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Abstract

This paper describes a technique for clustering homogeneously distributed data in
a peer-to-peer environment like sensor networks. The proposed technique is based on
the principles of the K-means algorithm. It works in a localized asynchronous manner
by communicating with the neighboring nodes. The paper offers extensive theoretical
analysis of the algorithm that bounds the error in the distributed clustering process
compared to the centralized approach that requires downloading all the observed
data to a single site. Experimental results show that, in contrast to the case when
all the data is transmitted to a central location for application of the conventional
clustering algorithm, the communication cost (an important consideration in sensor
networks which are typically equipped with limited battery power) of the proposed
approach is significantly smaller. At the same time, the accuracy of the obtained
centroids is high and the number of samples which are incorrectly labeled is also
small.

1 Introduction

Clustering [1] is a well-known and widely used exploratory data analysis technique. Most
of the clustering algorithms that are available in the literature deal with data available
at a single location. However, there exists many applications where data sources are
distributed over a network and collecting the data at a central location before clustering
is not a viable option. Sensor networks connected over wireless networks offer one such
environment where centralized data clustering is difficult and often not scalable because
of various reasons such as limited communication bandwidth and limited battery power
supply for running the sensor nodes. Sensor networks communicate in a peer-to-peer
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(P2P) fashion which allows only local communication among the neighboring sensor
nodes. This requires that the data analysis algorithms also communicate in a P2P mode
and work in an asynchronous way [2, 3]. No such clustering algorithm has so far been
reported in the literature.

This paper offers a P2P clustering algorithm that is designed for environments like sensor
networks monitoring continuous data streams at various nodes. The clustering technique,
referred to as the P2P K-Means clustering, is based on the principles of the K-Means
algorithm, and utilizes certain statistical bounds for estimating the error in computing
the centroids of the clusters in a distributed manner vis-a-vis the centralized approach.
The algorithm deals with the general scenario where each node contains a subset of the
overall data to be clustered and the nodes observe the same set of attributes. Although
most sensor network applications deal with continuous data streams, the paper does not
directly address that. The P2P K-Means algorithm can be easily extended following
the work by [4] in order to handle stream data. The objective of the current work is to
develop a P2P version of the K-Means algorithms so that it can be used by the stream
version of the K-Means algorithm [4] for clustering stream data in a sensor network.

Section 2 describes some of the clustering applications for sensor networks that motivated
this research. Section 3 provides some background discussion on clustering, research
issues in sensor networks, and related work in the domain of distributed clustering. The
proposed clustering technique is described in Section 4. A detailed theoretical analysis of
the proposed algorithm is carried out in Section 5. Section 6 provides the experimental
results. Finally, Section 7 concludes the article.

2 Motivation

Consider a scene segmentation and monitoring application using sensor networks where
the sensor nodes are equipped with audio, vibration, temperature and reflectance probes.
The sensors are monitoring a given geographical region. The sensors are battery powered.
Therefore, in the normal mode they are designed not to be very active. However, as soon
as a node detects a possible change in the scenario, sensors must wake up, observe, reason
and collaborate with each other in order to track and identify the object of interest in
the scene. The observations are usually time-series data sampled at a device specific
rate. The objective here is for the active nodes to collaborate with each other in order to
segment the scene, identify the object of interest (e.g., a vehicle), and thereafter to classify
it (e.g., pick-up truck). One of the popular approaches of segmentation is clustering. In
this scenario, the requirement would be to cluster the data stream collected by the active
sensors. Note that the data collected at the different sensors could be distributed either
homogeneously (i.e., each node observes a subset of the data points) or heterogeneously
(i.e., each node observes a subset of the attributes/features). Collaboration within the
active sensors usually requires sending a window of observations from one node to another
node and performing the clustering. The traditional framework of centralized clustering
algorithms does not really scale very well in such distributed applications. For example,
the centralized approach will be to send the data vectors to the base station (usually



connected through a wireless network) and then performing the clustering there. This
does not scale up in large sensor networks since data transmission consumes a lot of
battery power and heavy data transmission over limited bandwidth channel may produce
poor response time.

Outlier detection is another typical data mining task with application in monitoring
chemical spillage and intrusion detection, among others, using mote-based sensor net-
works. Cluster analysis is one of the common approaches for outlier detection. Again, the
traditional centralized clustering approaches are not likely to scale well in such scenario.
Therefore, development of efficient distributed clustering algorithms that require only
limited communication, while being designed for the peer-to-peer type of environment of
the sensor networks, is of crucial importance. Such an attempt is reported in the present
article.

3 Background

As already mentioned, distributed clustering of data streams in an energy efficient man-
ner is an emerging research problem with significant applications in sensor networks.
This section briefly reviews some of the existing clustering techniques, with particular
emphasis on data stream clustering, distributed clustering, and information processing
in sensor networks. Issues in sensor networks, which make the problem unique, are also
discussed.

3.1 Clustering

In clustering, a set of patterns, usually vectors in a multi-dimensional space, are organized
into coherent and contrasted groups, such that patterns in the same group are similar in
some sense and patterns in different groups are dissimilar in the same sense. The aim of
any clustering technique is to evolve a proper partitioning of the data set X (consisting
of, say, n patterns, X = {z1,70,...,2,} C IRP) into a number, say K, of clusters
(C1,Cs,...,Ck) with cluster centers V' = {v1,vs,...,vk} such that some measure of
goodness of the clusters is maximized. In general, there are three fundamental issues
that must be addressed while clustering: whether there is any clustering tendency in the
data or not; if yes, then what is a good method to find the clusters; and in what way
can one validate the obtained partitions.

Traditionally, clustering algorithms have been classified into two categories: hierarchical
and partitional [1, 5]. Commonly used algorithms in the hierarchical category are the
single linkage and complete linkage algorithms. K-Means is a widely used algorithm in
the partitional class. More recent attempts in clustering large datasets in the context of
data mining are BIRCH, CURE, DBSCAN etc. [6].

As already mentioned, clustering streaming data in peer-to-peer environments of sensor
networks offers new challenges to data mining researchers. Such an attempt is made



in this article, where the well known K-Means algorithm is utilized for this purpose.
Analysis of the proposed algorithm uses standard statistical techniques to estimate the
confidence that a locally computed centroid is within a certain distance of the correct
centroid at each iteration of the algorithm.! The nodes are assumed to be synchronized
partially, in that each node waits for a certain time interval, ¢, before proceeding with
its computation.

3.2 Clustering Data Streams

A study on clustering under the data stream model of computation is undertaken in [4].
Given a sequence of points, the objective in [4] is to maintain a consistently good cluster-
ing of the sequences observed so far, using a small amount of memory and time. Only a
summary of the past data is stored, leaving enough memory for the processing of future
data. The K-Median algorithm is used as the underlying clustering methodology. The
authors provide constant factor approximation algorithms for the K-Median problem,
which make a single pass over the data and use small space. Some other work in the
data stream scenario may be found in [8, 9, 10, 11].

In [12], a technique for iterative incremental clustering of time series data is described.
The algorithm utilizes the multi-resolution property of wavelets and proceeds with multi-
ple levels of approximation for clustering the real-life time series dataset with cardinalities
ranging from 1000 to 8000, and lengths (or, the dimensionality of the data) ranging from
512 to 1024. The cluster centers at each level are initialized using those returned at the
coarser level of representation. Wavelets are used for their ability to find a representation
at a lower dimensionality that preserves the original information and describes the orig-
inal shape of the time-series data as closely as possible. The K-Means and Expectation
Maximization algorithms are used as the basis of clustering. Keogh et al [13] make an
interesting claim about clustering subsequence time series (STS) (produced using sliding
windows over a single time series). STS is different from the problem of clustering time
series [12], where the former refers to subsequences within the same time series, while
the latter refers to a set of time series data. Keogh et al [13] claim that in STS clustering
the output is independent of the input. In particular, clusters extracted from these time
series are forced to obey certain constraints that are pathologically unlikely to be satis-
fied by any dataset, and therefore the clusters are essentially random [13]. They provide
a number of references (ref. [13], page 116) of STS clustering.

3.3 Distributed Clustering Algorithms

In this section, we present an overview of various distributed clustering solutions proposed
to date. We classify distributed clustering algorithms into two categories. The first
group consists of methods requiring multiple rounds of message passing. These methods
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require a significant amount synchronization. The second group consists of methods that
build local clustering models and transmit them to a central site (asynchronously). The
central site forms a combined global model. These methods require only a single round
of message passing, hence, modest synchronization requirements.

3.3.1 Multiple Communication Round Algorithms

Dhillon and Modha [14] develop a parallel implementation of the K-Means clustering al-
gorithm on distributed memory multiprocessors (homogeneously distributed data). The
algorithm makes use of the inherent data parallelism in the K-Means algorithm. Given
a dataset of size n, they divide it into P blocks, (each of size roughly n/P). During each
iteration of K-Means, each site computes an update of the current K centroids based
on its own data. The sites broadcast their centroids. Once a site has received all the
centroids from other sites it can form the global centroids by averaging.

Forman and Zhang [15] take an approach similar to the one presented in [14], but extend
it to K-harmonic means. Note that the methods of [14] and [15] both start by partition-
ing then distributing a centralized dataset over many sites. This is different than the
setting we consider: the data is never centralized — it is inherently distributed. How-
ever, their ideas algorithms after the partitioning can be applied unchanged to inherently
homogeneously distributed data.

Kargupta et al. [16] develop a collective principal components analysis (PCA)-based
clustering technique for heterogeneously distributed data. Each local site performs PCA,
projects the local data along the principal components, and applies a known clustering
algorithm. Having obtained these local clusters, each site sends a small set of represen-
tative data points to a central site. This site carries out PCA on this collected data
(computes global principal components). The global principal components are sent back
to the local sites. Each site projects its data along the global principal components and
applies its clustering algorithm. A description of locally constructed clusters is sent to the
central site which combines the cluster descriptions using different techniques including
but not limited to nearest neighbor methods.

Klusch et al. [17] consider kernel-density based clustering over homogeneously distributed
data. They adopt the definition of a density based cluster from [18]. Data points which
can be connected by an uphill path to a local maxima, with respect to the kernel density
function over the whole dataset, are deemed to be in the same cluster. Their algorithm
does not find a clustering of the entire dataset. Instead each local site finds a cluster-
ing of its local data based on the kernel density function computed over all the data.
An approximation to the global kernel density function is computed at each site using
sampling theory from signal processing. The sites must first agree upon a cube and a
grid (of the cube). Each corner point can be thought of as a sample from the space
(not the dataset). Then each site computes the value of its local density function at
each corner of the grid and transmits the corner points along with their local density
values to a central site. The central site computes the sum of all samples at each grid
point and transmits the combined sample grid back to each site. The local sites can now



independently estimate the global density function over all points in the cube (not just
the corner points) using techniques from sampling theory in signal processing. The local
sites independently apply a gradient-ascent based density clustering algorithm to arrive
at a clustering of their local data. In principle, the approach in [17] could be extended
to produce a global clustering by transmitting the local clusterings to a central site and
then combining them. However, carrying out this extension in a communication efficient
manner is non-trivial task and is not discussed by Klusch et al.

Eisenhardt et al. [19] develop a distributed method for document clustering (hence
operates on homogeneously distributed data). They extend K-Means with a “probe and
echo” mechanism for updating cluster centroids. Each synchronization round corresponds
to a K-Means iteration. Each site carries out the following algorithm at each iteration.
One site initiates the process by marking itself as engaged and sending a probe message
to all its neighbors. The message also contains the cluster centroids currently maintained
at the initiator site. The first time a node receives a probe (from a neighbor site p with
centroids C)), it marks itself as engaged, sends a probe message (along with C,) to all its
neighbors (except the origin of the probe), and updates the centroids in C), using its local
data as well as computing a weight for each centroid based on the number of data points
associated with each cluster. If a site receives an echo from a neighbor p (with centroids
Cp and weights W)), it merges C}, and W), with its current centroids and weights. Once a
site has received either a probe or echo from all neighbors, it sends an echo along with its
local centroids and weights to the neighbor from which it received its first probe. When
the initiator has received echos from all its neighbors, it has the centroids and weights
which take into account all datasets at all sites. The iteration terminates.

While all algorithms in this section require multiple rounds of message passing, [16] and
[17] require only two rounds. The others require as many rounds as the algorithm iterates
(potentially many more than two).

3.3.2 Centralized Ensemble-Based Methods

Many of the distributed clustering algorithms work in an asynchronous manner by first
generating the local clusters and then combining those at the central site. These ap-
proaches potentially offer two nice properties in addition to lower synchronization re-
quirements. If the local models are much smaller than the local data, their transmission
will result is excellent message complexity. Moreover, sharing only the local models may
be a reasonable solution to privacy constraints in some situations; indeed, a trade-off
between privacy and communication cost is discussed in [20].

We present the literature in chronological order. Some of the methods were not explicitly
developed for distributed clustering, rather for combining clusterings in a centralized
setting to produce a better overall clustering. In these cases we discuss how well they
seem to be adaptable to a distributed setting.

Johnson and Kargupta [21] develop a distributed hierarchical clustering algorithm on het-
erogeneously distributed data. It first generates local cluster models and then combines



these into a global model. At each local site, the chosen hierarchical clustering algorithm
is applied to generate local dendograms which are then transmitted to a central site.
Using statistical bounds, a global dendogram is generated.

Lazarevic et al. [22] consider the problem of combining spatial clusterings to produce a
global regression-based classifier. They assume homogeneously distributed data and that
the clustering produced at each site has the same number of clusters. Each local site
computes the convex hull of each cluster and transmits the hulls to a central site along
with regression model for each cluster. The central site averages the regression models
in overlapping regions of the hulls.

Samatova et al. [23] develop a method for merging hierarchical clusterings from homo-
geneously distributed, real-valued data. Each site produces a dendogram based on local
data, then transmits it to a central site. To reduce communication costs, they do not
send a complete description of each cluster in a dendogram. Instead an approximation
of each cluster is sent consisting of various descriptive statistics e.g. number of points
in the cluster, average square Euclidean distance from each point in the cluster to the
centroid. The central site combines the dendogram descriptions into a global dendogram
description.

Strehl and Ghosh [24] develop methods for combining cluster ensembles in a centralized
setting. They argue that the best overall clustering maximizes the average normalized
mutual information over all clusters in the ensemble. However, they report that find-
ing a good approximation directly is very time-consuming. Instead they develop three
more efficient algorithms (dealing with similarity based clustering and hyper-graph based
techniques) which are not theoretically shown to maximize mutual information, but are
empirically shown to do a decent job.

Fred and Jain [25] report a method for combining clusterings in a centralized setting.
Given N clusterings of n data points, their method first constructs an nxn, co-association
matriz. Next a merge algorithm is applied to the matrix using a single link, threshold,
hierarchical clustering technique. For each pair (7, j) whose co-association entry is greater
than a predefined threshold, merge the clusters containing these points.

Jouve and Nicoloyannis [26] also develop a technique for combining clusterings. They use
a related but different approach than those described earlier. They reduce the problem
of combining clusterings to that of clustering a centralized categorical data matrix built
from the clusterings and apply a categorical clustering algorithm (KEROUAC) of their
own. The categorical data matrix has dimensions n x NV and is defined as follows. Assume
clustering 1 < 4 < N has clusters labeled 1,2,...,k;. The (j,4) entry is the label of the
cluster (in the i*? clustering) containing data point 7. The KEROUAC algorithm does
not require the user to specify the number of clusters desired in the final clustering.
Hence, Jouve and Nicoloyannis’ method does not require the desired number of clusters
in the combined clustering to be specified.

In principle, the ideas in [24, 25, 26] can be adapted to heterogeneously distributed data
(they did not address the issue), though the problem of building an accurate centralized



representation in a message efficient manner must be addressed.

Merugu and Ghosh [20] develop a method for combining generative models produced
from homogeneously distributed data (a generative model is a weighted sum of multi-
dimensional probability density functions i.e. components). Each site produces a gener-
ative model from its own local data. Their goal is for a central site to find a global model
from a pre-defined family (e.g. multivariate, 10 component Gaussian mixtures) which
minimizes the average Kullback-Leibler distance over all local models. They prove this
to be equivalent to finding a model from the family which minimizes the KL distance
from the mean model over all local models (point-wise average of all local models). They
assume that this mean model is computed at some central site. Finally the central site
computes an approximation to the optimal model using an EM-style algorithm along
with Markov-chain Monte-carlo sampling. They did not discuss how the centralized
mean model was computed. But, since the local models are likely to be considerably
smaller than the actual data, transmitting the models to a central site seems to be a
reasonable approach.

Januzaj et al. [27] extend a density-based centralized clustering algorithm, DBSCAN,
by one of the authors to a homogeneously distributed setting. Each site carries out the
DBSCAN algorithm, a compact representation of each local clustering is transmitted to a
central site, a global clustering representation is produced from local representations, and
finally this global representation is sent back to each site. A clustering is represented by
first choosing a sample of data points from each cluster. The points are chosen such that:
(i) each point has enough neighbors in its neighborhood (determined by fixed thresholds)
and (ii) no two points lie in the same neighborhood. Then K-Means clustering is applied
to all points in the cluster, using each of the sample points as an initial centroid. The
final centroids along with the distance to the furthest point in their K-Means cluster
form the representation (a collection point, radius pairs). The DBSCAN algorithm is
applied at the central site on the union of the local representative points to form the
global clustering. This algorithm requires an € parameter defining a neighborhood. The
authors set this parameter to the maximum of all the representation radii.

Methods [27], [20], and [23] are representatives of the centralized ensemble-based meth-
ods. These algorithms focus on transmitting compact representations of a local clustering
to a central site which combines to form a global clustering representation. The key to
this class of methods is in the local model (clustering) representation. A good one faith-
fully captures the local clusterings, requires few messages to transmit, and is easy to
combine.

Both the ensemble approach and the multiple communication round-based clustering
algorithms usually work a lot better than their centralized counterparts in a distributed
environment. This is well documented in the literature. The following section organizes
the distributed clustering algorithms based on the data distribution (homogeneous vs.
heterogeneous) they can handle.



3.3.3 Homogeneous vs. Heterogeneous Clustering Literature

A common classification of DDM algorithms in the literature is: those which apply
to homogeneously distributed (horizontally partitioned) or heterogeneously distributed
(vertically partitioned) data. To help the reader sort out the clustering methods we have
described, we present the four-way classification seen in Table 3.3.3.

‘ Homogeneous ‘ Heterogeneous

Centralized [27], [22], [21], [25],
Ensemble [20], [23] [26], [24]
Multiple [14], [19], [15], [16]
Rounds of [17]

Communication

Figure 1: Four-way clustering algorithms classification

None of the techniques discussed in the previous section were developed in an environ-
ment where the network is dynamic and nodes have limited communication range. In
this setting links may be coming up and down and nodes only communicate with their
immediate neighbors. In order to adapt the above techniques to this type of environ-
ment, there could be two approaches. The first one would be to elect a leader among
the nodes, and transmit the locally built models to the leader. Since communication
is of peer-to-peer type, this would involve multi-hop transmission, and hence a much
increased communication cost. The other approach would be to keep on combining the
models incrementally within local neighborhoods, that would ultimately percolate to the
entire network if it is stable for sufficiently long. One of the pitfalls to such incremental
model combination would be the accumulation of error over many stages.

Our approach fits into the incremental model combination category. We are motivated
by the low communication cost of the approaches of Dhillon and Modha [14], Forman
and Zhang [15]. Indeed these approaches require nodes to only communicate centroids
and cluster counts at each iteration of K-means. However, their approaches require each
node to communicate with all other nodes before proceeding to the next iteration. In
effect full synchronization must occur at each iteration. Our method proposed in the
present article represents a first step toward weakening this synchronization requirement
(in addition to further reducing the communication cost).

Other distributed clustering algorithms could be adapted to fit the incremental model
computation category. This represents an interesting, yet untried area of future work.
For example, the method in [20] requires that nodes combine models in a single round
of communication. In this respect, extending their approach offers advantages to our
approach of extending K-means. However, quantifying analytically the error in our
approach seems more feasible.



3.4 Information Processing in Sensor Networks

Sensor networks are finding increasing number of applications in many domains, including
battle fields, smart buildings, and even the human body. Most sensor networks consist of
a collection of light-weight (possibly mobile) sensors connected via wireless links to each
other or to a more powerful gateway node that is in turn connected with an external
network through either wired or wireless connections. Sensor nodes usually communicate
in a peer-to-peer architecture over an asynchronous network. In many applications,
sensors are deployed in hostile and difficult to access locations with constraints on weight,
power supply, and cost. Moreover, sensors must process a continuous (possibly fast)
stream of data.

A sensor network is generally designed to perform some high level information processing
tasks like environmental monitoring, tracking and classification. Monitoring time critical
activities like earthquake and chemical spills, vehicle tracking, habitat monitoring are
some of the typical application areas for sensor networks [28, 29]. Several attempts have
been made in the recent past to develop efficient hardware devices, networking them
and designing routing protocols in sensor networks [30, 31, 32, 33]. A recent survey on
key research issues in sensor networks is available in [34, 35]. Some interesting links to
publications on sensor networks may be found in [36, 37].

Development of algorithms that take into consideration the characteristics of sensor net-
works, viz., energy and computation constraints, network dynamics, and faults, consti-
tute an area of current research. It is well known that communicating messages over a
sensor network consume far more energy than processing it. For example, for Berkeley
motes [38], the ratio of energy consumption for communication and computation is of
the range of 1000-10,000 [39]. It is therefore hypothesized in [29] that given the char-
acteristics of sensor networks, designing localized collaborative algorithms may offer the
advantages of robustness and scalability. In this scenario, the nodes interact with others
only within a restricted neighborhood, though attempting to achieve a desired global
objective. The authors also propose directed diffusion, a model for describing localized
algorithms [29, 40]. Self-organization and self-configuration are beneficial in the sen-
sor network scenario since the environment is often dynamic. Some work in developing
localized, distributed, self-configuration mechanisms in sensor networks may be found
in [41, 42]. In [39], a collaborative signal and information processing (CSIP) approach
is used for target tracking, which is modeled as a constrained optimization problem.
CSIP is used for carefully selecting the embedded sensor nodes that participate in the
sensor collaboration, balancing the information contribution of each against its resource
consumption or potential utility for other users.

In designing algorithms for sensor networks, it is imperative to keep in mind that power
consumption has to be minimized. Even gathering the distributed sensor data in a
single site could be expensive in terms of battery power consumed. LEACH, LEACH-
C, LEACH-F [31, 43], and PEGASIS [44] are some of the attempts towards making
the data collection task energy efficient. The issue of energy-quality trade-off has been
studied in [45] along with a discussion on energy-quality scalability of three categories of
commonly used signal processing algorithms viz., filtering, frequency domain transforms



and classification. In [46], Radivojac et al., develop an algorithm for intrusion detection
in a supervised framework, where there are far more negative instances than positive
(intrusions). A neural network based classifier is trained at the base station using data
where the smaller class is over-sampled and the larger class is under-sampled [47]. An
unsupervised approach to the outlier detection problem in sensor networks is presented
in [48], where kernel density estimators are used to estimate the distribution of the data
generated by the sensors, and then the outliers are detected depending on a distance
based criterion. Detecting regions of interesting environmental events (e.g., sensing which
regions in the environment have a chemical concentration greater than a threshold) has
been studied in [49] under the assumptions that faults can occur in the equipments though
they would be uncorrelated, while environmental conditions are spatially correlated.

Clustering the nodes of the sensor networks is an important optimization problem. Nodes
that are clustered together can easily communicate with each other. Ghiasi et al., [50]
have studied the theoretical aspects of this problem with application to energy optimiza-
tion. They illustrate an optimal algorithm for clustering the sensor nodes such that each
cluster (that is characterized by a master) is balanced and the total distance between the
sensor nodes and the master nodes is minimized. Some other approaches in this regard
are available in [51, 52].

Algorithms for clustering the data spread over a sensor network are likely to play an im-
portant role in many sensor-network-based applications. Segmentation of data observed
by the sensor nodes for situation awareness, detection of outliers for event detection
are only a few examples that may require clustering algorithms. The distributed and
resource-constrained nature of the sensor-networks demands a fundamentally distributed
algorithmic solution to the clustering problem. Therefore, distributed clustering algo-
rithms may come handy [53] when it comes to analyzing sensor network data or data
streams.

Clustering in sensor-networks offers many challenges, including,

1. limited communication bandwidth,
2. constraints on computing resources,
3. limited power supply,

4. need for fault-tolerance, and

5. asynchronous nature of the network

Distributed clustering algorithms for such a domain must address these challenges. Little
work has been done in collaborative clustering of the data streams obtained at the sensor
nodes in a distributed, energy-efficient manner. Clustering algorithms for distributed
data and data streams, generally involve a significant amount of communication (and
hence are not energy/power efficient), and also assume the existence of a central site.
Often the algorithms are fully synchronized (e.g., [19]) and assume a fault free network.
Such assumptions do not hold in the case of sensor networks. An attempt to bridge



this gap is made in the present article, where a clustering algorithm, P2P K-Means, is
developed that takes the aforementioned issues into consideration to a large extent.

4 Distributed Peer-to-Peer K-Means Clustering

This section describes the proposed P2P K-Means clustering algorithm in a peer-to-peer
homogeneously distributed setting. Since the P2P K-Means clustering technique utilizes
the principles of the conventional K-Means algorithm, it is described first. Subsequently,
the distributed clustering problem is formally stated, followed by a description of the
proposed method. A theoretical analysis of P2P K-Means is provided in the next section.

4.1 K-Means Clustering Technique

A K-partition of X = {z1,z9,...,2Z,} can be conveniently represented by a K X n matrix
called the partition matrix U = [ux], 1 =1,2,..., K, k=1,2,...,n, where wu is either
0 or 1, indicating that the pattern z; does not belong or belongs respectively to cluster
i.

K-Means [1, 5, 54] is a widely used technique for crisp partitional clustering. The min-
imizing criterion used to characterize good clusters for K-Means partitions is defined
as

K n
J(U,V) = (uik) D (vi, ) (1)
i=1 k=1
Here U is a partition matrix; V = {vi,...,vk } represents K cluster centers; v; € IRN:
and D (v, zg) is the distance from zj to the v;.

In the K-Means algorithms, the K initial seeds are first chosen randomly to represent
the K centroids. Thereafter, the data points are assigned to the cluster of the closest
centroid. This provides a partition matrix U = [u;]. After the assignment phase is over,
the centroids are recomputed as follows:

n
v; = Zk:&(uik)xk, i<i<K. (2)
Zk:1 Uik
A common strategy for generating the approximate solutions of the minimization prob-
lem in Eqn. 1 is by iteratively performing the reassignment of the points to the closest
centroids, and updating the centroids of the cluster with the mean of the points assigned
to the same cluster.

4.2 Distributed Clustering Problem

Let there be p nodes in the system, N1, Na,...,N,. Node N;, 1 = 1,2,...,p, has a set
of neighbors to which it is directly connected. This set is denoted by Neigh(®. Let



X=XOUX®Y...UX® be the full dataset where X c X i =1,2,...,p, denotes

the subset of the data at node Nj. Let X)) = {wgi),xgi), . ,:v(n?} be the set of n; points
in node . The aim is to partition each dataset X, 4 =1,2,...,p, into K clusters that
is consistent with the global clustering of X using a clustering algorithm A. In other
words, let XJ(.Z), i=1,2,...,p, j = 1,2,...,K, be the subset of points of X that
belongs to cluster j using algorithm A. Similarly, let X;, j = 1,2,..., K, be the subset
of X that belongs to cluster j after application of A centrally. Then we would like the
following to ideally hold:

_xM (2) ® . _
x;=x"Jx;7 ... Ux” i=12... K (3)

4.3 P2P K-Means Clustering

The proposed algorithm is an adaption of the standard K-means algorithm. We assume
that each node will spend the same amount of time, ¢, executing each iteration and that
all nodes start the algorithm at the same time. As such, we are assuming all nodes
are executing the same iteration.? Later we discuss ways of adapting the algorithm to
weaken this assumption.

We assume that each node has the same random number generator, thus, each node

(1) @) (1)

generates the same set of K initial centroid seeds, v, ), v5, ..., V)’ Thereafter, node
) )

N; assigns each point in X(®) to the nearest centroid. Once the assignment of data
points is complete, the centroids are updated to produce w(.zl)c, the dimension-wise mean
of the points labeled j during iteration k. If the centroids have changed significantly
(based on a user-defined parameter ), then a flag Centroids_Changed® is set. Nj
polls a collection of other nodes for their centroids (how this collection is determined is
discussed later). Some nodes may not respond because they have terminated. All other
nodes will respond; let Comb(®) (k) denote the set of nodes that did respond. Each of these
will have sent their centroids, cluster counts, and their Centroids_Changed flag. Node
N; then compute the weighted mean of the centroids it receives with its local centroid
to produce its final set of centroids for this iteration. Meanwhile, N; processes polling
requests from other nodes as they arrive. Once ¢t time units have elapsed N; evaluates
the termination condition. If Centroids_Changed is not set for IV; and also not set all
other polled nodes that responded, N; terminates.

Node N; must decide at iteration k& which other nodes to poll. We examine two ways
to do so: (1) Nj; selects a random sample (without replacement) of all other nodes, (2)
N; selects all of its immediate neighbors in the network (Neigh(?). The first method is
more complicated because routing is required. However, it does not bias the centroids
computed by N; and, intuitively speaking, allows IV; to develop a global view of the data
more quickly. Moreover, it is easier to analyze the error since statistical bounds based
on random sampling can be applied (discussed later).

It may be noted that the proposed P2P K-Means is not designed, for the present, to deal

2The amount of time spent at each iteration is not conceptually important in the algorithm.



Algorithm 4.3.1 P2P K-Means

Node N;:
k=20

/* iteration count */

Set Centroids_Changed® to TRUE.

@) @) (1)

Initialize K centroids, v; KUk UKk
/* Same seeds are generated in all the p sites */
Repeat (once ¢ time units have elapsed, the “Until” condition is evaluated)

Perform assignment of the local points to the K centroids,

(@) () (1)
Utkr Y2k~ Vi k .
Let v ok indicate the label of the centroid closest to the mth point, m%).
/* n; ) = number of points assigned to centroid j.*/

(@ @ (1)

Update the centroids producing W g, Wy oy - Wi where
(Z) <q.) > D = $£n), J=12,...K

If (ijl ||wj7k - j,k—1||2 > ), /* centroids changed significantly */
Set Centroids_Changed® to TRUE.
Else,
Set Centroids_.Changed® to FALSE.
Do the following steps in an interleaved fashion
Poll a collection of nodes for their centroids and cluster counts.
Details are given elsewhere as to which nodes are polled.
Let Comb® (k) denote those that responded (they also sent
their centroids, cluster counts, and Centroids_Changed flag).
Process polling requests received from other nodes, N,.

Send {( w; k’ g;c) j=1,...,K} and CentTozds_C’hanged(i)
to Ng. . .
Produce new centroids U% IRTEE fuﬁ?k 41 Where
(Z) _ Ele(Comb(z)(k)U{l}) J(ll)c ;(l;c f ... K
Vi1 = or j = .

Eze(cfzmb(%)(k)u{z}) 7 k

Until [Centroids_.ChangedV) is FALSE for all I € (Comb® (k) U {i})]




directly with continuous data streams in sensor networks, though it incorporates the
peer-to-peer communication protocol. The objective of the current work is to develop
a P2P version of the K-Means algorithms so that it can be easily used by the stream
version of the K-Means algorithm [4] for clustering stream data in a sensor network. The
algorithm in [4] works by maintaining a history of the medians and clustering those. The
proposed algorithm may similarly be extended to handle data streams by doing the same
at every node.

4.4 Relaxing Synchronization

The assumption that all nodes are simultaneously executing the same iteration can be
relaxed at the expense of decreased accuracy. In this subsection we sketch an adaption
of the above algorithm for doing so. However, we leave careful analysis of this adaption
to future work.

The basic idea is that node N; would send its current iteration number, say k, along with
its polling request. A polled node, N,, may not necessarily be on the same iteration.
If N, is on a later iteration, then it responds with its centroids, cluster counts, and
Centroids_Changed flag from iteration k (N, must keep a complete history). If N, is on
an earlier iteration, then it simply waits until it reaches iteration k£ before responding.
However, to avoid slowing the network down to the slowest node, NV; does not wait for
N, to respond beyond a fixed amount of time (time out). As such, N; will use whatever
centroids it receives in the available time.

5 Analysis of the P2P K-Means Algorithm

In this section we provide results which allow a node, at a given iteration, to compute
an upper-bound on the centroid error based on current run-time information. Such a
bound can be thought of as a “gage” by which the node can measure how the degree to
which accuracy has been sacrificed at the expense of lowered communication cost.

We analyze the variant of our algorithm which uses a random sampling of nodes to update
centroids. Our analysis is an adaption of that provided in [7] where K-Means clustering
was used with a small number of samples in order to learn a model that does not differ
significantly from the one that would be obtained with infinite data. Our notation is
similar to that of [7] and we repeat some of their analysis to remain self-contained.

In our analysis, we bound the error between each centroid at each node and its cor-

responding centralized centroid. More formally, recall v]() denotes the jth centroid
produced at node N; at the end of iteration k. Let U] kil denote the jth centroid pro-
duced at the end of iteration k if all the data were first centralized and a standard
K-means algorithm run. We upper-bound the Euclidean distance between ’UJ( ,)c 41 and

vj’f k41~ This is referred to as the jth centroid error at the end of iteration k. Let e(z)



denote the upper-bound we obtain on this error.

There are two sources of error that may crop up in the distributed algorithm. One is
the error due to taking into account the data local to a node and all the nodes used
to update centroids. This error is referred to as sampling error (to remain consistent
with [7]), and bounds can be estimated using standard statistical techniques. The other
source of error is due to the wrong assignment of data points to the clusters. This type
of error is referred to as assignment error.

5.1 Some Statistical Tools

In bounding the sampling error we will make use of some standard statistical tools,
namely, ratio estimators. For a more detailed exposition see [55] chapters 2 and 6. Note
that our notation below differs somewhat from [55].

Consider finite populations {y1,...,y,} € Rand {z1,...,zp} € Zs¢ (positive integers).
Let (X1,Y1),..., (Xs,Ys) denote random variables representing s simultaneous samples
from both populations without replacement.? Let 7 denote the population mean ratio

D )
=1 Yi
P .
i=1Ti

and R denote the sample mean ratio

i Yi
Zf:l X

The sample mean ratio is a standard estimator of the population mean ratio. A confi-
dence interval can be derived based on Var(R), the sampling variance of R. For a large
enough sample size, the following approximation is good for any z > 0

Pr(|r — R| < zy/Var(R)) = conf(z)

where conf(z) represents the probability of a standard normal random variable being
within z of zero. For example, conf(2.575) equals 0.99 and conf(3.3) equals 0.999.
Moreover, for a large enough sample size the following is a good approximation of the
sampling variance

p— S)(’U(Y)2 + R?v(X)?% - 2RU(X,Y))
2
Sp X
3More formally, let Z1, ..., Zs represent s random samples from population {1,...,n} (without re-
placement) and (X;,Y;) denote (z;,y:), respectively, with I = Z;, for 1 < j < s.

Var(R) = (




where

e X and Y denote Ei:; Xi and E;:; Yi respectively;

e v(X)? and v(Y)? denote Zf:lg)_(’fy)z andzg:ls(ﬁ_?)z, respectively;

S (N0 %),

e v(X,Y) denotes

Therefore, we have the following approximation (for any z > 0)

Pr <|T _R|< z\/(p;})s)(v(Y)? + RQ’U();); - 2RU(X,Y))> ~ conf (). (1)

Some comments are in order. First of all, the “large enough sample” caveat is based
on the result that as s and n tend to infinity, the approximation (4) becomes exact in
the limit under mild restrictions regarding the populations. Quoting [55] page 153: “As
working rule, the large-sample results may be used if the sample size exceeds 30 and
is also large enough so that the coefficients of variation of X and Y are both less than
10%”. In our analysis to follow, we will be using (4) with modest sample sizes. As such,
assessing the accuracy of our probability approximation is not a trivial matter. However,
in this paper, we assume the approximations are good and leave the assessment of this
assumption to future work.

Secondly, we have chosen different statistical techniques for our sampling error bounds
than those of [7]. They used Hoeffding bounds [56] to bound the sampling error bound
probability. Our situation requires modest sample sizes while theirs need not be modest
being that we are sampling nodes in a network rather than data points. Hoeffding bounds
are not very good at modest sample sizes. However, they provide more straight-forward
probability bounds (they do not carry a ”large enough sample” caveat).

5.2 Bounding the Error At Iteration Zero

There are no assignment errors during iteration zero, since we assume that the initial
seeds are the same at all the sites and equal to the seeds that would be chosen in the
centralized case. However, the centroid j at node N; produced at the end of iteration

(%) * (%)

i1 71- The reason being that v il is formed by combining

centroids from a sample (without replacement) of all other nodes, Comb®(0), (if all of
the nodes were used and responded, no error would be produced).

zero, v; 7, may not be the same as v

(4) (1)

Assume s;” — 1 nodes responded to their polling request, hence, s;” nodes are used in

computing the new centroid i.e. |(Comb® (k) U {i})| = sg). Next we lower-bound the

probability that, for some fixed 1,...,tp > 0, ||U§2 — 7 1| (the standard 2-norm) is not



greater than \/Zd 1t2 Letting vt ; , and v} .1 denote the dth dimension of ’U( i and v} 4,
respectively, we have
tﬁ) (5)
1

NE

Pr | [[ol) —v3,)| <

D
— Pr (Z(’Uj(-?,)j,l - U;,d,1)2 <

d=1

1%
Il

2 (/\“Ugdl V4l < td]) (6)
= 1-pr (\/ H“]('ZJ — Vg1l > td]) (7)
d=1
D .
2 1- ZPT<IU§-Z,1 — Vj,a,1] > ta)- (8)
d=1

Now our results from Section 5.1 can be applied dlrectly to approx1mate the probabll-
ity that \v](-i)i,l — vj 41| is greater than 4. Let {n } and {wjdonjo} fora = 1,.

denote the z and y populations in Section 5.1, respectlvely. Similarly, let {”j,o} and
{w]don(lo} for | € (Comb®(0) U {i}) denote the X and Y samples, respectively. Let

05,4,0(Y),v5,0(X), Rjd,0,v540(X,Y), and X 0 denote the respective sample statistics. For
some user-defined z > 0, by (4) it follows that

. D (V)24 R 0:0(X)? — 2R g 00ig0(X.Y
. p—sy . Vido(Y)? + R 4 4vj0(X) 5,d,005,4,0(X,Y)
Pr | 0541 = vl > 24| () s I )
8P Xj,O

is approximately 1 — conf(z).

(”)(Uj,d,o(y)“r 2 4,003,0(X)? *QRj,d,ovj,d,o(XzY))

Letting ¢4 equal z\/ (p (f)’“ X , (8) implies that the
,0

sampling error (total error at iteration zero), || ]( — v} 4], is bounded above by
. D Dy (Y R2 X)2 — 2R, (XY
p S 'U],d,O( ) + d OIUJ; ( ) ],d,O'U],d,O( bl )
ESZ()J = |22l @ £)( —3 )] 9)
d=1 S P Xjo

with probability approximately bounded below by 1 — D(1 — conf(z)).



5.3 Bounding the Error At Iteration £ > 0

Here we must account for both assignment and sampling errors. A point z at node N; is
correctly assigned during iteration k if it were assigned to the same centroid as it would
have been assigned if the centralized algorithm were run. Formally stated, z is correctly
assigned if the following holds

argmin{||z — ’U(Z)” :1<j <K} =argmin{||z —vj,||: 1 <k < K} (10)

Let ’Ug 36 41 denote the jth centroid at node 7 produced if no assignment errors were made

during iteration k, by any node. The total error equals

Lt [V A VAR [ VARt | (11)

The first term is the assignment error and the second the sampling error. Let S]( ¥ be the
set of points = at node IN; which were incorrectly assigned to centroid j (dunng iteration
k), i.e. points for which the left-hand side of equation (10) equals j but the right-hand
side does not. Let S (i ) be the set of points at node N; which were incorrectly assigned
to a different centr01d than j, i.e. left-hand side of equation (10) does not equal j but
the right-hand side does. Let ”599 denote |Sj,,)€+| and nﬁ denote | k ~|. Let w( )* and

(1)~

w; denote the dimension-wise average of S](—’i,)j and Sj(-’i,);, respectively.

Clearly the incorrect assignments made by node N; on its own data must be included
in the assignment error. In addition, the incorrect assignments made by all nodes which
contribute their centroids and cluster counts (Comb® (k)) must be included too. It can

be seen that the dth dimension of the assignment error, ||v( ) 7t

ik+1 T Ykt

||, equals

! ! l l D+ (O)+
|Zle(00mb(i>u{z‘}) w](ik”% _ ZlE(Comb(i)U{i})(w§',21,kn§,3c - “’§ ()1 k”§ Bc + w§ Z k”§ L )

e (Compui)) Mk Yt compouy (5% — kT +n]k)
—vp e (o) 0Sn (Cangr ) + (vl j?ﬁ) <2, Skn )
El(nﬁ “i +nf)")
_ |Zl([n§',3c (wgl()jk_luj('l)ik-f-l)] [” ( ] j(fz)ik+1)])
2uln % ]k: "‘” 3{: )
Zl(zzesjﬁf,)j[xd ](()1k—|—1] ers(’) e ],dk—l—l])

S} )

For any point z in (Sj(l/)c+ U S](.l,)c_) let Az; 41 denote (x — U]('fc)i,k—l—l) ifze S(,)C and denote



—(z — fuj(.z, py1) if T € S](.’l,)c_. From the previous equation it follows that

| . DIPIN 5(l)+ 0= )Afvj,d,k\
v

(i)
hdk+1 ™ Vil = O

(12)
|3y ml) =+ )

This equation precisely quantifies the assignment error, but is not applicable for our
purposes because S (,)c and S (,)c cannot be computed from run-time information. Com-
puting these pre(:lsely requires knowledge of the true centroid, ’U] i~ Next we develop
bounds on the above equation involving only available run-time information. Consider a
point x at node N; which was incorrectly assigned to cluster j during iteration k when

it should have been assigned to j'. Therefore,

l ! !
llz — vl = € < [lz = o)1 + €}

Note, this is a necessary but not sufficient condition. It may hold when = was correctly

assigned. Let S( 39 be the set of points at node IN; which satisfy the above condition for

some j' (clearly, Sj(f,)c C Sgl)c )- Let n(l)+ denote |S],c |. Clearly, n(l)+ < n% )

Similarly, consider a point z at node N; which was incorrectly assigned to cluster 5/ when
it should have been assigned to j. Therefore,

[l — o\ =€) < llz = 4] + €.

Let S S be the set of points at node N; which satisfy the above condition for some j'
(clearly, S() S(l) )-

Since n% > n% > 0 and ngl}j < ﬁ(-lgj, then the denominator of equation (12) is

7,
lower-bounded by
l (1
|32 gk~ - (13)

To upper-bound the numerator, let S; (i) and S; (i) denote the following expressions
(respectively)

U s usio,

1e(Comb( U{i})

=0+ =0)-
U @ usio.
1e(Comb® U{i})



Moreover, let PS; 41(i) denote the set of points z in S; (i) for which Az 4 is non-
negative and let NS 44(¢) denote those for which Az 4 is negative. Similarly, define
PS;ax(i) and NS; 4(i) with respect to S;x(i). The numerator of (12) can be upper-
bounded as follows

‘Z Z Azjar| = | Z Az gkl (14)

Eoae(situsi) € Sj,k ()
< maz{ Z Ak, d; Z [ Azjkal}  (15)
xEPSJ’,d,k(i) l‘ENSj,d,k(i)
< maz{ Z Ak, d, Z |Az;k,al}- (16)
:CEP_Sj,d,k(i) ZEGN_Sj,d,k(i)

Inequality (15) is due to the fact that the absolute value of a sum is upper-bounded by
either the sum of the positive terms or the sum of the absolute value of the negative
terms. Inequality (16) is due to the fact that PS;qx(s) C PSjax(i) and NS;qx(i) C
NS qk(i). Putting together (12), (13), and (16), we get our desired bound on the dth
dimension of the assignment error

(@) (%)

max{zzeﬁj,d,k(i) A:L‘j’k;(b Zweﬁj,d,k(i) A|x.7ak7d‘}

|V} a1 — Vjapsl < ] D+ (17)
|Zle(Comb(i)U{z’})(n§',3c - ﬁ% )l
We have the following bound on the assignment error
2
D - : - ,
||U(i) — 7t | < Z ma${2$epsj,d,k(i) ATjkd D ineN; 4401 Alesral} (18)
d=1 | 2tecomp@ugey) (Mg = Wik )l
Let UAE](.?C 41 denote the right-hand side of inequality (18).

The sampling error, Hﬁﬁ 1T Vg +1/l; is bounded by applying a similar argument as in
the iteration zero case. The only difference lies in the fact that the error approximate
probability bound must take into account the error probabilities at all previous iterations.
Since node sampling was done independently at each iteration, then we must multiply
the error bounds at all iterations. Hence, the sampling error on centroid j at node N; at

the end of iteration & is bounded above by

; | D Q) 'U'dk() )2 R? U'k(‘-()2 - 2lz'dkv'dk(;( ) )
S E(le: 22[(p .Sk; )( 2,a, ],d,k s 7,0,k % 7,08, ? )]
AEj i = 2: <




k

5 |0.97
10 | 0.94
20 | 09
40 | 0.81
80 | 0.66
160 | 0.44

Table 1: Bounding values for different numbers of iterations.

with probability approximately bounded below by [I — D(1 — conf(z))]**!. Therefore,

from inequality (11) we have the following upper-bound on the total centroid error on
centroid j at node N; at the end of iteration k

&) = UAES) + SAEY) |

which holds with probability approximately bounded below by [1 — D(1 — conf(z))]***.

The value of z is assumed to be defined by the user at the start of iteration zero. To
get an idea as to this approximate bound, consider D = 5 (five dimensional data) and
z = 3.3. Table 1 shows the values for [1 — D(1 —conf(z))]¥*! as the number of iterations
increases.

5.4 Computing the Bound

Recall that the goal of the analysis is to provide node N; with a “gage” by which the
centroid error can be assessed. Specifically N; can compute an upper-bound on the

(@)

centroid error at the end of iteration k, € jfk, which holds with probability approximately

bounded below by [I — D(1 — conf(z))]*T!. Both of these quantities can be computed

using information local to Nj;, information about sampled nodes sent to IV;, and the
previous iteration error upper-bound, 65'21)9—1-

Clearly, node N; can compute all terms in .S AE](Z])c 41 using the centroids and cluster counts

it received from other nodes assuming that the total number of nodes in the network p
is known. If this assumption is not made, p can be replaced with any upper-bound p.

The result is an upper bound on SAEJ(.,Z,)c 41 as needed.

For node N; to compute UAE](-i) some additional information need be exchanged be-

k41
tween nodes. First of all each node N; must send to Nj, ﬁg-l}j along with its jth centroid
and cluster count. Second of all N; must communicate (for each dimension d) its share
i
of ZxEP_Sj,d,k(i) Azjq) and EweN_Sj,d,k(i) Azjqp. To do so, Nj first sends v](-’,)H_l to N,

from which N; can compute its shares and send them to N;.



The total amount of additional communication required to compute the error bound is
approximately a factor of two.

6 Experimental Results

We carried out two sets of experiments. First we applied a random sampling-based
approach, i.e., in each iteration, every node (site) updates its cluster centroids based on
the cluster information from randomly selected nodes over the whole network. Then we
experimented with the scenario where random sampling is replaced by the deterministic
immediate neighbor-based approach, i.e., each node updates its cluster centroids by only
considering the information from its immediate neighbors. The proposed algorithms are
compared against centralized K-Means clustering algorithm in terms of accuracy and
communication cost. In the next, we describe the experimental environment, data set
used and performance measurement before reporting the experimental results.

We ran our experiments in a simulated environment where the number of computing
nodes varies from 10 to 50. We adopted two kinds of network topologies. The first one is
represented as a totally random graph without disconnected components, i.e., each node
can find a path to all the other nodes in the network. The second one is again a random
graph, however, we kept the number of immediate neighbors of each node constant, 5 for
example. In each iteration of the proposed algorithm, each node runs local K-Means on
its own data first. Then, based on the predefined topology, each node updates its cluster
centroids by taking into consideration the cluster information from some other nodes
(either randomly selected nodes or immediate neighbors) in the network. The process
starts with the same set of K initial seeds, and it iterates till the termination condition
is met.

We conducted all the experiments with synthetic data sets generated from multi-variate
Gaussian distribution. For the purpose of visualization, we generated the data with
only two attributes. A sketch of the data is shown in Figure 2. The same data set is
non-uniformly (uniformly resp.) distributed over different nodes.

To measure the accuracy of our proposed algorithm. We compare the cluster membership
of each data point from P2P K-Means with the membership of the same data point from
centralized K-Means. Since both the centralized and the distributed clustering algorithms
start from the same set of initial seeds, a particular data point is expected to be labeled by
the same cluster index in the end. We report the total number of mislabeled data points
as a percentage of the size of the data set. Besides, we also report the average relative
Euclidean distance between each centroid found by P2P K-Means and the corresponding
one found by centralized K-Means. This index is computed via

Z ||W WC’entral ||
‘ |WCentral | |

i=1

x 100%, (j = 1,..., K) (19)

where ||.|| denotes the vector two norm, Wj(i) is the j-th centroid in node ¢ found by P2P
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Figure 2: Multi-variate Gaussian data set with 37,800 data points and six clusters.

K-Means, W]-Ce”t"‘l is the j-th centroid found by centralized K-Means, and p is the total
number of nodes in the network. For sake of simplicity, in the later part of this section,
we use ‘Relative Euclidean Distance’ or ‘RED’ to denote this index.

To evaluate the communication complexity, we compare the total number of messages
passing over the P2P network with the messages required to transfer all the data points
into one single node which holds the biggest chunk of the data. We view the transmission
of a single floating point number as one message. During each iteration, every node
receives K centroids from each of its partners V; (either randomly selected nodes or
immediate neighbors), together with K cluster counts associated with these centroids.
The total number of messages received by a single node U can thus be computed through
Z§:1 ZZIL(K X (D +1) x ShortestPath(U,V;)), where k is the number of iterations, N
is the number of partners that communicate with node U, K is the number of clusters,
D is the dimensionality of the data point, and ShortestPath(U,V;) is the length of the
shortest path from U to V;. We assume the distance between two directly connected
nodes is 1. Thus the communication complexity of of P2P K-Means is roughly bounded
by O(pkNK (D + 1)P) where p is the total number of nodes in the network, P is the
maximum length of the all the shortest paths from the current node to its partners.

6.1 Random Sampling-based Approach
6.1.1 Non-uniformly Distributed Data

We varied the total number of nodes in the Peer-to-Peer network from 10 to 50. The
same data set is randomly, non-uniformly distributed over all the nodes. The topologies
of all the systems are always random and there are no disconnected components. For
P2P K-Means, in each iteration, each node U updates its cluster centroids based on



\ #Nodes | 50 | 45 [ 40 | 35 | 30 | 25 | 20 [ 15 | 10 |
Max #Points/Node || 1523 | 1506 | 1935 | 2336 | 1957 | 2688 | 3035 | 5266 | 5625
#Messages 14175 | 11778 | 10665 | 9639 | 7674 | 6648 | 5148 | 3744 | 2412
Message Rate(%) 19.54 | 16.23 | 14.87 | 13.59 | 10.71 | 9.47 | 7.40 | 5.75 | 3.75
#Mislabeled Points || 32 48 20 30 37 23 9 6 6
Error Rate(%) 0.08 | 0.13 | 0.05 | 0.08 | 0.10 | 0.06 | 0.02 | 0.02 | 0.02

Table 2: Accuracy and communication cost of P2P K-Means clustering with random
sampling of nodes. The original data set (37,800 data points) is non-uniformly distributed
over different-size P2P networks.

\ #Nodes | 50 | 45 [ 40 | 35 | 30 | 25 | 20 [ 15 | 10 |
RED for Centroid 1 || 1.10 [ 1.04 [ 0.80 [ 0.80 [ 0.79 [ 0.45 [ 0.65 | 0.80 | 0.37
RED for Centroid 2 || 0.86 | 0.71 [ 0.78 | 0.80 | 0.65 | 0.55 | 0.53 | 0.62 | 0.35
RED for Centroid 3 || 1.40 [ 1.32 [ 1.17 [ 1.29 | 1.35 | 1.17 | 0.84 | 0.79 | 0.56
RED for Centroid 4 || 0.73 [ 0.74 [ 0.72 ] 0.65 | 0.66 | 0.65 | 0.62 | 0.47 | 0.32
RED for Centroid 5 || 1.15 | 1.17 [ 0.79 [ 0.90 | 0.81 | 0.72 | 0.76 | 0.66 | 0.53
RED for Centroid 6 || 10.99 | 9.88 | 7.71 | 7.78 | 15.41 | 13.81 | 7.24 | 7.35 | 3.84

Table 3: Relative Euclidean Distance (RED) between each local centroid and the cen-
tralized centroid with random sampling of nodes. The original data set (37,800 data
points) is non-uniformly distributed over different-size P2P networks.

the cluster information from a fixed number (5 in our experiment) of randomly selected
nodes V; in the whole network. The reason for keeping such fixed number of neighbors
is to make the number of messages exchanged in different-size network comparable. The
experiments were conducted several times, and Table 2 shows the results on average.

The experimental results show that P2P K-Means clusters most of the data points as
correctly as the centralized K-Means does. The total number of mislabeled data points,
when expressed as a percentage of the size of the original data set, does not exceed 0.2%.
The accuracy is roughly constant as the nodes in the P2P network changes. Compared
with the communication cost required by centralizing the data into one single node, P2P
K-Means only needs a very small portion of message passing, i.e., from 3.75% to 19.54%.
Note that as the number of nodes in the network increases, more and more nodes join
into in the centroids update process, so the total number of messages also grows up,
which verifies the theoretical analysis of the message complexity in the previous section.

Table 3 gives the average Relative Euclidean Distance (RED) (computed via Eq. 19)
between each local centroid and the centralized centroid. It can be seen that most of
the REDs are only around 1%, which means the distributed clusters are very close to
the corresponding centralized ones. Note that the REDs for centroids 3 and 6 are much
higher than all the others. This is because these two clusters have lots of overlapping
data points, so it is a little hard to separate them. Moreover, non-uniformly sampling
of the data set over P2P network results in a very skewed distribution of the data in
some nodes, which hurts the local clustering results pretty much. To investigate the
performance of the algorithm with regard to the sample size (the number of randomly



#Samples 3 5 7 9 11 13 15

#Messages 7668 12960 | 17820 | 24282 | 28152 | 33552 | 38808
Message Rate(%) 10.57 | 17.86 | 24.56 | 33.47 | 38.80 | 46.24 | 53.49
#Mislabeled Points 15 18 8 6 4 2 2

Error Rate(%) 0.0397 | 0.0476 | 0.0212 | 0.0159 | 0.0106 | 0.0053 | 0.0053

Table 4: Accuracy and communication cost of P2P K-Means clustering with random
sampling of nodes. The original data set (37,800 data points) is non-uniformly distributed
over 50 nodes. The sample size varies from 3 to 15.

\ #Nodes | 50 | 45 [ 40 | 35 | 30 | 25 | 20 [ 15 | 10 |
#Points/Node 756 840 945 | 1080 | 1260 | 1512 | 1890 | 2520 | 3780
#Messages 12960 | 11448 | 10260 | 9000 | 7524 | 6480 | 5148 | 3744 | 2412

Message Rate(%) | 17.49 | 15.48 | 13.92 | 12.25 | 10.30 | 8.93 | 7.17 | 5.31 | 3.54

#Mislabeled Points 44 31 14 8 12 14 17 4 5

Error Rate(%) 0.12 | 0.08 | 0.04 | 0.02 | 0.03 | 0.04 | 0.04 | 0.01 | 0.01

Table 5: Accuracy and communication cost of P2P K-Means clustering with random
sampling of nodes. The original data set (37,800 data points) is uniformly distributed
over different-size P2P networks.

selected partners), we fixed the initial seeds, the number of nodes in the network (50
nodes), as well as the topology, then we changed the number of sample nodes from 3 to
15. Table 4 reports the results. It shows that as the number of samples increases, the
communication cost grows up, and the error rate drops down in the long run, though
not strictly due to the randomness.

6.1.2 TUniformly Distributed Data

When data is uniformly distributed over different nodes, each node contains equal number
of data points. The total number of points per node thus decreases as the number of
nodes goes up. Since the distribution of data in each node is almost the same as the
distribution of the original data set, the number of iterations required to converge in P2P
K-Means is supposed to be lower than that of the non-uniformly distributed scenario,
which means less messages over the network; the quality of distributed clusters should
also be a little better than the previous settings. Table 5 and Table 6 validate the claims.

6.2 Deterministic Immediate Neighbors-based Approach

In this set of experiments, we define the topology of the network in a manner such
that each node contains a fixed number of immediate neighbors (5 in our experiment).
When updating the cluster centroids, each node only communicates with its immediate
neighbors. We again report the experimental results of two kinds of data dispatching



\ #Nodes | 50 | 45 [ 40 | 35 [ 30 | 25 [ 20 | 15 [ 10 |
RED for Centroid 1 || 0.96 [ 1.00 | 0.75 | 0.75 | 0.63 | 0.60 | 0.67 | 0.45 | 0.39
RED for Centroid 2 || 0.89 | 0.85 | 0.65 | 0.70 | 0.70 | 0.43 | 0.49 | 0.36 | 0.36
RED for Centroid 3 | 1.55 | 1.39 | 1.06 | 1.25 | 0.78 | 0.89 | 1.14 | 0.49 | 0.67
RED for Centroid 4 || 0.74 [ 0.74 | 0.72 | 0.55 | 0.47 | 0.45 | 0.38 | 0.40 | 0.30
RED for Centroid 5 || 0.99 [ 0.89 | 0.89 | 0.76 | 0.90 | 0.62 | 0.69 | 0.34 | 0.52
RED for Centroid 6 || 10.21 | 7.39 | 7.06 | 8.15 | 7.21 | 6.22 | 6.10 | 3.94 | 3.75

Table 6: Relative Euclidean Distance between each local centroid and the centralized
centroid with random sampling of nodes. The original data set (37,800 data points) is
uniformly distributed over different-size P2P networks.

| #Nodes [ 50 | 45 [ 40 [ 35 [ 30 | 25 | 20 | 15 | 10 |
Max #Points/Node || 1523 | 1506 | 1935 | 2336 | 1957 | 2688 | 3035 | 5266 | 5625
#Messages 9882 | 8190 | 7902 | 6912 | 5580 | 5364 | 3600 | 2700 | 1800

Message Rate(%) || 13.62 | 11.28 | 11.01 | 9.75 | 7.78 | 7.64 | 5.18 | 4.15 | 2.80
#Mislabeled Points 53 35 32 33 25 43 12 16 17
Error Rate(%) 0.14 | 0.09 | 0.08 | 0.09 | 0.07 | 0.12 | 0.03 | 0.04 | 0.05

Table 7: Accuracy and communication cost of P2P K-Means clustering with fixed imme-
diate neighbors. The original data set (37,800 data points) is non-uniformly distributed
over different-size P2P networks.

| #Nodes [ 50 | 45 [ 40 [ 35 | 30 | 25 | 20 | 15 | 10 |
RED for Centroid 1 || 1.10 | 1.01 | 0.81 | 0.78 | 0.80 | 0.45 | 0.65 | 0.80 | 0.37
RED for Centroid 2 | 0.86 | 0.72 | 0.79 | 0.80 | 0.65 | 0.56 | 0.53 | 0.62 | 0.35
RED for Centroid 3 | 1.61 | 1.43 | 1.24 | 1.48 | 1.39 | 1.28 | 0.83 | 0.80 | 0.59
RED for Centroid 4 | 0.74 | 0.63 | 0.74 | 0.64 | 0.67 | 0.64 | 0.63 | 0.48 | 0.32
RED for Centroid 5 | 1.14 | 1.16 | 0.80 | 0.90 | 0.81 | 0.72 | 0.76 | 0.66 | 0.53
RED for Centroid 6 || 12.34 | 10.66 | 8.13 | 8.08 | 15.66 | 15.97 | 7.06 | 7.29 | 3.66

Table 8: Relative Euclidean Distance between each local centroid and the centralized
centroid with fixed immediate neighbors. The original data set (37,800 data points) is
non-uniformly distributed over different-size P2P networks.



\ #Nodes | 50 | 45 | 40 | 35 [ 30 | 25 | 20 | 15 | 10 |
#Points /Node 756 | 840 | 945 [ 1080 [ 1260 | 1512 | 1890 | 2520 | 3780
#Messages 9000 | 8100 | 7200 | 6300 | 5400 | 4500 | 3600 | 2700 | 1800

Message Rate(%) | 12.15 | 10.96 | 9.77 | 8.58 | 7.39 | 6.21 | 5.01 | 3.83 | 2.65

#Mislabeled Points 13 6 21 13 35 6 11 1 5
Error Rate(%) 0.34 | 0.02 | 0.06 | 0.03 | 0.09 | 0.02 | 0.03 | 0.00 | 0.01

Table 9: Accuracy and communication cost of P2P K-Means clustering with fixed im-
mediate neighbors. The original data set ( 37,800 data points) is uniformly distributed
over different-size P2P networks.

\ #Nodes | 50 | 45 [ 40 | 35 [ 30 | 25 [ 20 | 15 [ 10 |
RED for Centroid 1 || 0.96 [ 1.00 | 0.75 [ 0.75 ] 0.63 [ 0.60 | 0.67 | 0.45 [ 0.39
RED for Centroid 2 || 0.89 | 0.85 | 0.65 | 0.70 | 0.70 | 0.43 | 0.49 | 0.36 | 0.36
RED for Centroid 3 | 1.58 | 1.34 | 1.08 | 1.25 | 0.76 | 0.87 | 1.11 | 0.49 | 0.67
RED for Centroid 4 | 0.74 | 0.74 | 0.72 | 0.55 | 0.48 | 0.45 | 0.37 | 0.40 | 0.30
RED for Centroid 5 || 0.99 [ 0.89 | 0.89 | 0.76 | 0.90 | 0.62 | 0.69 | 0.34 | 0.52
RED for Centroid 6 || 10.16 | 7.10 | 6.95 | 8.16 | 7.50 | 6.25 | 5.96 | 3.86 | 3.75

Table 10: Relative Euclidean Distance between each local centroid and the central-
ized centroid. The original data set (37,800 data points) is uniformly distributed over
different-size P2P networks.

strategies: non-uniformly distributed data and uniformly distributed data.

6.2.1 Non-uniformly Distributed Data

The same non-uniformly sampled data sets were used as before, and the initial seed of
centroids were the same. Table 7 and Table 8 give the results. We observed that the per-
formance are fairly similar with the results from random sampling-based approach, i.e.,
low communication cost, and high accuracy. However, since each node only communi-
cates with its immediate neighbors, and the length of path is always 1, the communication
cost in this setting is less. On the other hand, random sampling of nodes enables each
node in each iteration to communicate with different nodes in the network, thus every
node can get much more information than what it can get in the deterministic immedi-
ate neighbors-based approach, so the error rate of random sampling-based approach is a
little lower.

6.2.2 TUniformly Distributed Data

When the data is uniformly distributed over all the nodes, communicating with randomly
selected nodes or with immediate neighbors does not make much difference in terms
of accuracy. So the performance of the algorithm in this setting is similar with the
performance in random sampling-based approach on uniformly distributed data. Table



9 and Table 10 give the detailed experimental results.

To summarize, P2P K-Means delivers clusters that are very comparable to the clustering
done by centralized K-Means. The average number of mislabeled data points compared
with the centralized approach is really small, i.e., less than 1% in almost all cases,
and usually the number of messages exchanged is less than 20% of the communication
necessary to move the data points into a central node.

7 Discussion and Conclusions

This article describes the P2P K-Means algorithm for distributed clustering of data
streams in a peer-to-peer sensor network environment. Sensor networks are character-
ized by low communication and computational capabilities, limited battery power, asyn-
chronous nature and existence of faults. In the P2P K-Means algorithm, computation
is performed locally, and communication of the local data models (represented by the
corresponding centroids and the cluster counts) is restricted only within a limited neigh-
borhood. As opposed to the full synchronization required in certain algorithms (e.g., [19]
where the next iteration of K-Means begins only after information regarding the global
centroids percolates to all the nodes), synchronization in P2P K-Means is restricted only
within a neighborhood. Moreover, even if some node and/or link fails, the algorithm can
continue, though its performance will degrade gracefully with an increase in the number
of failures. Although the present version of the P2P K-Means is not designed to deal
directly with continuous data streams in sensor networks, it can be easily extended to
this scenario following the work in [4].

Experimental results demonstrate the effectiveness of the P2P K-Means clustering algo-
rithm for the cases when the full data is uniformly and non-uniformly distributed over
the nodes. It is found that the accuracy of the result, as compared to the centralized
K-Means, is reasonably good even with a relatively small amount of message passing. An
extensive theoretical analysis of the proposed algorithm is provided that gives bounds
on the error in computing the centroids in the distributed clustering process compared
to the centralized approach.

As a scope for future work, the variation of the performance of the algorithm under
faulty conditions needs to be studied. The energy-quality trade-off characteristic of P2P
K-Means (or, the relationship between the accuracy of the solution and the amount of
communication) needs to be established both theoretically as well as experimentally.
When communicating with distant neighbors the shortest path routing protocol is con-
sidered for the present, since choice of a good routing protocol was not the focus of this
article. However, in the future, effect of other, more real-life routing protocols, should be
investigated. Finally, the present analysis of the bounds on the error in computing the
centroids at each iteration of the P2P K-Means vis-a-vis the centralized case are some-
what conservative. In the future, tighter bounds on this error needs to be developed.
The authors are currently working in this direction.
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