Constructing Simpler Decision Trees from the Fourier
Spectrum of Ensemble Models: Theoretical Issues and
Application in Mining Data Streams

Byung-Hoon Park and Hillol Kargupta
Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County
1000 Hilltop Circle Baltimore, MD 21250
{bpark1,hillol}@cs.umbc.edu

Abstract

Ensemble learning approach is a natural candidate to mine data streams. It handles
the incrementally observed data by generating a stream of models constructed from dif-
ferent sets of observations. These models together capture the behavior of the stream.
However, the complexity of the ensemble models for data streams tends to increase
linearly with time as new models are continuously added. Moreover, large ensembles
are often hard to interpret and difficult to translate into action-able knowledge. This
paper offers a novel Fourier spectrum-based technique to construct a possibly simpler
tree from a decision tree-ensemble generated from data streams. It discusses several
theoretical properties of the Fourier spectrum of decision tree ensembles and extends
the proposed approach to deal with domains with more than two class labels. It also
presents extensive experimental results to support the theoretical claims.

1 Introduction

Everyday, large volumes of data are generated from constantly operating sources. Faced
with this continuous flow of data, often called data streams, the challenge is how to process
the huge volume of data in a timely and efficient manner. For example, the NASA Earth
Observing System (EOS) generates more than 100 gigabytes of image data per hour that is
stored, managed, and distributed by the EOS Data and Information System (EOSDIS). The
Internet also provides various sources of stream data. Many important financial data are
regularly posted on the Internet, including announcements regarding new products, expected
earnings, legal battles, and merges. In addition, sites such as NASDAQ), Yahoo finance, and
CNN finance offer near-realtime stock data including up-to-date company financial profiles.
“Click stream” data from the web sites, telephone communication data, sensor networks
data are additional examples of the data stream scenario considered here.

Mining time-critical data streams usually requires on-line or ensemble-based algorithms
that often produce a series of models [7, 9, 19, 26] like decision trees. In both cases, data

1



is often collected in blocks. The ensemble approach can quickly generate a partial model
based on the recent block of data. Since such slices of data stream only contain limited (or,
incorrect) knowledge, the ensemble approach heavily relies on aggregating outputs of partial
models. Naturally, the model complexity of an ensemble increases linearly as partial models
are added. Therefore, it is crucial to maintain the ensemble in its simplest form.

Our earlier work [14, 15] reported the use of a novel Fourier analysis based approach to
aggregate multiple decision trees in the Fourier representation. That work showed that a
decision tree can be treated as a function and therefore we can compute its Fourier spectrum.
It is also important to note that the spectrum can be computed in a computationally efficient
manner. Therefore, the trees generated by the ensemble learner can be quickly transformed
into their respective Fourier spectrum and then the spectra can be aggregated (e.g. average,
weighted average) in the Fourier domain. The aggregated model in the Fourier domain can
be used as a classifier, which is functionally equivalent to the ensemble model. The work
also showed that the aggregated Fourier spectrum can also be used to visualize decision tree
ensembles and to identify emerging patterns by noting the significant Fourier coefficients.

This paper further explores the work and contributes important results. It offers theoret-
ical results for the Fourier spectrum of non-Boolean decision trees. It extends the approach
to decision trees with multiple class labels. It also offers a novel way to construct decision
trees from the Fourier spectrum of the ensemble model. Although the spectrum-based rep-
resentation of an ensemble is functionally equivalent to the ensemble model, computing the
output of the classifier requires a considerable floating point operations. Moreover, in some
applications constructing an equivalent decision tree from the tree-ensemble is more natural.
The proposed technique to construct a tree from the ensemble-spectrum allow us to solve
both the problems. So now we can first compute the spectrum of the individual trees of the
ensemble, aggregate them in the Fourier representation, and then go back to the tree domain
by constructing the tree using the Fourier coefficients. This is very analogous to going back
and forth between time and frequency domains of the traditional Fourier analysis in signal
processing domain.

The rest of the paper is organized as follows. Section 2 reviews the algorithms that mine
from data stream environments. Section 3 introduces the Fourier transform of a decision tree.
It discusses several theoretical properties of the Fourier spectrum of decision trees. Section 4
describes an algorithm to compute Fourier spectrum of decision tree. Section 5 presents
the algorithm for constructing a decision tree from the ensemble spectrum. Section 6 offers
empirical verification of the analytical claims. Finally, Section 7 concludes the paper.

2 Mining Data Streams: Prior Related Works

Mining Data streams offer several challenges. It requires mining algorithms that can handle
incrementally observed data. Both incremental and ensemble learning-based techniques are
natural candidates to mine data streams. While the former aims to adapt the the existing
model structure based on new observations, the latter generates a stream of partial models
for different sets of observations and then combines the partial models into a single ensemble
model. This section reviews the related literature from each of these two categories for
mining data streams.



2.1 Incremental Learning

Incremental techniques have been developed for both unsupervised and supervised learning.
Although incremental unsupervised clustering techniques are very important, in this section
we primarily consider supervised classifier learning techniques since that is the focus of this
paper.

Most of the incremental classifier learning algorithms work in the following manner.
First a classifier is built from the already observed data set. This model classifies the new
observations and it immediately receives the true classifications from an existing oracle.
Any discrepancy between the outputs of the current model and the true outputs are fed
into the learning algorithm; it then produces a modified classifier that tries to minimize the
differences.

There exists a large number of incremental classifier learning algorithms. Schlimmer and
Granger [27] pointed out the need for such algorithms by noting that changes in the hidden
context can produce the concept drift, which in turn has a dramatic impact on the learning
process. Decision trees [25] are widely used for classification. Conventional decision tree
learning systems are batch algorithms. They require all the training instances be available
in the from of static data set. In order to deal with the data stream scenario, several
incremental decision tree learning algorithms have been developed. They include ID4[27],
ID5[29], ID5R[30] and ITI[31]. Like ID3 [25], all these systems use information gain [25]
as their measure to select attributes for decison nodes. They also use chi-square tests to
prune the tree. They are all designed to incrementally build a decision tree by accepting one
training instance at a time. In order to do this, they keep necessary statistics (measure for
information gain) at each decision node. IDR5, in particular, is designed to build the same
decision tree that ID3 would construct. An improved system, ITI [31], builds a decision tree
in a similar fashion; however, it can handle both nominal and continuous-valued attributes.
IDL [4] offers another variety of incremental decision tree learner. It is similar to ID5;
however, it adopts a topological criterion to minimize the number of occurrences of each
attribute along each path.

Recently, BOAT [10], VFDT [6] and its successor CVFDT [13] have been introduced as
incremental decision tree induction algorithms. The Bootstrapped Optimistic Algorithm for
Tree Construction (BOAT) is a two-stage decision tree building algorithm that is based on
bootstrap sampling. During the first stage it constructs a decision tree using only a small
subset of the data. All splitting criteria that are obtained during the first stage are expected
to be close to the optima. Any incorrect splitting criterion is corrected during the second
stage, which is called the “cleanup stage.” Like IDR5, BOAT maintains a decision tree
equivalent to what would be constructed with the presence of the entire data set. However,
since it tries to build the exact tree (learn-able from the entire data), it discards and regrows
some portions of the tree when it observes a drift in the underlying distribution. Therefore,
it performs slowly when the drift is large.

VFDT [6] is designed to learn from large quantity of data efficiently without requiring
large in-core memory. It particularly notes that only a small sample may be sufficient to
choose the split attribute at any given node. To determine a proper sample size, it uses a
statistical result known as the Hoeffding or additive Chernoff bound [12]. However, VFDT
cannot deal with concept drift, i.e. non-stationary distributions. In other words, it assumes



that the data is a random sample from a stationary distribution. Hulten et al. [13] proposed
CVFEDT, an extension to VFDT, to overcome this weakness of VFDT. In order to detect and
respond to changes in the data stream, CVFDT keeps its model consistent with a sliding
window of examples. The window slides as new instances are observed; thus, it increments
the counts corresponding to the recent observations and decrements the counts corresponding
to the older ones. Instead of constructing a new model as the window slides, it grows an
alternative subtree when some previous splits no longer achieve higher gain. An alternative
subtree replaces the old one when it becomes more accurate. The following section reviews
the existing ensemble-based approaches for classifier learning from data streams.

2.2 Ensemble Classifier Model

Ensemble-based classifiers work by generating a collection of base classifiers and combining
their outputs using some pre-sprecified schemes. Typically, voting (weighted or unweighted)
schemes are employed to combine the outputs of the base classifiers. A large volume of
research reports that ensemble classifier models often perform better than any of the base
classifiers used [5, 22, 1, 21, 17].

In data stream environments, an ensemble-based approach would generate a stream of
classifiers from incrementally collected different data blocks. It would generate some classifier
Cy from the data block Dy, observed during a given time period ¢;. The challenge is to
combine C with previously learned classifiers C1, (s, ..., Cy_1. The simplest known approach
is to combine classifiers with uniform weight (or unweighted average). Perrone and Cooper
[23] refer to this method as the Basic Ensemble Method (BEM).

Several researchers have studied aggregation of classifiers with non-uniform weights. They
have one thing in common — previously learned classifiers together are used to assign weights
to instances in the current data block, thus giving non-uniform probabilities to be sampled
in the next round.

Wei Fan and et al. proposed [8] a scheme using AdaBoost as a means to assign instance
weight and adjust weights of previously learned classifiers based on their accuracies over new
data block. They observed that AdaBoost provides a way to adjust weights of classifiers
based on the test over the validation set.

Breiman proposed an Arcing method [2, 3] for learning from large data sets and streams.
It is still based on the idea of adaptive re-sampling by giving higher weights to those instances
that are often wrongly classified. This method includes a newly observed data instance into
the next training data set if it is mis-classified by the previous classifiers. If not, it is accepted
with the following probability,

e(k)
1 —e(k)

where e(k) is an estimate of the error of the classifiers Cy, Oy, ..., Cy over the k' training
data set Dy. e(k) is a smoothed version of r(k), which is the proportion of mis-classified
data instances in building k-th training data set. Here e(k) is computed as follows:

e(k) =pe(k —1)+ (1 —p)r(k), pe(0,1)



A major drawback of models described in this section is storage overhead. In contrast
with incremental learning, the size of an ensemble model grows in a linear fashion as new
sets of data flow in. This gradually increases memory usage and slows down both learning
and classifying processes. We may use some post-pruning algorithms for the ensemble model
found in [20, 24]. However, a “windowing scheme” is reported to be preferable [8, 3]. In
this scheme, only the N most recent classifiers are stored and used for both learning and
classification.

Recently Street and Kim [28] proposed the Streaming Ensemble Algorihtm (SEA) that
learns an ensemble of decision trees for large-scale classification. The SEA maintains a fixed
number of classifiers. Once the ensemble becomes full, the k-th classifier C} is added only
if it outperforms any previous C; in the ensemble. In that case, C; is removed from the
ensemble. Performance is measured using the most current data block.

This section reviewed incremental and ensemble classifier learning techniques to mine
from data streams. The rest of the paper will focus on decision tree-based approaches to
mine data streams using ensembles. As noted earlier, the ensemble-based approach would
generate a stream of decision trees that are difficult to simplify and comprehend which is very
important for data mining applications. The following section discusses a Fourier analysis-
based approach that allows representing a large collection of decision trees in a simple and
compact form. It also permits constructing a simpler decision tree from the aggregated
representation that is functionally equivalent to the given ensemble.

3 Decision Trees and the Fourier Domain

This section reviews the Fourier representation of decision tree ensembles, introduced else-
where [14, 15]. It also presents some new analytical results.

3.1 Decision Trees as Numeric Functions

A decision tree defined over a domain of categorical attributes can be treated as numeric
function. First note that a decision tree is a function that maps its domain members to
a range of class labels. Sometimes, it is a symbolic function where features take symbolic
(non-numeric) values. However, a symbolic function can be easily converted to a numeric
function by simply replacing the symbols with numeric values in a consistent manner.

Once the tree is converted to a discrete numeric function, we can also apply any appro-
priate analytical transformation that we want. Fourier transformation is one such interesting
possibility. Fourier basis offers an additive decomposable representation of a function. In
other words, the Fourier representation of a function is a weighted linear combination of
the Fourier basis functions. The weights, called Fourier coefficients, completely define the
representation. Each coefficient is associated with a Fourier basis function that depends on
a certain subset of features defines the domain of the data set to be mined. The following
section presents a brief review of Fourier representation.



3.2 A Brief Review of the Fourier Basis in the Boolean Domain

Fourier bases are orthogonal functions that can be used to represent any discrete function.
Consider the set of all /-dimensional feature vectors where the i-th feature can take \;
different categorical values. The Fourier basis set that spans this space is comprised of
IT{_y\; basis functions. Each Fourier basis function is defined as ¢ (x) = IT} _, exp am Tmim
, where j and x are strings of length ¢; z,, and j,, are m-th attribute-value in x and j,
respectively; T, jm € {0,1,---\;} and X represents the feature-cardinality vector, g, - - - Ag;
wj’\(x) is called the j-th basis function. The string j is called a partition, and the order of
a partition j is the number of non-zero feature values it contains. A Fourier basis function
depends on some z; only when the corresponding j; # 0. If a partition j has exactly «
number of non-zeros values, then we say the partition is of order « since the corresponding
Fourier function depends only on those a number of variables that take non-zero values in
the partition j.

A function f : X¢ — R, that maps an /-dimensional discrete domain to a real-valued

range, can be represented using the Fourier basis functions: f(x) =3, wjaj)‘(x), where wj

is the Fourier Coefficient (FC) corresponding to the partition j and Ej‘(x) is the complex
conjugate of 1(x); w; = Hézl)\% > ¥ (x) f(x). The Fourier coefficient w; can be viewed
as the relative contribution of the partition j to the function value of f(x). Therefore, the
absolute value of wj can be used as the “significance” of the corresponding partition j. If the
magnitude of some wj is very small compared to other coefficients, we may consider the j-th
partition to be insignificant and neglect its contribution. The order of a Fourier coefficient is
nothing but the order of the corresponding partition. We shall often use terms like high order
or low order coefficients to refer to a set of Fourier coefficients whose orders are relatively
large or small respectively. Energy of a spectrum is defined by the summation Zj wj?. The
following section discusses some useful properties of the distribution of the enregy in the
Fourier spectrum of a decision tree.

3.3 Properties of Decision Trees in the Fourier Domain

For almost all practical purposes decision trees have bounded depths. This section will
therefore consider decision trees of finite depth bounded by some constant. The underlying
functions in such decision trees are computable by a constant depth Boolean AND and OR
circuit (or equivalently AC? circuit). Linial et al. [18] noted that the Fourier spectrum of
AC? circuit has very interesting properties and proved the following lemma.

Lemma 1 (Linial, 1993) Let M and d be the size and depth of an AC® circuit. Then
S0 wf<amr e
{3 | ol)>t}

where o(j) denotes the order (the number of non-zero variable) of partition j and ¢ is a

non-negative integer. The term on the left hand side of the inequality represents the energy

of the spectrum captured by the coefficients with order greater than a given constant t.
The lemma essentially states the following properties about decision trees:



Figure 1: A Boolean decision tree

1. High order Fourier coefficients are small in magnitude.

2. The energy preserved in all high order Fourier coefficients is also small.

The key aspect of these properties is that the energy of the Fourier coefficients of higher
order decays exponentially. This observation suggests that the spectrum of a Boolean deci-
sion tree (or equivalently bounded depth function) can be approximated by computing only
a small number of low order Fourier coefficients. So Fourier basis offers an efficient numeric
representation of a decision tree in terms of an algebraic function that can be easily stored
and manipulated.

The exponential decay property of Fourier spectrum also holds for non-Boolean decision
trees. The complete proof is given in the appendix.

4 Computing the Fourier Transform of a Decision Tree

The Fourier spectrum of a given tree can be computed efficiently by efficiently traversing
the tree. This section first reviews an algorithm to do that. It discusses aggregation of
the multiple spectra computed from the base classifiers of an ensemble. It also extends the
technique for dealing with non-Boolean class labels. Kushilevitz and Mansour [16] considered
the issue of learning the low order Fourier spectrum of the target function (represented by
a Boolean decision tree) from a data set with uniformly distributed observations. Note that
the current contribution is fundamentally different from their goal. This paper does not try
to learn the spectrum directly from the data. Rather it considers the problem of computing
the spectrum from the decision tree generated from the data.

4.1 Schema Representation of a Decision Path

For the sake of simplicity, let us consider a Boolean decision tree , as shown in Figure 1. The
Boolean class labels correspond to positive and negative instances of the concept class. We
can express a Boolean decision tree as a function f : X¢ — {0,1}. The function f maps
positive and negative instances to one and zero respectively. A node in a tree is labeled with
a feature ;. A downward link from the node z; is labeled with an attribute value of the 7-th
feature. The path from the root node to a successor node represents the subset of data that



satisfies the different feature values labeled along the path. These subsets of the domain
are essentially similarity-based equivalence classes and we shall call them schemata (schema
in singular form). If h is a schema, then h € {0,1, *}*, where * denotes a wildcard that

matches any value of the corresponding feature. For example, the path {(z3 EN T1,T1 N Zo}
in Figure 1 represents the schema 0x1, since all members of the data subset at the final node
of this path take feature values 0 and 1 for z; and x3 respectively. We often use the term
order to represent the number of non-wildcard values in a schema. The following section
views a decision tree in the light of schemata and describes a algorithm to extract Fourier
coefficients from a tree.

4.2 Extracting and Calculating Significant Fourier Coefficients from
a Tree

Considering a decision tree as a function, the Fourier transform of a decision tree can be
defined as:

wy = |A|Zf (1)

x€EA
X€Sy X€S, x€Sy,
_ |Sl1| . |Sl2‘ . |Sln‘ .
= A (ua)vs(e) + T F(ha) 5 y(ha) o RS () () 3)

(4)

Where A denotes the complete instance space, Sj, is an instance subspace which i** leaf node
l; covers and h; is a schema defined by a path to I; respectively (Note that any path to a
node in a decision tree is essentially a subspace or hyperplane, thus it is a schema).

Lemma 2 For any Fourier basis function 15, > ., ¥5(x) = 0.

Proof: Since Fourier basis functions form an orthogonal set,

2 xen Yi(¥) = Dxen o (x)¥5(x) =

Here, 1 is the zero-th Fourier basis function, which is constant (one) for all x. B

Lemma 3 Let h; be a schema defined by the path to a leaf node l;. Then if j has a non-zero
attribute value at a position where hy has no value (wild-card),

ZxESz,- f(x)¢5(x) = f(hy) ersli Pi(x) = 0.

Where S), is the subset that h; covers.

Proof: Letj = (jinjout), where jin, are features which are included h; and jo,: are features not
in h; respectively. Since all values for ji, are fized in hy, 5, (x) is constant for all x € Sj,.



And S;; forms redundant (multiples of) complete domain with respect to jout. Therefore for
a leaf node [;,

S rEvix) = Y fh)g(x)

XESli XES[

= Z %m wJout )

XESl

= f)gs(he) Y W (x)

xX€ESy,

= (0 n

Lemma 4 For any Fourier coefficient w; whose order is greater than the depth of a leaf
node l;, ExESl, ¥5(x) = 0. If the order of w; is greater than the depth of tree, then w; = 0.

Proof: The proof immediately follows from Lemma 3. B

Thus, for a FC wj; to be non-zero, there should exist at least one schema h that has
non-wild-card attributes for all non-zero attributes of j. In other words, there exists a set
of non-zero FCs associated with a schema h. This observation leads us to a direct way of
detecting and calculating all non-zero FCs of a decision tree: For each schema h (or path)
from the root, we can easily detect all non-zero FCs by enumerating all FCs associated with
h.

Before describing details of the algorithm, let us define some notations. Operator & is
defined over a string h and an attribute-value pair, (zg,). If z; is the k-th attribute (or
feature), it outputs a new string hy by replacing k-th value of h with i. For example, for h
= 1’ and the feature z;, hw (1,1) = 11x. Here, we assume indezring starts from zero. &
operates on both schemata and partitions.

Next, let us define a function §(zy), which takes in x; as an input and outputs a set of
(k,1) pairs. Here, k denotes that xj is the k-th attributes and ¢ is a non-zero value of zj. If
xy, has the cardinality of Ay, then §(zx) = {(k,1), (k,2), ..., (k, \e — 1) }.

Let us define another operator ® over a set of partition S and é(xy). It outputs a new
set of partitions by applying & over all possible pairs between S and §(zy). This can be
considered as Cartesian product of S and 0(zy). For example, let S = {000,010} and x5
be the 2™¢ attribute of cardinality two (with possible non-zero value of 1). Then, §(z,) =
{(2,1)} and S ® §(z2) = {000 (2,1),010w (2,1)} = {001, 011}.

Finally, let us consider a non-leaf node n that has d children. In other words, there exist d
disjoint subtrees below n. If x; is the feature appearing in n, then F}, (i) denotes the average
output value of domain members covered by a subtree accessible through the i-th child of
n. For example, in Figure 2, F,, (0) is ; and F,,(1) is one. Note that F}, (4) is equivalent to
the average of schema h, where h denotes the path (from the root node) to i-th subtree of
the node where z; appears.

The algorithm starts with pre-calculating all Fy, (¢)-s (This is essentially recursive “Tree-
Visit” operation). Initially, S = {000...0} and corresponding wggo. ¢ is calculated with overall



Figure 2: An instance of Boolean decision tree that shows average output values at each
subtree.

average of output. In Figure 2, it is:

1,11 _3
X1+t x1l=41

The algorithm continues to extract all remaining non-zero FCs in recursive fashion from the
root. If we assume that the tree in Figure 2 is built from data with three attributes z, x;
and xo then we can write S ® §(x1) = {010} and w1 is computed using Equation 1:

X

—

Wo10 =

(*0%)1pg10 (+0%) + % X f(%1%)1hg10(*1%)

21 (0)2Po10 (%0%) + % X Fy, (1)1bo10 (*1%)

X
B!

1
X ><1+§><1><(—1)

1

I
|
N — DN —
I
|
|

BN =N =N

=~

For x5, S = {000,010} and S ® §(x2) = {001,011}. wgo1 and wp;; are computed similarly as
wo1o- The pseudo code of the algorithm is presented in Figure 3.

4.3 Fourier Spectrum of an Ensemble Classifier

The Fourier spectrum of an ensemble classifier that consists of multiple decision trees can
be computed by aggregating the spectra of the individual base models. Let f(x) be the
underlying function computed by a tree-ensemble where the output of the ensemble is a
weighted linear combination of the outputs of the base tree-classifiers.

f(x) = arfi(x) +aafo(x) + ... + an fr(x)



1 Function ExtractFS(input: Partition Set S, Node node, Schema h)
2 xy +— feature appearing in node

4 k < position of zy

5 size < |;L:|‘1if“

6 for each je N

7 for each possible value ¢ of atir
8 h; + hw (k,1)

9 wj < wy + size x Fy, (i)1;(hy)

10 end

12 end

13 S+ SUN

14 for i child node node; of node

15 h; « hw(k,1)

16 ExtractFS(S,node;, h;)

17 end

18 end

Figure 3: Algorithm for obtaining Fourier spectrum of a decision tree. A, denotes the
cardinality of attribute z; and |node| denotes the size of subspace node covers. |A| is the
size of the complete instance space. k in line 4 denotes that z; is the k-th attribute.

= o Z wj(l)%(x) + ap Z wJ@%(x) +

jeN jEJ2

o Foag Z wj(")%(x)

J€Jn

where f;(x) and a; are i"* decision tree and its weight respectively. .J; is set of non-zero
Fourier coefficients that are detected by i decision tree and w!”

5 1s a Fourier coefficient in
J;. Now equation 5 is written as:

fx) = ) wi(x)

jeJ

where w; = Y"1, a,-wjgi) and J = U}, J;. The following section extends the Fourier spectrum-
based approach to represent and aggregate decision trees to domains with multiple class
labels.

4.4 Fourier Spectrum of Multi-Class Decision Trees

A multi-class decision tree has k > 2 different class labels. In general, we can assume
that each label is again assigned a unique integer value. Since such decision trees are also



functions that map an instance vector to numeric value, the Fourier representation of such
tree is essentially not any different. However, the Fourier spectrum cannot be directly applied
to represent an ensemble of decision trees that uses voting as its aggregation scheme. The
Fourier spectrum faithfully represents functions in closed forms and ensemble classifiers are
not such functions. Therefore, we need a different approach to model a multi-class decision
trees with the Fourier basis.

Let us consider a decision tree that has k classifications. Then let us define &; to be the
Fourier spectrum of a decision tree whose class labels are all set to zero except the i-th class.
In other words, we treat the tree to have a Boolean classification with respect to the i-th
class label. If we define f*)(x) to be a partial function that computes the inverse Fourier
transform using 3, classification of an input vector x is written as:

Fx) = e fYx) + e f®(x) + -+ afO(x) (5)

where each ¢; corresponds to a mapped value for the i-th classification. Note that if x belongs
to j-th class, f®(x) = 1 when i = j, and 0 otherwise.

Now let us consider an ensemble of decision trees in weighted linear combination form.
Then f*)(x) can be written as:

F®(x) = a1f1(1)(x) + a2f2(2) (x) + - 'alfl(l) (x)

where a; and fz-(k)(x) represent the weight of i-th tree in the ensemble and its partial function
for the k-th classification respectively.

Finally, the classification of an ensemble of decision tree that adopts voting as its aggre-
gation scheme can be defined as:

f(x) = argmax;, (f®(x))

In this section, we discussed the Fourier representation of decision trees. We showed that
the Fourier spectrum of a decision tree is very compact in size. In particular, we proved the
exponential decay property is also true for a Fourier spectrum of non-Boolean decision trees.
In the next section, we will describe how the Fourier spectrum of an ensemble can be used
to construct a single tree.

5 Construction of a Decision Tree from Fourier Spec-
trum

This section discusses an algorithm to construct a tree from the Fourier spectrum of an
ensemble of decision trees. The following section first shows that the information gain
needed to choose an attribute at the decision nodes can be efficiently computed from the
Fourier coefficients.



5.1 Schema Average and Information Gain

Let us define the schema average function as follows:
1
¢(h) = ] > ) (6)

where f(x) is the classification value of x and |h| denotes the number of members in schema
h.

Recall that a schema h denotes a path to a node n, in a decision tree. Consequently, the
average classification value of h essentially illustrates the classification confidence at ny (in
binary classification problems). ¢(h) can also used to compute the entropy at ny:

confidence(h) = max(¢(h),1— ¢(h))
entropy(h) = —¢(h)logé(h) — (1 — ¢(h))log(1 — ¢(h))

The computation of ¢(h) using Equation 6 for a given ensemble is not practical since we
need to evaluate all x € h. Instead we can use the following expression that computes ¢(h)
directly from the given FS:

2mi(BLPL 4y mbm )

gh) = > > exp a T Nm lwg pyp0) (7)

where h = * % xby * * % by * x % b,,, * ¥x that has m non-wildcard values b; at position j; and
pi € {0,1,...,\;; — 1}. A similar Walsh analysis-based approach for analyzing the behavior
of genetic algorithms can be found elsewhere [11].

Using Equation 7 as a tool to obtain information gain, it is relatively easy to come up with
a version of ID3 or C4.5-like algorithms that work using the Fourier spectrum. However,
such a naive approach is computationally inefficient. The computation of ¢(h) requires
an exponential number of FCs with respect to the order of h. Thus, the cost involved in
computing ¢(h) increases exponentially as the tree becomes deeper. Moreover, since the
F'S of the ensemble is very compact in size, most FCs involved in computing ¢(h) are zero.
Therefore, the evaluation of ¢(h) using Equation 7 is not only inefficient but also involves
unnecessary computations.

Construction of a more efficient algorithm to compute ¢(h) is possible by taking advan-
tage of the recursive and decomposable nature of Equation 7. When computing the average
of order [ schema h, we can reduce some computational steps if any of the order /-1 schemata
which subsumes h is already evaluated. For a simple example in the Boolean domain, let us
consider the evaluation of ¢(x1 %0 x). Let us also assume that @(*1 * *x) is pre-calculated.
Then, ¢(x1 * 0 x %) is obtained by simply adding wggo100 and —wo1g100 t0 G(*1 * *x). This
observation leads us to an efficient algorithm to evaluate schema averages. Recall that the
path to a node from the root in a decision tree can be represented as a schema. Then,
choosing an attribute for the next node is essentially the same as selecting the best schema
among those candidate schemata that are subsumed by the current schema and whose orders
are just one higher. In the following section, we describe a tree construction algorithm that
is based on these observations.



Function TCFS(input: Fourier Spectrum FS)
Initialize Candidate Feature Set CFSET
create root node
h «— (kkk. . %%%)
root < Build(h, FS,SFSET)
return root

end

~NOo Ok WN -

Figure 4: Algorithm for constructing a decision tree from Fourier spectrum (TCFS).

5.2 Bottom-up Approach to Construct a Tree

Before describing the algorithm, we need to introduce some notations. Let hi_; and h be
two schemata. The order of hy_; is one higher than that of h. Schema hj_; is identical to
h except at one position—the k-th feature is set to ¢. For example, consider schemata h =
(*1**2) and hs_; = (x1 % 12).

Here we assign an integer number-based ordering among the features (zero for the leftmost
feature). 7(h) denotes a set of partitions that are required to compute ¢(h) (See Equation 7).
A k-fized partition is a partition with a non-zero value at the k-th position. Let £(k) be a
set of order one k-fixed partitions; v(hi—;) be the partial sum of ¢(hg_;) which only includes
k-fixed partitions. Now the information gain achieved by choosing the k-th feature with a
given h is redefined using these new notations:

Ap—1

Gain(h, k) = entropy(h) — " Z entropy (hy—;)
entropy(hy_y) = —o(hs_s)log(é(hy_i)) — (1 — p(hy_i)) log(1 — (he_s))

¢p(hp=;) = é(h)+ y(hi=)
Y(hg—i) = Z ¥ (=i )w;

jer(h)®E(k)

where ® is the Cartesian product and )\ is the cardinality of the k-th feature, respectively.

Now we are ready to describe the Tree Construction from Fourier Spectrum (TCFS)
algorithm, which essentially notes the decomposable definition of ¢(hy—;) and focuses on
computing y(hy—;)-s. Note that with a given h (the current path), selecting the next feature
is essentially identical to choose the k-th feature that achieves the maximum Guain(h, k).
Therefore, the basic idea of TCFS is to associate most up-to-date ¢(hy—;)-s with the k-th
feature. In other words, when TCFS selects the next node (after some i is chosen for hy = i),
h;_; becomes the new h . Then, it identifies a set of FCs (We call these appropriate FCs) that
are required to compute all hy_;-s for each feature and computes the corresponding entropy.
This process can be considered to update each ¢(hy—;) for the corresponding k-th feature as
if it were selected. The reason is that such computations are needed anyway if a feature is
to be selected in the future along the current path. This is essentially updating ¢(hy_;)-s for
a feature k using bottom-up approach (following the flavor of dynamic programming). Note
that ¢(hy—;) is, in fact, computable by adding y(hx—;) to ¢(h). Here y(hg_;)-s are partial



sums that only current appropriate FCs contribute. Detection of all appropriate FCs requires
a scan over the FS. However, they are split from the FS once they are used in computation,
since they are no longer needed for the calculation of higher order schemata. Thus it takes
a lot less time to compute higher order schemata; note that it is just opposite to what we
encountered in the naive implementation. The algorithm stops growing a path when either
the original FS becomes an empty set or the minimum confidence level is achieved. The
depth of the resulting tree can be set to a pre-determined bound. A pictorial description of
the algorithm is shown in Figure 6. Pseudo code of the algorithm is presented in Figures 4
and 5.

The TCFS uses the same criteria to construct a tree as that of the C4.5. Both of them
require a number of information-gain-tests that grows exponentially with respect to the depth
of the tree. In that sense, the asymptotic running time of TCFS is the same as that of the
C4.5. However, while the C4.5 uses original data to compute information gains, TCFS uses a
Fourier spectrum. Therefore, in practice, a comparison of the running time between the two
approaches will depend on the sizes of the original data and that of Fourier spectrum. The
following section presents an extension of the TCFS for handling non-Boolean class labels.

5.3 Extension of TCFS to Multi-Class Decision Trees

The extension of TCFS algorithm to multi-class problems is immediately possible by redefin-
ing the “entropy” function. It should be modified to capture an entropy from the multiple
class labels. For this, let us first define ¢()(h) to be a schema average function that uses J;
(See Section 4.4) only. Note that it computes the average occurence of the i-th class label
in h. Then the entropy of a schema is redefined as follows.

k
entropy(h) = - ¢%(h)log¢®(h)
i=1
where k is the number of class labels.

This expression can be directly used for computing the information gain to choose the
decision nodes in a tree for classifying domains with non-Boolean class labels.

In this section, we discussed a way to assign a confidence to a node in a decision tree, and
considered a method to estimate information gain using it. Consequently, we showed that a
decision tree construction from the Fourier spectrum is possible. In particular, we devised
TCFS algorithm that exploits the recursive and decomposable nature of tree building process
in spectrum domain, thus constructing a decision tree efficiently. In the following section,
we will discuss empirical verification of the proposed Fourier spectrum-based aggregation
approach.

6 Empirical Study of Ensemble Models with Fourier
Analysis

This section reports the experimental performance of the proposed decision tree aggregation
scheme using a semi-synthetic data stream with 100 discrete attributes. The objective is to



continuously evolve a decision tree-based predictive model for a particular Boolean attribute.
The data-stream generator is essentially a C4.5 decision tree learned from three years of
Nasdaq 100 stock quote data. The original data is pre-processed and transformed to discrete
data by encoding percentages of changes in stock quotes between consecutive days. For
these experiments, we assigned 4 discrete values that denote levels of changes. Decision
trees predict whether the Yahoo stock is likely to increase or decrease based on the attribute
values of the 99 stocks.

We assume a non-stationary sampling strategy in order to generate the data. Every leaf
in the decision tree-based data generator is associated with a certain probability distribution.
This distribution is changed many times during a single experiment. We also added white
noise to the generator. A test data set of 10,000 instances is generated from the data source
in advance to the experiment.

6.1 Classification Accuracy of Naive Bagging and Arcing Based
Model

We implemented versions of BEM (naive Bagging), Arcing and AdaBoost suitable for a
stream data mining environment as discussed in the previous section. We performed various
tests over the validation data which are described above. We studied the accuracy of each
model with various sizes (IV) of data blocks at each update. We used N = 100, 200, 300, 400
and 500. All the results were measured out of 100 iterations (or updates). We performed tests
on all three implementations of ensemble models, BEM (Bagging), Arcing and AdaBoost.
However, we only report the results of Bagging and Arcing here since the AdaBoost did not
perform well, compared to the other two.

Figure 7 plots the classification accuracies of Bagging and Arcing with various data
block sizes. It also compares the classification accuracies that are measured with the Fourier
spectrum of each model in Figure 8. The graph indicates that the two representations (tree
ensemble and its Fourier spectrum) are functionally equivalent.

6.2 Fourier Spectra of Ensemble Models: Experimental Results

This section shows the distribution of energy over each Fj (all non-zero Fourier coefficients
of order k),

BF) = 3 i

w;EFy,

where || - || denotes the magnitude (Ls norm) of w;.

Figure 9 (Left) shows distribution of the first five E(F;) for both Bagging and Arcing
ensemble models discussed in the previous section. All decision trees in the original ensemble
models have a depth of five or six, which bounds the maximum Fourier Coefficient (FC) order
to six. However, as clearly demonstrated in the figure, most of the information (or energy) is
concentrated at lower order Fi-s. The average magnitude of FCs at each order is plotted in
Figure 9 (Right). The graph also shows rapid decrease of energy as order grows. It faithfully
demonstrates the exponential decay property as in Fourier spectrum of a single decision tree.



Block Size FCs Decision Nodes FCs Decision Nodes
(Bagging) (Bagging) (Arcing) (Arcing)
100 103 3008 151 3300
200 148 4288 322 5216
300 256 4904 688 6092
400 295 5544 1075 6836
500 319 6096 1336 7468

Table 1: The number of FCs sufficient for classification, when compared to the number of
decision nodes in the original ensemble model. Both FCs and decision nodes are collected
from 100 decision trees that are learned with various block sizes.

To see how the energy, preserved in each Fj, affects the classification, we first performed
a classification accuracy test using the first two Fi-s. We repeated the test by including
the next higher F; 1 at a time. This is essentially to discover a small subset of F'S which
is sufficient for classification. Classification was done using the inverse Fourier transform.
The experiment was conducted with the same data set mentioned previously. Also, it was
restricted to a data block size of 500. Figures 10 compare classification accuracy of each
subset of the Fourier spectrum in comparison with regular decision tree ensemble models
which are learned with Bagging and Arcing respectively. Even with Fy, F; and F;, we
observed decent classification accuracy. The difference from regular ensemble models became
negligible when F3 was included in the classification. This is indeed an empirical verification
of exponential decay property of Fourier Coefficients in terms of classification accuracy.

We also studied the size of Fourier spectra of ensemble models in terms of the number of
FCs. We noted that the size of Fourier spectra can be reduced significantly by neglecting any
FC whose magnitude is small. For this, we sorted the FCs, which are included in Fy, ..., Fs,
in the descending order by their magnitudes and plotted accumulated energy distribution.
Figures 11 show these graphs. For both Bagging and Arcing models, most of the energy
is preserved in a small percentage of FCs (from the top), which indicates that most FCs
have close-to-zero magnitudes. It should be noted that percentages are defined over FCs
we extracted from 100 trees, not over the entire FCs (in the complete Fourier domain). We
also charted classification accuracy versus percentage of FCs (from the top) and observed
that less than two percent of the FCs are sufficient for classification (See Figures 12). In our
implementation, 28 bytes are needed to hold a FC and 72 bytes for a decision node. When
compared to the number of decision nodes in 100 decision trees, two percent of the all FCs
is a significant reduction in representing an ensemble model. Table 1 compares the number
of nodes in an ensemble of decision trees and the numbers of the FCs when approximately
the same classification accuracy was observed. The table shows that for each block size in
the current experimental set up, the number of FCs in the Fourier spectrum of the ensemble
genrated by Arcing is larger than that constructed by Bagging. The following section presents
experimental results regarding the performance of the tree construction algorithm.



Type | Block | Average | Ensemble | Fourier
Size Tree

Bagging | 100 | 79.45(%) | 88.68(%) | 88.11(%)

200 | 89.68(%) | 94.11(%) | 92.75(%)

300 | 92.67(%) | 95.57(%) | 94.82(%)

Arc-fx 100 | 73.18(%) | 92.26(%) | 91.83(%)

200 | 87.75(%) | 96.21(%) | 95.28(%)

300 | 90.98(%) | 97.78(%) | 96.32(%)

Table 2: Accuracies of ensembles and Fourier trees. Average stands for the average accuracy
of individual base model in an ensemble.

Type | Block Confidence
Size 0.5-0.6 0.6-0.8 | 0.8-1.0
Bagging | 100 | 71.11(%) | 71.04(%) | 100(%)
200 | 63.52(%) | 67.65(%) | 100(%)

300 | 64.01(%) | 75.1(%) | 99.1(%)
Arc-fx 100 | 73.08(%) | 100(%) | 100(%)
200 | 78.72(%) | 99.5(%) | 100(%)
300 | 75.33(%) | 100(%) | 100(%)

Table 3: The accuracies leaf nodes of different confidence levels.

6.3 Tree Construction using TCFS

This section reports the results of the proposed TCFS algorithm. TCFS is applied to con-
struct decision trees from Fourier spectra of Bagging and Arc-fx ensembles described in
Table 1. In particular, we report the results of N=100, 200 and 300.

Table 2 compares the classification accuracies of the original ensemble models and the
trees that are constructed from their aggregated Fourier spectrum. We call these Fourier
Trees. Also, the average accuracy of an individual tree in an ensemble is shown in Table 2.
Since most trees in each ensemble have depths of less than 5, we fixed the depth of each
Fourier tree to 5. We also set the minimum confidence level (for early stopping criteria)
to 0.9. Interestingly enough, we could construct Fourier trees that are comparable to the
original ensembles.

Table 3 shows how the confidence associated with each leaf node in the aggregated tree
affects the accuracy. For this we divide confidence ranges into three groups; [0.5,0.6), [0.6,0.8)
and [0.8,1.0]. We then measured the average accuracy performance of each group. The results
clearly convey the idea that leaf nodes with high confidences tend to be more accurate. This
confirms that our original intention of extracting descriptive patterns is valid. One interesting
observation is that a leaf with a relatively low confidence produces a high accuracy in Arc-fx,
which is not the case in Bagging.

In this section, we presented the empirical analysis of the Fourier spectra of two ensemble
models and the trees constructed from them. In particular, we studied how the energy dis-



tribution of each model in the Fourier domain affects the overall performance (e.g., accuracy
and storage overhead). Various experimental results reported here strongly confirm that
a complex ensemble model can be reduced to a very compact Fourier spectrum. Various
experimental results reported here strongly confirm that a complex ensemble model can be
reduced to a very compact Fourier spectrum and a tree constructed from it. Particularly,
we illustrated comparable accuracy performances of the Fourier trees. We also showed that
confidences associated with each node can be effectively used as a measure to extract sig-
nificant patterns. Although we did not measure the precise time complexity, detecting and
extracting significant FCs from a decision tree is very fast; we observed it takes less than a
second to extract significant FCs from a decision tree of around 150 nodes on a Pentium IIT
1 GHz PC.

7 Conclusions

This paper offers several new developments in our research on the Fourier spectrum of deci-
sion trees for mining data streams in a mobile and distributed environment. This particular
work however considers the problem of mining data streams using the Fourier spectrum of
decision tree ensembles without referring to its mobile and distributed applications.

This paper presents a novel approach to construct a single decision tree from an ensemble
of trees. An ensemble model often includes a large number of base models (decision trees
in our case). This is true for applications involving either data streams or offline databases.
Particularly in data stream environments, data stacks up quickly. So we need to maintain
an up-to-date model in a very compact form. Furthermore, a complex ensemble model
does not lend itself to knowledge discovery in a human-friendly format due to its complex
internal structure. Reducing a complex ensemble model into a simple tractable entity is a
prerequisite step toward extracting the underlying knowledge. In this paper, we proposed a
Fourier spectrum approach that addresses these issues.

We showed that the information gain can be directly computed from the Fourier spec-
trum of an ensemble classifier. Subsequently, a fast algorithm that constructs a tree from
the spectrum was proposed. Since the structure of an ensemble classifier is believed to be
complex, we specifically proposed a measure to extract significant patterns out of the ag-
gregated tree. We extended the technique for dealing with domains with non-Boolean class
labels. We studied both analytical and practical aspects of the proposed technique. We also
proved the exponential energy-decay-property of the Fourier spectrum of a decision tree with
non-Boolean categorical attributes.

The Fourier representation-based approach presented in this paper is applicable to cat-
egorical data. If the features are continuous then we first need to discretize them before
learning the tree. We need to explore techniques for constructing the spectrum of the trees
that dynamically discretize continuous features while building the tree, resulting in different
discretizations in different portions of the tree. We plan to explore this in the future.



Acknowledgments

The authors acknowledge supports from the NASA (NRA) NAS2-37143 and the United
States National Science Foundation CAREER award 1IS-0093353.

References

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning, 36(1-2):105-139, 1999.

Leo Breiman. Bias, variance and arcing classifiers. Technical Report 460, Statistics
Department, University of California at Berkeley, 1996.

Leo Breiman. Pasting small votes for classification in large databases and on-line.
Machine Learning, 36(1-2):85-103, 1999.

Walter Van de Velde. Incremental induction of topologically minimal trees. In Proceed-
ings of the Seventh International Conference on Machine Learning, pages 66—74, San
Mateo, CA, 1990. Morgan Kaufmann.

Thomas G. Dietterich. An experimental comparison of three methods for constructing
ensembles of decision trees: Bagging, boosting and randomization. Machine Learning,
40(2):139-158, 2000.

Pedro Domings and Geoff Hulten. Mining high-speed data streams. In Sizth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston,
MA, August, 2000.

Harris Drucker and Corrina Cortes. Boosting decision trees. Advances in Neural Infor-
mation Processing Systems, 8:479-485, 1996.

Wei Fan, Sal Stolfo, and Junxin Zhang. The application of adaboost for distributed,
scalable and on-line learning. In Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Diego, California, 1999.

Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In
Proc. 13th International Conference on Machine Learning, pages 148-146, Murray Hill,
NJ, 1996. Morgan Kaufmann.

Johannes Gehrke, Venkatesh Ganti, Raghu Ramakrishnan, and Wei-Yin Loh. BOAT —
optimistic decision tree construction. In Proceedings of SIGMOD, ACM, pages 169-180,
1999.

D. Goldberg. Genetic algorithms and Walsh functions: Part I, a gentle introduction.
Complex Systems, 3(2):129-152, 1989.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58:13-30, 1963.



[13] G. Hulten, Spencer L., and P. Domingos. Mining time-changing data streams. In
Proceedings of the Seventh International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, 2001. ACM Press.

[14] H. Kargupta and B. Park. Mining time-critical data stream using the Fourier spectrum
of decision trees. In Proceedings of the IEEE International Conference on Data Mining,
pages 281-288. IEEE Press, 2001.

[15] H. Kargupta, B.H. Park, S. Pittie, L. Liu, D. Kushraj, and K. Sarkar. Mobimine:
Monitoring the stock market from a PDA. ACM SIGKDD Ezplorations, 3(2):37-46,
January 2002.

[16] E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum.
SIAM Journal oo Computing, 22(6):1331-1348, 1993.

[17] S. W. Kwok and C. Carter. Multiple decision trees. Uncertainty in Artificial Intelligence
4, pages 327-335, 1990.

[18] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier transform, and
learnability. Journal of the ACM, 40:607—620, 1993.

[19] R. Maclin and D. Opitz. An empirical evaluation of bagging and boosting. In Proceedings
of the Fourteenth International Conference on Artificial Intelligence, pages 546-551,
Cambridge, MA, 1997. AAAI Press / MIT Press.

[20] D. Margineantu and T. Dietterich. Pruning adaptive boosting. In Proceedings, Four-
teenth Intl. Conf. Machine Learning, pages 211-218, 1997.

[21] Christoper J. Merz and Michael J. Pazzani. A principal components approach to com-
bining regression estimates. Machine Learning, 36(1-2):9-32, 1999.

[22] David Opitz and Richard Maclin. Popular ensemble methods: An empirical study.
Journal of Artificial Intelligence Research, 11:169—-198, 1999.

[23] M. P. Perrone and L. N Cooper. When networks disagree: Ensemble method for neural
networks. In R. J. Mammone, editor, Neural Networks for Speech and Image processing.
Chapman-Hall, 1993.

[24] A. L. Prodromidis, S. J. Stolfo, and P. K. Chan. Pruning classifiers in a distributed meta-
learning system. In Proceedings of the First National Conference on New Information
Technologies, pages 151-160, 1998.

[25] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.

[26] J. Ross Quinlan. Bagging, boosting and C4.5. In Proceedings of AAAI’96 National
Conference on Artificial Intelligence, pages 725-730, 1996.

[27] Jeffrey C. Schlimmer and Richard Granger Jr. Beyond incremental processing: Tracking
concept drift. In AAAIL Vol. 1, pages 502-507, 1986.



[28] W. Nick Street and YongSeog Kim. A streaming ensemble algorithm (sea) for large-
scale classificaiton. In Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, 2001.

[29] P. E. Utgoff. ID5: an incremental ID3. In J. Laird, editor, Proceedings of the Fifth
International Conference on Machine Learning, pages 107-120, San Mateo, CA, 1988.
Morgan Kaufmann.

[30] P. E. Utgoff. Incremental induction of decision trees. Machine Learning, 4:161-186,
1989.

[31] Paul E. Utgoff. An improved algorithm for incremental induction of decision trees.
In Proc. 11th International Conference on Machine Learning, pages 318-325. Morgan
Kaufmann, 1994.



Appendix: The Exponential Decay Property of the non-
Boolean Fourier Spectrum

Let us consider [-dimensional discrete domain A = H;ZI{O,...,)\j — 1}, where each ele-

ment x € A is denoted as (z1, x9, ..., x;). Note that Ay, Ay, - -+, A\, denote the cardinalities of

Z1, T, ..., 7; respectively. That is, the component z; can take only the values 0,1,...,A; —1.
The Fourier basis function that corresponds to the partition j is,

3 27 .
%}\ (x) =10}, eXP’\_”zmme

The Fourier transform that corresponds to the partition j is then,
1 A
Wi = Hi:l; Z%‘ (x)¢(x)
g X
The inverse Fourier transform for an instance vector x is,

Fx) = 3 iy (x)

where EJA(X) is the complex conjugate of ¢ (x).

Now we prove the exponential decay property of Fourier spectrum in a non-Boolean
domain. For the sake of simplicity, let us further assume that each \; = 2%, where g; is any
non-negative integer, so that the j-th non-binary variable can be represented using g; bits.
The results stated here are general and they extend easily to the case where the cardinalities
are not powers of two. In the following proof, we treat a schema'! as both a subset of A and
a string in A = H;Zl{*, 0,...,A; — 1}. A is the set of all schemata on A. The proof is based
on transforming each non-Boolean string in the [-dimensional space A to a (longer) Boolean
string in A’ = {0,1}%, where Q = Z;.:lqj. This is done by replacing each feature of a
string in A with its binary expansion. The following arguments establish a correspondence
between the energy contained in corresponding sets of Fourier coefficients in the spectrum
of the function defined on A and the function induced on A’ by the transformation. Thus,
since the exponential decay property holds for the Boolean case, it must hold for the general
discrete case as well.

We next define the transformation

kA A

formally. A’ refers to the set of all schemata on A’, that is, A’ = {x,0,1}?. We first define
feature-wise transformations

bj i {%,0,1,..,A; — 1} = {*,0,1}%

1A schema is a hyperplane that denotes a subset of domain members. It is essentially similarity based
equivalence class. Schemata is its plural form.




g
bj(w;) = { **..¥ if z; =%
) if z; € {0,1,...,A; — 1}

where xg is the g;-bit binary representation of z;. Now for any schema s = (s1, s2, ..., 51) € A,
k is defined as

Kt (81,82, -y 81) > (b1(81), ba(S2), .-, bi(s1))

k is essentially a map from an [-feature schema in an arbitrary discrete domain to a )-feature
schema in a binary domain. We note here that we treat A as a subset of A and thus can
apply « to elements of A. For a subset A C A we use the notation x(A) to denote the set
{k(x) | x € A}

Let us further assume that f(x) is a functional representation of a decision tree T whose
domain of definition is A. We establish some further before we proceed. We use I' to
denote the set of schemata {*,0}'. That is, schemata in I" have only zeroes at their fixed
(non-wildcard) features. We also define a set of schemata associated with any fixed schema
sel:

S(s)={h €A | hy=x,if s, = 0and by € {0,1,..., \), — 1}, otherwise}

where hj denotes the k-th feature in the schema h, and similarly for s;. Thus elements of
S(s) can have wildcards at those positions where s has zeroes.

Lemma 5 For any schema s € T,
—X
Domdi(x) = Y wiy(s(x))
ies Jjen(s)

Proof For any i € s,
mo= gy 2 SN

1
~[S(9)] 2

heS(s

ﬁ S F)uE(x)
)

x€h

where |h| and |S(s)| denote the sizes of h and S(s) respectively. Now for any i € s and
h € S(s), E:\(x) is invariant over x € h. Let us denote this value by Ei‘(h) Then we get

1
nizmz

heS(s

_ 1 wh)
= Bel 2w 2™

heS(s) xch

ﬁ 3 FE ()
)

x€h

1 —
= o 2 Hmh)
56,2



where ¢(h) is the average of f(x), for x € h. Now ¢(h) (by inverse Fourier transform) for
any h € S(s) is

" |n ZZ”‘ ~ n| Z”lZQﬁ Zﬂi@?(h)

z€h i€A iEA  z€h ics
Since Y cp E,X(h) equals 0 ifi ¢ s and |h| otherwise. Similarly, ¢(k(h)) for any h € S(s) is
h)) = ) wtj(x(h))
j€Es
Since for any h, ¢(h) = ¢(k(h)),

Z niw Z wiy (K

ics jek(s)

Therefore,
Zm@? Z wiY;(k(x)), for all x € h.
i€s jek(s

This completes the proof of the lemma. M
Now let us define 6(s) as

0(s) = {ies|o(i) = ofs)}

where o(i) and o(s) denote the orders of i and s respectively. 6(s) is a subset of s which
only includes partitions whose orders are the same as that of s. Now consider the following
corollary.

Corollary 1 For any 6(s) and &(0(3)),

Proof Let Ps,, be the set of all schemata that are obtained by replacing n of the *-s in s with
zero (there are (l_;(s)) such strings). Then,

St (x) = S mbn(x) + Z S S

i€f(s) kes réPs, keér
o(s)
= 2 umfmnf) + D (1" D D it
mek(s) r€Ps,n mek(r)
= wty(k())
jer(6(s))

The second equality follows from Lemma 5. B



Now let us rephrase Linial’s original lemma as follows. That is, in the Boolean Fourier
basis notation,

3wl < p(k)

o(j)>k
where p(k) decreases exponentially in k. Now consider the main lemma.

Lemma 6 In a non-Boolean [-dimensional discrete domain D, for any non-negative integer
k <1 and Fourier spectrum n;-s of a decision tree defined over D,

> Ml < p(k)

o(i)>k

where ||n;|| denotes the magnitude of n;.
Proof: For the sake of convenience, let us define,

fox) = Y mdi (%)
ich(s)
fn(S)(’{(x)) = Z wjth;(x)
jer(6(s))

Then, by Corollary 1, fs(x) = fu)(k(x)). Following Parseval’s Identity,

1 2 1 2
I Z fi(x) = Al Z sy (£(x))

x€EA xEA

= > Il

icf(s)

_ 2
= E W;

jer(d(s))

Since, for anyi € s and j € k(s), o(i) < o(j),

Do P =) >

o(s)>k icl(s) k(s) j€x(8(s))
2
< DU
o(j)>k
< p(k)

Thus, the non-Boolean Fourier spectrum of a decision tree also has the exponential decay
property. B



1 Function Build(input: Schema h,
Fourier Spectrum FS, Candidate Feature Set CFSET)
2 create root node
3 odr <« (1,order(h)+ 1)
4 Marked <+ ¢
5 for each Fourier Coefficient w; within odr from FS
6 ft = intersect(h,i,CFSET)
7 if ft is not ¢
8 for each value j of ft
9 update y(hs—;) with w;
10 end
11 add w; to Marked
12 end
13 end
14 if Marked is ¢
15 set label for root using average of h
16 return root
17 end
18 for each feature f; in CFSET
19 gain; < Gain(h, f;)
20 end
21 remove k£ with the maximum gain; from CFSET
22 root < k
23 FS « FS - Marked
24 for each possible branch br; of k
25 hy_; «+ update h with k=1
26 br; < Build(h,—;,FS, CFSET)
27 end
28 add k£ into CFSET
29 add Marked into FS
30 return root
31 end

Figure 5: Algorithm for constructing a decision tree from Fourier spectrum (TCFS). order(h)
returns the order of schema h. intersect(h, i) returns the feature to be updated using wj, if
such a feature exists. Otherwise it returns ¢.



(0%**)  (*0%*) (**Q%) (***0) Update
(1*%) (1) (1% (*r1) D
0 1 ; 7 7
@ (00**) (*00*)  (*0%0) Update I
* so1%)  (roFD T
0/ 1 (10%) (cor) (o)
N *—— Update
@ (000%) (-000) | PR D
(100%) (*001) —
A snapshot of Evaluated Split of Fourier
Tree Construction Schemata Spectrum

Figure 6: Illustration of the Tree Construction from Fourier Spectrum (TCFS) algorithm

Accuracy (%)

Accuracy of Bagging Ensemble Model

Accuracy of Arcing Ensemble Model

100 T T T T T T 100 T T T T T
block size of 100 —+— e - block size of 10@. =——+— |
block size of 200 —--x--- —m- o o W=7 DIOCH §i2€-0f 208 X
block size of 300 ---*--- - e size-of- soe
block size of 400 & o =8 g block size of 401 B
e . - -~ - -~ -block size of 508~ =w=—4 R S block size of 500 ——#--
-3 a * smenmee x e EEEEE
95 | R 95 | P o e 4
b
e
g
>
90 [ 4 g 9
3
3
8
<
85 | B 85
80 . . . . . . . . 80 . . . . . . . .
10 20 30 40 50 60 70 80 920 100 10 20 30 40 50 60 70 80 920 100

Number of Trees

Number of Trees

Figure 7: Classification accuracies of Bagging (Left) and Arcing Ensembles (Right) with
various block sizes.

Accuracy (%)

Figure 8: Classification accuracies of Bagging (Left) and Arcing Ensembles (Right)

98

96

Classification Accuracies of Fourier Spectrum (Bagging)
100

Classification Accuracies of Fourier Spectrum (Arcing)

T T
block size of 100 —+—
,,,,, - _m___blogksize of 200 -—-x---_
e i block size of 30 ™=-%- -
o block size-of 408
block size of 500

Accuracy (%)

L L L L L L L 78

block size of 100 —+—

30 40 50 60 70 80 90 100
Number of Trees

20 30 40 50 60 70 80 90
Number of Trees

100

with

various block sizes using their corresponding Fourier Spectra.



Energy Preserved Above Each Order of Fourier Spectra

0.16 T

Square Sum (Energy)
°
o
8
T

0.0003

Bagging Ensemble ——
Arcing Ensemble ---x---

0.0002

0.00015

.
Magnitude

0.0001

5e-05

Average Magnitude of Fourier Coefficients at Each Order

0.00025 ¥

Bagging Ensemble ——
Arcing Ensemble ---x---

L

Figure 9: Energy preserved Above each order of Fourier Spectra. (Left) Average magni-
tude of Fourier coefficients at each order. (Right) Each graph shows energy distribution of
ensemble of 100 decision trees for Bagging and Arcing with block size of 500.

Classification Accuracies of Bounded Fourier Spectrum (Bagging)

Classification Accuracies of Bounded Fourier Spectrum (Arcing)

100 T T T T T T T 100 T T T T T T T
upto order 1 —+— upto order 1 —+—
upto order 2 — S e upto order 2 ---x---
e Koo UDIO.OIDRT 3. e ¥ T o Oder 3 R
95 |- 4 95 7 4
rrrrrrrrrr S U VS S
B S OO
SO U N— IV * x
9 [ B 9 F B
g g
z z
g et g g et B
5 5
3 3
8 8
< <
80 q 80 b
sk — e —
. . . . . . . .

Number of Trees

20 30 40 50 60 70 80 90 100
Number of Trees

Figure 10: Classification accuracy of Fourier spectra as classifier when FC order is bounded
for both Bagging (Left) and Arcing (Right).



Energy

Figure
{Fo, F1, Fa, F3, Fa, Fs} for Bagging (Left) and Arcing (Right).

Accuracy (%)

100

Figure

Distribution of Energy vs Percentages of FCs Used (Bagging)

.
Energy
o
S
R

11:

L L
20 30 40 50 60 70 80
Percentage of Fourier Coefficients Used

Distribution of energy vs

Accuracy of Fourier Spectrum vs Percentages of FCs Used (Bagging)

90

100

Distribution of Energy vs Percentages of FCs Used (Arcing)

10

L L
20 30 40 50 60 70 80 90
Percentage of Fourier Coefficients Used

percentage of FCs from the

Accuracy of Fourier Spectrum vs Percentages of FCs Used (Arcing)

100

sorted

100

Accuracy (%)

80

85 I

e

12:

L
20 30 40 50 60 70 80
Percentage of Fourier Coefficients Used

Classification accuracies

65

100 0

10

L L
20 30 40 50 60 70 80 90
Percentage of Fourier Coefficients Used

vs percentage of FCs from the
{Fo, F1, Fa, F3, Fu, Fs} for both Bagging (Left) and Arcing (Right).

100

sorted



