entries
were i.i.d. Gaussian with zero mean and unit variance.
This matrix was then orthogonalized using a QR de-
composition to obtain a random orthogonal matrix R.
The estimated parameters using our proposed algo-
rithm in Section 3 are tabulated in Table 3. As ex-
pected, the estimated parameters are almost identical
to the true values.

Table 3. Estimated conditional probabilities
E 0.9 0.1 0.1 0.01 0.1 0.9 0.9 0.99
D 0.89 0.21 0.81 0.84 0.11 0.79 0.19 0.16

5. Discussion and Conclusions

We considered the problem of learning the param-
eters of a Bayesian Network, assuming the structure
of the network is given, from a privacy-sensitive
dataset that is distributed between multiple parties.
We considered the case of vertical (or heterogeneous)
partitioning, where different parties hold values
corresponding to a different subset of the variables.
For a binary-valued dataset, we showed that the
count information required to estimate the conditional
probabilities of a Bayesian network can be obtained
as a solution to a set of linear equations involving
some inner product between the relevant different
feature vectors. In our experiments, we considered
a random projection-based method with a single
projection using a random orthogonal matrix. This
implementation requires considerably less exchange of
perturbed data and produces almost error-free results

as compared with that using double projection using
random matrices.
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