Scalable, Distributed Data Mining Using An Agent Based Architecture

Hillol Kargupta, Ilker Hamzaoglu, Brian Stafford

Computational Science Methods Group
X Division, Los Alamos National Laboratory
P.O. Box 1663, MS F645
Los Alamos, NM, 87545

Office: (505) 667-8945
Fax: (505) 665-4479
e-mail: hillol@lanl.gov

Abstract: Algorithm scalability and the distributed nature of both data and computation deserve
serious attention in the context of data mining. This paper presents PADMA (PArallel Data Mining
Agents), a parallel agent based system, that makes an effort to address these issues. PADMA contains
modules for (1) parallel data accessing operations, (2) parallel hierarchical clustering, and (3) web-
based data visualization. This paper describes the general architecture of PADMA and experimental
results.

Scalable, Distributed Data Mining Using An Agent
Based Architecture

Hillol Kargupta, Ilker Hamzaoglu, Brian Stafford

Computational Science Methods Group

X Division, Los Alamos National Laboratory
P.O. Box 1663, MS F645
Los Alamos, NM, 87545

LAUR-96-3491, shorter version published in the Proceedings of High Performance Computing’97 &
Knowledge Discovery and Data Mining’97

Abstract

Algorithm scalability and the distributed nature
of both data and computation deserve serious at-
tention in the context of data mining. This paper
presents PADMA (PArallel Data Mining Agents),
a parallel agent based system, that makes an ef-
fort to address these issues. PADMA contains
modules for (1) parallel data accessing opera-
tions, (2) parallel hierarchical clustering, and (3)
web-based data visualization. This paper de-
scribes the general architecture of PADMA and
experimental results.

1 Introduction

Data mining involves extraction, transformation,
and presentation of data in useful form. As we
move more and more toward a paper-less society,
each of these components of data mining is likely
to face the challenges of dealing with large volume
of data. Apart from the sheer volume of the data,
the very distributed nature of the data storage
and computing environments is likely to play an
important role in the design of next generation of
data mining systems.

In this paper we explore the possibility of large
scale data mining using a very distributed in-
formation processing architecture. We present
PADMA (PArallel Data Mining Agents), an

agent based parallel data mining system. In
PADMA individual agents are responsible for lo-
cal data accessing, collaborative data analysis,
and web based interactive information visual-
ization. Although PADMA architecture is not
specific to any particular domain and currently
PADMA is being enhanced to handle both text
and numeric data, in this paper we describe only
the initial implementation of PADMA for un-
structured text data mining.

Section 2 introduces previous work on agent
based software systems and parallel data min-
ing. Section 3 presents a general overview of
the PADMA system. The parallel relational
database accessing operations of PADMA agents
are described in Section 4. Section 5 describes
the representation scheme of text documents and
the hierarchical clustering algorithm incorporated
in the agents. Section 6 describes the web-
based user interface and visualization module of
PADMA. Section 7 presents experimental results
on grounds of scalability and summarizes some
applications of PADMA in health informatics.
Section 8 concludes this paper and identifies the
on-going work.

2 Related Work

Although the motivation behind the initial de-
velopment of PADMA came from many different

domains, the main methodological approach was
based on two growing fields of computing: (1)
agent based information processing architecture
and (2) parallel computing. In this section we
briefly review previous efforts made in the area
of data mining using the above mentioned tech-
nologies.

Interest in agent based software systems soared
high during the last few years. An introduction to
intelligent agents can be found elsewhere (Maes,
1994; Foner, 1993). The demand for adaptive and
smarter software system lead to the incorporation
of intelligent agent based technology for address-
ing many different problems, such as automated
mail filtering (Maes, 1994; Lashkari, Metral, &
Maes, 1994), meeting scheduling (Kozierok &
Maes, 1993). Software agents are also used
for aiding information retrieval and processing
to extract higher level information. Moukas
(1996) reported the Amalthaea system that uses
agents to discover and filter information avail-
able in the world-wide-web. Amalthaea also used
evolutionary learning algorithms for generating
new agents. The efficacy of agents was evalu-
ated by the feedback from the user. McElligott
and Sorensen (1994) proposed an evolutionary,
connectionist approach for information filtering.
Their approach suggested using machine learning
algorithms to learn suitable representation of the
text documents and used feedback from the user
for supervised learning.

Parallel data mining is a growing field that
tries to exploit the benefits of parallel comput-
ing for mining large scale databases. Holsheimer,
Kersten, and Siebes (1996) developed a parallel
data mining tool, Data Surveyor, that consists
of a mining tool and a parallel database server.
It supported regular parallel database operations
and mechanisms for higher level rule induction.
Parallel algorithms for inducing association rules
have been reported elsewhere (Zaki, Ogihara,
Parthasarathy, & Li, 1996). They primarily fo-
cused on optimization issues for parallel rule in-
duction algorithms. The PARKA project (An-
derson, Hendler, Evett, & Kettler, 1994) is an-
other example of exploiting the strengths of par-
allel computing for processing knowledge bases.

Although the knowledge base of PARKA is not

Disk Disk
/a o0 ([]
h\

DM DM Intelligent
Agent Agent Blata
inin
Metadata Agant?
Information Information
Extraction Extraction

Fmﬁ/

Query Result

SQL Query

[Application]

User Request Result

WWW
User Interface

Figure 1: The PADMA architecture.

exactly same as the usual databases used in data
mining, it effectively demonstrated the use of par-
allel computing technology for processing large
amount of information. Shek, Mesrobian, and
Muntz (1996) reported the Conquest system for
parallel data mining of distributed geoscientific
data. This system exploits parallel query pro-
cessing, distributed data accessing capabilities for
geoscientific data mining. A genetic algorithm
based parallel data mining system, called GA-
MINER is reported elsewhere (Radcliffe, 1995).
This system first determines a suitable represen-
tation of data and then uses a parallel genetic al-
gorithm to detect patterns in the data. The scal-
ability of the system was investigated for shared
and distributed memory machines.

PADMA combines many features of the agent
based and parallel data mining systems. The fol-
lowing section presents an overview of PADMA.

3 Architecture Of PADMA

The PADMA is an agent based architecture for
parallel /distributed data mining. The goal of this
effort is to develop a flexible system that will ex-

ploit data mining agents in parallel, for the par-
ticular application in hand. Although PADMA
is not specialized for any particular kind of data
mining domain, its initial implementation used
agents specializing in unstructured text docu-
ment classification. Figure 1 shows the overall ar-
chitecture of PADMA. The main structural com-
ponents of PADMA are, (1) data mining agents,
(2) facilitator for coordinating the agents, and (3)
user interface. Each of these items are described
in the following.

Data mining agents are responsible for access-
ing data and extracting higher level useful in-
formation from the data. A data mining agent
specializes in performing some activity in the do-
main of interest. In the current implementation,
data mining agents specializes on text analysis
and classification.

Agents work in parallel and share their infor-
mation through the facilitator. The facilitator
module coordinates the agents, presents informa-
tion to the user interface, and provides feedbacks
to the agents from the user.

PADMA has a graphical web-based user inter-
face for presenting information extracted by the
agents to the user. The facilitator accepts queries
from the user interface in standard SQL (Struc-
tured Query Language) format; the queries are
broadcasted to the agents. Agents comes up with
the extracted information relevant to the query.
Facilitator collects the information and presents
it to the user.

The agents and facilitator of PADMA are de-
veloped using a Parallel Portable File System
(PPFS). Parallel Portable File System (PPFS)
user-level library was developed in the Com-
puter Science department in University of Illi-
nois at Urbana-Champaign (Huber, Elford, Reed,
Chien, & Blumenthal, 1995), (Huber, 1995). The
PADMA is designed in object-oriented style to
provide an extensible infrastructure and coded in
C++. MPI (Message Passing Interface) is used
as the message passing substrate for interprocess
communication. Each data mining agent uses the
underlying unix file system on the machines they
are executing on for carrying out their local in-
put/output operations. PADMA currently runs
on a cluster of Sun Sparc workstations and on

IBM SP-2. However it is easily portable to any
distributed memory machine provided that MPI
is operational on this machine and a unix file sys-
tem is used for serial input/output operations on
its nodes. The user interface is written for Java
sensitive browser. PADMA can be functionally
decomposed into three different components: (1)
parallel query processing and data accessing, (2)
hierarchical clustering, and (3) interactive clus-
ter/data visualization. Each of these components

of PADMA will be further elaborated in the fol-

lowing sections.

4 Parallel Data Accessing Oper-
ations By Agents

Accessing data is an important aspect of data
mining. In large scale data mining data access
input/output performance becomes a critical fac-
tor in the overall performance of the data mining
system. Accessing data in parallel may help de-
creasing the response time (Dewitt & Gray, 1992).

In PADMA, each data mining agent maintains
its own disk subsystem to carry out input/output
operations locally. This provides parallel data ac-
cess for the whole system. Currently striped and
blocked data distribution algorithms are used to
distributed documents across data mining agents.
Each agent and the facilitator also maintain a file
cache for caching the documents that they ac-
cess. Appropriate buffer management algorithms,
e.g. FIFO replacement policy, write-back and
prefetching, are employed to maximize the bene-
fit obtained from these caches.

Data mining agents in PADMA also provide
parallel relational database functionality. This
is achieved by storing each corpus, which con-
sists of a number of text documents, as a re-
lational database table with document number,
text, ngram vector attributes. Currently a sub-
set of SQL (Structured Query Language) is sup-
ported by PADMA. These include table creation
and deletion, hash index creation and deletion,
PADMA

achieves parallel query processing through intra-

parallel select and join operations.

operator parallelism.
This functionality is provided to help the users

to select the subset of the documents they want
to explore with clustering. PADMA provides a
special condition in an SQL query which helps
the users to select the documents related to a
keyword. For example, NGRAM = ELECTRON
condition can be used to select the data sets with
the NGRAM feature instantiated to the keyword
ELECTRON. Using this special condition users
can analyze data related to a keyword in two dif-
ferent ways. In the first method, PADMA can be
used to create a new table based on the outcome
of a query and then this new table can be an-
alyzed by PADMA agents. The second method
achieves the same functionality on the fly, i.e.
without creating a new table. This is done by
the query and cluster (we refer to the analy-
sis part by cluster operation, since the initial im-
plementation of PADMA had only unsupervised
cluster analysis capability) operation which com-
bines the querying and clustering operations by
first executing the query operation on the agents
and then feeding the selected data directly to the
analysis module. This is a much more scalable al-
gorithm compared to the first one, since it doesn’t
involve communicating with the facilitator except
reporting the final results. We used this method
in the performance experiments.

Parallel select operations in PADMA are car-
ried out independently by each data mining agent
without any interprocess communication. After
each agent is carried out the select operation on
its local data, the results are gathered by the fa-
cilitator which produces the final outcome of the
select operation by merging these individual re-
sults.

There are three major algorithms for imple-
menting join operations between two tables (De-
witt, Naughton, & Schneider, 1991), (Schneider
& Dewitt, 1989). Nested-join involves compar-
ing each tuple of the first table with all the tu-
ples of the second table, and it’s complexity is
O(n?). Sort-merge join reduces the complexity
to O(nlogn) by sorting both tables based on the
join attribute values. Then these sorted tables
are compared using binary search. Hash-join al-
gorithm partitions both tables into a number of
buckets based on the join attribute values, and
then matching is performed within each bucket

independently. This reduces the complexity to
O(n). Hash-join algorithm performs better than
the sort-merge join for equijoin operations unless
the tables are already in sorted order. However it
is ineffective for non-equijoin operations. In or-
der to effectively support both equijoin and non-
equijoin operations, sort-merge join algorithm is
implemented in PADMA..

A fragment and replicate (broadcast) strategy
is utilized to parallelize the sort-merge join algo-
rithm. Each data mining agent initially sorts its
part of both tables, and compares these parts.
Each agent then broadcasts its part of the small
size table to the other agents. After each agent
compares its part of the larger table against the
tuples of the small table it received from the other
agents, the results are gathered by the facilitator
which produces the final outcome of the join op-
eration by merging these individual results.

5 Parallel Data Analysis
Agents

By

In PADMA data analysis is primarily done by the
agents in a distributed fashion. Every agent re-
turns a “concept graph” to the facilitator which
could be null if an agent does not find anything
relevant to the user’s query. The facilitator is re-
sponsible for combining the concept graphs and
present the result to the interface in a user trans-
parent manner.

Although PADMA agents are currently being
provided with numeric data analysis algorithms,
experimental results reported here were produced
using agents that are capable of analyzing un-
PADMA agents uses
both supervised learning and unsupervised hier-
archical clustering techniques for generating the
concept hierarchy of document clusters.

structured textual data.

5.1 Text Data Mining Agents

The objective of text mining agents of PADMA is
to identify statistically significant document clus-
ters that may lead to identifying common pat-
terns among the documents in a text corpora.
Text mining involves two important steps: (1)

choosing/constructing the document representa-
tion and (2) finding of relations among the docu-
ments. PADMA uses a hierarchy of different rep-
resentations. Relations among the documents are
determined using both unsupervised hierarchical
clustering algorithms and optional user feedback
driven piecewise linear classifiers. Experiments
reported in this paper did not use any user feed-
back driven supervised learning. Therefore, in
the following sections we focus only on the unsu-
pervised clustering analysis of text data.

5.2 Representation and similarity

measure

The unsupervised component of the text mining
in PADMA is primarily based on statistical analy-
sis. A hierarchical clustering algorithm is used for
generating a concept graph relating documents
and clusters to each other. Usually clustering al-
gorithms work from a representation of the un-
derlying state space and a measure of similar-
ity between any two points from the state space.
Typical representation of text documents uses a
vector of weighted word frequencies (Salton, Al-
lan, Buckley, & Singhal, 1994) in the document.
However, word frequency based representations
are sometimes susceptible to spelling errors. An
alternate representation called n-gram was pro-
posed elsewhere (Damenshek, 1995). N-grams are
n-letter strings. The set of 1-grams is just the al-
phabet. The set of 2-grams is the set of pairs
of letters. With a 26 letter alphabet, there are
26™ possible n-grams. Spaces may be included
to indicate the boundaries of words. N-grams
have been successfully demonstrated for approxi-
mate text classification (Damenshek, 1995; Kim-
brell, 1988; Cavnar, 1993). PADMA uses a two
level representation for generating a hierarchical
classification of the documents, namely: (1) n-
gram representation for documents (2) or-grams
for cluster representation. An or-gram of a clus-
ter is simply a representation obtained by arith-
metic or operation among the corresponding n-
gram frequencies. This basically generates a vec-
tor of n-grams weighted by their relative frequen-
cies within the set of documents in a cluster. We
have used cosine of the angle between any two n-

First Pass Clusters

Second Pass Clusters

O Top of Hierarchy Refers to
al Documents in the Corpus

Input Documents :

Processed in Blocks
of Five Documents
for First Pass

Figure 2: Cluster hierarchy of documents.

grams or any two or-grams as the similarity mea-
sure among documents and clusters respectively.
Moreover, regular decision theoretic approaches
using first and second order distribution statis-
tics are adopted in order to minimize the decision
errors. The following section describes the hier-
archical clustering algorithm used in PADMA.

Hierarchical
Blocks of Data

5.3 Clustering Over

Figure 2 illustrates the idea of hierarchical clus-
tering used in PADMA. First consider the algo-
rithm running on one machine. One pass on the
first block produces cluster ¢ and document 5.
Document 5 is considered as cluster d for future
passes. The rest of the blocks are independently
processed in a first pass with their results con-
catenated in a file. The total results of the first
pass look like:

c = {1,2,3,4}, d = {5
g = {7,8,9,10}, £ = {
{13,14,15}.

Note that clusters are formed by binary combi-
nations, but only the end clusters of a level are
stored. There are three things to notice: interme-
diate clusters a,b,e, f,7 are omitted, nary clus-

ters are recorded, and outlying documents or clus-
ters may not be agglomerated until latter passes.
The last point shows that documents can combine
even if they do not start in the same block. For
example, document 5 is several blocks away from
11 and 12 but merges higher up in the hierarchy
in cluster m. A further detail can be seen in com-
paring clusters %, j and k. Clusters are formed in
order of nearness of members rather than in an
ordered scan of the input. Thus 7 was formed first
as 13 and 14 were the closest items in their block.
Likewise, j was formed before k& because 13, 14,
15 are more similar to each other than were 11
and 12.

The second pass is able to form interrelations
among documents from several blocks. If there
are a large number of blocks then O(logn) passes
will be needed to assure that all documents get
the chance of being interrelated. However, in re-
trieval, every branch is searched downward until
it can be eliminated or given a strong match. So
if a document (say 5) can not be related to its
ideal companion (say 15) until after it has been
clustered with less desirable neighbors, then the
or-gram can help. For a query that best matches
5 and 15, the centroid of o will show it has some
promise, but its or-gram will say that a minority
of its documents satisfy the query, so the search
will continue into data produced in the first pass.
Centroids for d, k, and j will be checked to show
d and j as relevant. Cluster d will show a match
with document 5, and j will show either a minor-
ity or majority match. In a minority match to
j, likely only 15 will be returned. For a major-
ity match to j, j will return all of its members.
The rational of the majority return, even if 13
were not close to the query, is that 13 has enough
in common with query matching documents 14,
15 that 13 is likely to be related to the query in
some interesting way. Highlighting may be used
to show either all strong similarities among the
results or just the portions of the results which
matched with the query.

In the case of multiple Data Mining Agents
(DMAs), each agent works independently on its
portion of the total documents and proceeds with
clustering until some small number of clusters,
five for example, are left at the top. Then the di-

agram can be seen as three Data Mining Agents
feeding their end results to a client. The client
can then cluster over a highly condensed amount
of input. The client then passes its results for dis-
play. User queries can be passed from the client
to the DMAs, with the results again passed up
to the client which can display deeper clusters if
there were too many matches, or display a reason-
able number of matched documents. If the user
clicks to select a particular cluster in a visual dis-
play, the centroid of the chosen cluster is sent as
a query vector to each of the DMAs. Again, the
combination of clustering over blocks and search-
ing down in the resulting hierarchy can overcome
deficiencies resulting from data being distributed
among separate machines or CPUs.

The only work trade-off is that more extensive
searches may be performed if nearest neighbors
tend to be far apart in the input. In this case the
data might have a cyclical pattern which can be
taken to advantage. For example, quarterly data
should be grouped by quarters for data that is
seasonally adjustable, or arranged with common
sources grouped together and sequenced in quar-
ter order for time series related data. Lagged or
phase shifted data can likewise be reordered ac-
cording to the period of the lag or shift. The
following section describes the web based user in-

terface of PADMA.

6 Web Based User Interface For
Data Visualization

PADMA provides a world wide web based user
interface for visual interaction with the system.
Users can specify the requested operation type
from the PADMA homepage through an HTML
form. This page is shown in Figure 3. The inter-
face then communicates with the PADMA system
through a cgi script which submits the request to
PADMA. After the requested operation is carried
out, the result is displayed to the user.

User interface currently supports five major op-
erations. Create option is used to create a table
out of unstructured text documents. Users should
supply these documents to PADMA. Read option

is used to read the contents of a table. Delete

File Edit View Go Bookmarks Options Directory

Location: |Ihttp #rwew lanl gov/Taternal fpeople/iere /ip

—_—
Whal’s New?| What's Cool?| Destinations| Net Search| ﬂ'“

#

window

Untitled

| 518 Unsigned ava Applet Window

Figure 3: Web based interface of PADMA.

option is used to delete a certain table. Query
option is used to query these tables. PADMA ap-
plies the SQL query submitted by the user to the
appropriate tables and presents the result back to
the user.

Clustering option is used to cluster all the doc-
uments in a single table as well as clustering a
subset of the documents related through a select
or join operation. In the latter case, the user also
provides an SQL query. PADMA first applies this
query to the appropriate tables and then clus-
ters the resulting documents. This helps the user
to focus on the documents he wants to explore
rather than considering all the documents in a
single table. The result of a clustering request is
presented to the user in the form of a two dimen-
sional cluster plot, which shows the nodes repre-
senting clusters at a certain level. The display
operation is carried out by a java applet. There-
fore a java aware web browser is needed to display
the cluster plot. A color encoding scheme is used
to represent the the degree of bushiness of each
node in the graph of clusters.

PADMA user interface provides interactive it-
erative clustering. For an initial clustering re-
quest the top level of hierarchical clustering out-

1600 T

Cluster —-—
Select-Cluster -+--

1400 - Join-Cluster -g-- |

1200

1000 -

800

600

Execution Time (seconds)

200

6
Number of Agents

Figure 4: PADMA Performance

come is presented to the user. Users then can
click on any one of the clusters presented in a
cluster plot to further explore the documents in
this cluster. Based on this request the clusters in
the next level of hierarchical clustering outcome
that belong to this top level cluster selected by
the user are presented to the user in a new clus-
ter plot. Users can continue examining the deeper
levels of this clustering hierarchy by interactively
clicking on the cluster they want to explore fur-
ther. Finally the documents in the related cluster
are presented to the user.

7 Experiments

As an initial performance study, we performed
three different experiments to assess the perfor-
mance and scalability of the PADMA system. We
measured the execution times for clustering all
the documents in a corpus as well as clustering a
subset of the documents related through a select
or join operation. Throughout the experiments
PADMA agents and the facilitator are configured
to use 2MB write-back caches. In all the ex-
periments we used the TIPSTER text corpus of
size 36MB containing 25273 text documents. It’s
striped across all agents with a striping factor of
1.

The experiments are carried out on the 128
node IBM SP2 at Argonne National Laboratory.
On this machine, 120 nodes are used as com-
pute nodes and the remaining 8 nodes are used
as dedicated I/O servers. Each compute node has
its own I/O subsystem which uses its own local
disk, and the I/O servers have faster I/O subsys-
tems. On this machine, all PADMA components
run on the compute nodes. PADMA data min-
ing agents use the input/output subsystem of the
nodes they are executing on for storing and re-
trieving the documents. The IBM SP2 was in
multi-user mode during the experiments.

The experimental results are presented in Fig-
ure 4. The graph corresponding to Cluster, shows
the time it takes for clustering the whole cor-
pus. Since each agent clusters its portion of the
documents independently, there is no interpro-
cess communication involved in clustering except
sending the clustering results to the facilitator.
As a result of this we got a linear speedup for the
clustering algorithm which demonstrates its scal-
ability. We even got a superlinear speedup when
the number of agents is increased from one to two
possibly due to memory effects.

Figure 4 also shows the graph corresponding to
Select Cluster, which refers to the time it takes to
apply a select query to a corpus and cluster the re-
sulting documents. As we mentioned earlier, this
combined operation helps the user to focus on the
documents he wants to explore rather than con-
sidering all the documents in the whole corpus. In
this experiment we used the following SQL query,
SELECT DOCNO,TEXT,NGRAM FROM TIP-
STER WHERE NGRAM = ELECTRON where
NGRAM = ELECTRON condition refers to se-
lecting the documents that are related with key-
word electron. 15084 documents in the TIPSTER
corpus matched this select query. Then these doc-
uments are clustered using the regular clustering
algorithm. This process in done on the fly, i.e.
on each agent as soon as matching documents are
found they fed into the clustering module.

The graph corresponding to Join Cluster refers
to the time it takes to apply a join query and clus-
ter the resulting documents. In this experiment
we used the following SQL query,

SELECT TIPSTER.DOCNO, TIPSTER.TEXT,

TIPSTER.NGRAM, AUTHORS.CITY FROM
TIPSTER, AUTHORS WHERFE TIPSTER.AU-
THOR = AUTHORS.AUTHOR AND AUTH-
ORS.CITY = LONDON AND TIPSTER.NG-
RAM=FLECTRON, where TIPSTER.AUTHOR
=AUTHORS.AUTHOR AND AUTHORS.CITY
= LONDON AND TIPSTER.NGRAM = ELEC-
TRON condition refers to selecting the docu-
ments that are written by authors from London
and related with keyword electron. Since we store
each corpus as a separate relational database ta-
ble, for this experiment we were able to add an
AUTHOR attribute to the TIPSTER table which
stores the names of the authors of the documents.
In addition we used an AUTHORS table that
has AUTHOR and CITY attributes. This table
consists of 28 tuples. It’s also striped across all
agents with a striping factor of 1. 15084 docu-
ments matched this join query. Then these doc-
uments are clustered using the regular clustering
algorithm. This process in done on the fly, i.e.
on each agent as soon as matching documents are
found they fed into the clustering module.

In this section we presented the initial ex-
perimental results about the performance of the
PADMA system. These results demonstrated its
scalability. In these experiments we used a sin-
gle corpus of size 36 MB and two different select
and join queries. In addition we only used striped
data distribution and write-back caches, and we
didn’t perform any prefetching.

8 Conclusions And Future

Work

This paper introduced PADMA, an agent based
architecture for parallel data mining. PADMA
system demonstrated that agent based data min-
ing tools are suitable for exploiting benefits
of parallel computing. Main characteristics of
PADMA are, (1) parallel query processing &
data accessing, (2) parallel data analysis (3) in-
teractive data/cluster visualization. However,
PADMA is still under development and requires
more work. A module for supervised learning of
piece-wise linear classifiers using feedback from
the user is already developed and incorporated in

PADMA. Also we are currently in the process of
incorporating both numeric and text data han-
dling capabilities in PADMA.

Acknowledgments

This work is supported by a grant from Na-
tional Center for Supercomputing Applications
and United States Department of Energy. We
also acknowledge the computing time on IBM
SP2, granted by Argonne National Laboratory.

References

Anderson, W., Hendler, J., Evett, M., & Ket-
tler, B. (1994). Massively parallel matching
of knowledge structures. USA: AAAI/The
MIT Press.

Cavnar, W. B. (1993). N-gram based text fil-
tering. (pp. 171-179). National Institute of
Standards and Technology.

Damenshek, M. (1995). Gauging similarity
via n-grams: Language-independent cate-
gorization of text. Science, 267.

Dewitt, D., & Gray, J. (1992). Parallel
database systems: The future of high per-
formance database systems. Communica-

tions of the ACM, 35(6), 85-98.

Dewitt, D., Naughton, J., & Schneider, D.
(1991). An evaluation of non-equijoin algo-
rithms (Technical Report Technical Report
CS-TR-91-1011). Department of Computer
Science, University of Wisconsin-Madison.

Ester, M., Kriegel, H., Sander, J., & Xu, X.
(1995). A density-based algorithm for dis-

covering clusters in large spatial databases
with noise.

Foner, L. N. (1993, May). What’s an agent any-
way?
- a soctological case study. ftp://media-

lab.media.mit.edu/pub/Foner/Papers/What’s-

an-Agent-Anyway—Julia.ps.
Holsheimer, M., Kersten, M., & Siebes,
P. (1996). Data surveyor: Searching for

nuggets in parallel. Advances in Knowledge
Discovery and Data Mining, 447-470.

Huber, J. (1995). Ppfs: An experimental file
system for high performance parallel in-
put/output (Technical Report MS. Thesis).
Department of Computer Science, Univer-
sity of Illinois at Urbana-Champaign.

Huber, J., Elford, C., Reed, D., Chien, A., &
Blumenthal, D. (1995). Ppfs: A high perfor-
mance portable parallel file system (Techni-
cal Report UITUCDCS-R-95-1903). Depart-
ment of Computer Science, University of
Ilinois at Urbana-Champaign.

Kimbrell, R. E. (1988). Searching for text?
send an n-gram. Byte (May), 297-312.

Kozierok, R., & Maes, P. (1993). A learn-
ing interface agent for scheduling meet-
ings. In Proceedings of the 1993 Interna-
tional Workshop on Intelligent User Inter-
faces (pp. 81-88). ACM Press, New York.

Lashkari, Y., Metral, M., & Maes, P. (1994).
Collaborative interface agents. Autonomous
Agents Group, MIT Media Laboratory.

Maes, P. (1994, July). Agents the reduce work
and information overload. Commaunications

of the ACM (Vol. 37, No. 7).

McElligott, M., & Sorensen, H. (1994). An evo-
lutionary
connectionist approach to personal infor-
mation filtering. In INNC 94 (Fourth Irish
Neural Network Conference) (pp. 141-146).
ftp://odyssey.ucc.ie/pub/filtering/INNC94.ps.

Moukas, A. (1996). Amalthaea: Informa-
tion discovery and filtering using a mul-

tiagent evolving ecosystem. Autonomous
Agent Group, MIT Media Laboratory.

Radcliffe, N. (1995). Ga-miner: Parallel
data mining with hierarchical genetic algo-
rithms final report (Technical Report Tech-
nical Report EPCC-AIKMS-GA-MINER-
REPORT 1.0). Quadstone Ltd.

Rasmussen, E. (1992). Clustering algorithms.
In Frakes, W. B., & Baeza-Yates, R.
(Eds.), Information Retrieval: Data Struc-
tures and Algorithms (Chapter 16, pp. 419-
442). Prentice Hall.

Salton, G., Allan, J., Buckley, C., & Sing-
hal, A. (1994). Automatic analysis, theme
generation, and summarization of machine-
readable texts. Science, 264 (3), 1421-1426.

Schneider, D., & Dewitt, D. (1989). A
performance evaluation of four parallel
join algorithms in a shared-nothing mul-
tiprocessor environment (Technical Report
Technical Report CS-TR-89-836). Depart-
ment of Computer Science, University of
Wisconsin-Madison.

Shek, E., Mesrobian, E., & Muntz, R. (1996).
On heterogeneous distributed geoscientific
query processing. In Proceedings of 6th In-
ternational Workshop on Research Issues
in Data FEngineering: Interoperability of
Nontraditional Database Systems (pp. 107-
116).

Willett, P. (1987). Similarity and clustering
in chemical information systems. Letch-

worth,England: Research Studies Press
LTD.

Willett, P. (1988). Recent trends in hierar-
chical document clustering: A critical re-

view. Information processing and manage-
ment, 24(5), 577-597.

Winograd, T. (1972). Understanding natural
language. New York: Academic Press.

Zaki, M., Ogihara, M., Parthasarathy, S., &
Li, W. (1996). Parallel data mining for
assoctation rules on shared-memory multi-
processors (Technical Report Technical Re-
port 618). Department of Computer Sci-
ence, University of Rochester.

10

